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Drop coalescence occurs through the rapid growth of a bridge that connects the two
drops. At early times after contact the bridge dynamics is typically self-similar, with
details depending on the geometry and viscosity of the liquid. In this paper we analyse
the coalescence of viscous drops that float on a quiescent deep pool; such drops are called
liquid lenses. The analysis is based on the thin-sheet equations, which were recently shown
to accurately capture experiments of liquid lens coalescence. We find that the speed of
visco-capillary coalescence is not constant, but exhibits a slow logarithmic evolution with
time. This dynamics is explained using a matched asymptotic expansion, which reveals a
slow evolution of quasi-self-similar flow profiles. The analysis predicts that the coalescence
velocity exhibits a weak dependence on the ratio of the bridge height and drop size, as
is confirmed in detail by numerical simulations.

1. Introduction

Coalescence of drops is one of the most common capillarity-driven phenomena which
can be observed in multiphase fluid dynamics. The early-time dynamics of coalescence is
dependent on both the viscosity of the drops and their geometry. Different power laws for
the growth of the connecting structure (referred to as neck or bridge) have been found
for viscous and inviscid freely suspended drops (Eggers et al. 1999; Duchemin et al. 2003;
Thoroddsen et al. 2007; Paulsen et al. 2011; Aarts et al. 2005), as well as for sessile drops
in the viscous and inviscid limit (Ristenpart et al. 2006; Hernández-Sánchez et al. 2012;
Eddi et al. 2013; Narge et al. 2008; Lee et al. 2012). The study of coalescence phenomena
is also relevant for many applications where the underlying substrate of the coalescing
drops is a liquid. Some examples are wet-on-wet printing (Hack et al. 2018), emulsions
(Shaw 2003; Kamp et al. 2016), and lubricant impregnated substrates (Smith et al. 2013;
Anand et al. 2012).

Here, we focus on liquid lenses (de Gennes et al. 2004), consisting of liquid drops
floating on a quiescent pool of another liquid. This case was studied for Newtonian
drops (Burton & Taborek 2007) and liquid crystals (Delabre & Cazabat 2010), where
the authors analysed the growth of the bridge in top-view experiments. Recent work
considered the coalescence of lenses using side-view experiments (Hack et al. 2020). This
perspective is sketched in figure 1, providing a quasi-two-dimensional view of the problem.
The experiments revealed a self-similar dynamics of the bridge profiles, with scaling laws
for the bridge height h0 that depend on the viscosity (Hack et al. 2020). At low viscosity,
the dominant balance during coalescence is between surface tension and inertia, and
it was found that h0 ∼ t2/3. At high viscosity, the dominant balance between surface
tension and viscosity leads to h0 = V0t where V0 is the coalescence velocity. These
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Figure 1. Sketch of two coalescing lenses of height `, radius R and equilibrium contact angle
θ. The dashed rectangle shows the domain considered in the modeling.

scaling laws are the same as those described in the merging of liquid wedges (Billingham
& King 2005). Owing to the slender geometry of the drops – typically the contact angle
θ in figure 1 is small – the coalescence of liquid lenses can be analysed using the thin-
sheet equations (Erneux & Davis 1993; Ting & Keller 1990). Using a similarity analysis,
the experimentally observed inertial and viscous scaling laws are recovered (Hack et al.

2020). For example, the viscous coalescence speed was found V0 = 2.21..γθ
2

4η , where γ
and η respectively are the drop surface tension and viscosity, in good agreement with
experiments.

Interestingly, the viscous similarity analysis contains an important inconsistency: the
obtained self-similar velocity profile does not decay at large distance from the thin bridge
region. This is problematic, since in coalescence (as well as in drop breakup, cf. Eggers
& Fontelos (2015)), the similarity analysis is based on the assumption that the flow
remains confined to the scale of the neck – at large scale, i.e. the scale of the drop, the
flow should therefore vanish. A direct signature of this inconsistency is seen in figure
2: the coalescence velocity obtained from time-dependent numerical simulations (dashed
lines) is significantly below the nondimensional velocity V0 predicted from the similarity
analysis (dotted line). This issue does not arise for inviscid lenses, for which the velocity
profiles rapidly decay away from the bridge, and a perfect match with time-dependent
simulations was found (Hack et al. 2020).

In this paper, we provide a detailed analysis of the coalescence of highly viscous lenses,
and show that it is governed by a quasi-self-similar dynamics. The key result is that the
coalescence velocity exhibits a slow relaxation, which in dimensionless variables reads

V ' V0 + V1(t), where V1 ∼
1

ln(t)
, (1.1)

and t � 1 is the (dimensionless) time after coalescence. By performing a matched
asymptotic analysis on the viscous thin-sheet equations, we will show that this slow
relaxation of the velocity can be attributed to the long range of the velocity field,
induced by the bridge but penetrating to the entire scale of the drop. This leads to
an intricate coupling of the drop size and the neck region, and as a consequence, the
local flow in the bridge is not strictly self-similar. The analysis is confirmed in detail
by comparison to time-dependent numerical simulations of the thin-sheet equations, and
accurately captures the slow convergence of the coalescence velocity (figure 2, solid line).

2. The viscous thin-sheet equations

Following the approach of Hack et al. (2020), the process of coalescence is modeled
by the two-dimensional viscous thin-sheet equations (Erneux & Davis 1993; Ting &
Keller 1990). The underlying approximations are the following: (i) Similar to sessile drops
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Figure 2. Coalescence velocity V = dh0/dt as a function of the local bridge height h0

(see inset for definitions). Variables made dimensionless according to (2.3). Dashed lines are
time-dependent numerical simulations, starting from two initial bridge heights (respectively
near 10−8 and 10−6); shortly after initialising, both simulations follow the same trend, where
the coalescence velocity exhibits a slow convergence to the ultimate velocity V0 (dotted). Solid
line is the prediction (5.5) from the matched asymptotic analysis.

(Ristenpart et al. 2006; Hernández-Sánchez et al. 2012) the flow in the lenses is quasi-
two-dimensional in the early stage of coalescence. (ii) The equilibrium contact angle θ is
small, such that a slender body approximation can be employed. (iii) The influence of the
bath on the dynamics is negligible, i.e., free slip boundary conditions can be employed
at both interfaces of the 2D lenses. (iv) Due to negligible differences in surface tension
between the bath and liquid lens and the liquid lens and air, the liquid lenses are assumed
to be symmetrical with respect to the bath-air interface (asymmetric surface tensions can
be mapped to an “effective” symmetric surface tension). The resulting model equations
for negligible inertia of the flow, in dimensionless variables, take the form:

∂h

∂t
+

∂

∂x
(hu) = 0, (2.1)

h
∂3h

∂x3
+ 4

∂

∂x

(
h
∂u

∂x

)
= 0. (2.2)

Here, h(x, t) and u(x, t), respectively, are the dimensionless interface height and the
horizontal velocity. Dimensional variables (x̄, h̄, ū, t̄) are scaled as

x̄ = Rx; h̄ = 2`h = θRh; ū =
γ

η
θu; t̄ =

Rη

θγ
t, (2.3)

where R is the top view lens radius, ` the side-view lens height, with contact angle θ
(cf. figure 1). The surface tension is denoted as γ and η is the viscosity of the liquid
inside the lenses. The thin-sheet equations (2.1)-(2.2), respectively, correspond to mass
and (horizontal) momentum conservation. The latter gives the balance between capillary
forces (first term) and viscous forces (second term), while inertia was neglected.

We solve (2.1)-(2.2) numerically employing a finite element method implemented using
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Figure 3. The velocity fields at early times of the coalescence process are not confined to the
very narrow neck region at the center, but penetrate into the drops. The problem is analysed
using a quasi-self-similar inner region and a nearly static outer region (colored patches for
illustration, not to scale).

the library oomph-lib (Heil & Hazel 2006). A spatially non-uniform mesh and a second
order backward differentiation formula (BDF) scheme for the time stepping are used.
In both the simulations and analysis, we assume that the lenses do not approach each
other during the coalescence which allows us to model only half of the lenses (cf. dashed
rectangle in figure 1) employing no-flux boundary conditions at the position of the lens
apex. The simulations are initialized by two parabolas connected by an appropriate
polynomial function at |x| � 1 such that h0(t = 0) = O(10−6) or less.

Two exemplary snapshots of a time-dependent numerical simulation of the velocity
field are shown as solid lines in figure 3. The initial drops are indicated as the grey
dashed lines. Even at exceedingly small bridge heights h0, i.e. at very early times of the
coalescence process, the velocity field exhibits pronounced tails, that only slowly decay
towards the lens apex. This means that the flow is not confined to the narrow bridge
region, but penetrates far into the large-scale drop.

Based on this observation, we will analyse the problem in two distinct regions: (i) The
outer region, where the drop profiles exhibit only small deviations from the equilibrium
state, and (ii) the inner region corresponding to the connecting bridge, where surface
tension drives the coalescence process, i.e., the growth of the bridge height h0. Subse-
quently, the results of the two regions are matched, which will close the problem. Owing
to symmetry, we restrict ourselves to x > 0 in the following.

3. The outer region

3.1. Perturbation of static solution

We start by seeking a solution for the outer region. Prior to the coalescence, we
encounter a static drop without any flow. Indeed, (2.1)-(2.2) admit a static solution

hs =
1

2
x(2− x); us = 0, (3.1)
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where the lens takes on a parabolic shape (ensuring the correct contact angle via h′s(0) =
1). Once coalescence is initialized, at t = 0 and x = 0, a flow develops and penetrates
into the drop. At large scales, this gives a disturbance with respect to (3.1), which is
treated as a regular perturbation,

h(x, t) = hs(x) + h1(x, t); u = u1(x, t). (3.2)

We do not know a priori how the perturbation grows over time, so for the time being we
do not explicitly introduce a scale for h1, u1. However, it is understood that we assume
h1 � hs in the outer region, so that (2.1)-(2.2) can be expanded to

∂h1
∂t

+
∂

∂x
(hsu1) = 0, (3.3)

hs
∂3h1
∂x3

+ 4
∂

∂x

(
hs
∂u1
∂x

)
= 0. (3.4)

At this point two comments are in order with regards to the behaviour as x → 0, for
which the static profile hs → 0. First, the assumption h1 � hs must break down in the
proximity of x = 0; namely hs = 0 at the drop edge but we are interested in describing
a nonzero bridge height. Second, hs multiplies the highest derivative in (3.4), which
anticipates the appearance of a boundary layer as hs → 0. This boundary layer is the
inner region depicted in figure 3, and must be analysed separately.

For now we proceed with the “outer” analysis, i.e. staying away from x = 0 and
assuming the first term (surface tension) in (3.4) is sub-dominant with respect to the
second term (viscosity). We can then integrate the equation twice to obtain

u1(x, t) = C(t) ln

(
x

2− x

)
+B(t), (3.5)

where C(t) determines the strength of the outer flow that remains to be determined.
Using the boundary condition that x = 1 is a stagnation point, u1(1) = 0, we find
B(t) = 0. Inserting (3.5) into (3.3) gives after integration in time

h1(x, t) = C̃(t)

(
x ln

(
x

2− x

)
− ln

(
x

2− x

)
− 1

)
, where C̃(t) =

t∫
0

dt′C(t′). (3.6)

Hence, we have found the spatial structure h1, u1 in the outer region. Importantly, the
velocity u1 diverges as x→ 0, which indeed needs to be regularised inside of a boundary
layer. The remaining task is to compute the strength of the outer flow C(t).

3.2. Boundary layer scaling

We now use the outer solution to establish the scalings of the boundary layer (the
inner region). The boundary layer arises when the capillary term, hs∂

3h1/∂x
3, becomes

comparable to the viscous term in (3.4). Estimating the capillary and viscous terms from
the outer solution h1, u1, we find the crossover distance

x ∼ C̃(t)

C(t)
. (3.7)
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To establish the time-dependence C(t), we anticipate that in the crossover region the
diverging outer velocity u1 ' C ln(x) will be regularized by an inner solution, with
uinner ∼ O(1). This then gives with (3.7):

C(t) ln

(
C

C̃

)
∼ 1 ⇒ C(t) ∼ ln

(
C

C̃

)−1
∼
t�1

1

− ln(t)
, (3.8)

where for the last step we have used the definition of C̃ in (3.6). Hence, the strength
of the velocity in the outer region, C(t), is arbitrarily small initially (as t → 0), but
increases in time. We obtain the boundary layer scalings

x∼ C̃(t)

C(t)
∼ t, h ∼ t, (3.9)

where for the scaling of h, we used that near the drop edge h ∼ x. These estimations are
useful in the analysis below, and will be verified a posteriori.

4. The inner region – manifold of quasi-similarity solutions

4.1. Generalized similarity ansatz

We now turn to the inner region. In Hack et al. (2020), we made a similarity ansatz
assuming h, u near the bridge are perfectly self-similar. However, we have seen that a
flow develops in the outer region, with a strength C(t) that increases in time. It will
turn out that this outer flow affects the inner region, so that the dynamics is not strictly
self-similar. Therefore we propose the generalized similarity ansatz:

h(x, t) = h0(t)H(ξ, C); u(x, t) = V (C)U(ξ, C); ξ =
x

h0(t)
, (4.1)

where the similarity profiles exhibit a weak time-dependence via C(t). Inserting into
(2.1)-(2.2) and using V = ḣ0, one finds

h0Ċ

ḣ0

∂H
∂C

+H− ξH′ + (HU)′ = 0, (4.2)

4V

H (HU ′)′ +H′′′ = 0, (4.3)

where a prime indicates a partial derivative with respect to ξ.
Now we see the importance of estimating the time dependence of C(t), h0 and ḣ0.

Namely, following the scaling in Sec. 3.2, it is clear that the first term in (4.2) vanishes
as t→ 0. By consequence, the early-time similarity equations (4.2)-(4.3) reduce to

H− ξH′ + (HU)′ = 0, (4.4)

4V

H (HU ′)′ +H′′′ = 0. (4.5)

These equations only involve derivatives with respect to ξ, so that they can be solved as
a set of ordinary differential equations. We remind that C still appears as a parameter
through V (C), which will be found by matching to the outer solution. In leading order
however, a constant velocity V = V0 implies h0 ∼ t which is consistent with (3.9).
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4.2. Boundary conditions and asymptotics of the similarity solutions

The remaining system (4.4)-(4.5) is fourth order, and contains an unknown parameter
V . We thus need five boundary conditions to close the problem. At ξ = 0, we impose

H(0) = 1; H′(0) = 0; U(0) = 0, (4.6)

where the latter two stem from symmetry considerations. These boundary conditions
admit a family of similarity solutions, with two examples shown in figure 4. To close the
problem, two further boundary conditions for ξ →∞ need to be formulated, by matching
to the outer solution. For this we consider the asymptotics of (4.4)-(4.5) as ξ →∞, i.e.

H ∼ A0ξ +A1 ln(ξ) +A2, (4.7)

U ∼ −A1

A0
(ln(ξ)− 2)−A2/A0, (4.8)

leaving us with three† degrees of freedom (A0, A1, A2). The matching analysis will fix the
two remaining boundary conditions, selecting the values of A0 and A1 (while A2 then
follows from solving the system of ODEs (4.4)-(4.5) with the boundary conditions (4.6)).

Importantly, the velocity U in (4.8) does not decay to zero at large distances (ξ � 1).
The solution presented in Hack et al. (2020) is recovered by setting A0 = 1, A1 = 0,
for which U approaches a constant value; this solution is shown as the dark solid line
in figure 4. It will turn out that this is the “ultimate” similarity solution, which is
approached as t→ 0. As we will see, however, matching the long-ranged flow inside the
drop far from the bridge calls for A1 6= 0, so that the velocity field exhibits a logarithmic
tail (figure 4, purple line). For the remaining steps it turns out convenient to work with
an integral of (4.5),

HH′′ − 1

2
H′2 + 4VHU ′ +K = 0. (4.9)

Here the constant K = −(H′′(0)− 4V ) is related to A1 by

A1 =
K − 1

2A
2
0

4V
(4.10)

and can thus be employed to control the outer asymptotics.

5. Matched asymptotics

5.1. Slow convergence of the coalescence velocity

Finally, we match the inner and outer solutions. This will offer the sought-after C(t)
and via V (C) offers the time dependence of the coalescence velocity. Expanding the
outer solution for x � 1 and the inner solution for ξ � 1, we obtain two overlapping
representations:

houter ' x− C̃(ln(2/x)− 1), hinner ' A0x+ h0A1 ln

(
x

h0

)
+ h0A2, (5.1)

uouter ' C ln
(x

2

)
, uinner ' V

(
−A1

A0

(
ln
(x

2

)
+ ln

(
2

h0e2

))
− A2

A0

)
. (5.2)

† Given that the system is fourth order, there should be a further degree of freedom as ξ → ∞.
However, it can be shown by perturbation analysis of (4.7)-(4.8) (cf. Eggers & Fontelos (2015)),
that this degree of freedom appears as a prefactor of a term decaying through an exponential in
ξ as long as A0 > 0, which is always the case in this coalescence problem. The degree of freedom
does thus not appear in our leading order asymptotics.
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Figure 4. Similarity solutions calculated by numerically solving (4.4) and (4.9) with boundary
conditions (4.6) and H′(∞) = 1 for two different values of K. Dotted lines show large-ξ
asymptotics (4.7) and (4.8).

Equating the leading order in h gives A0 = 1. Matching the expansions in u then gives

C = −V A1, and −A1

(
ln

(
2

h0

)
− 2

)
= A2, (5.3)

which results in

C =
V A2

ln
(

2
h0

)
− 2

. (5.4)

Noting that h0 ∼ t, to leading order, we indeed find the anticipated (3.8).
We now translate these results, in particular (5.4), to the coalescence velocity V =

V0 + V1 as announced in (1.1). First, we note that in the strict limit where h0 → 0, (5.4)
implies that C → 0 and thus A1 → 0. This boundary condition A1 = 0, complemented
by A0 = 1 and (4.6), gives the ultimate similarity solution that is indicated by the dark
solid lines in figure 4. We denote the corresponding values of V and A2 as V0 = 0.553
and A2,0 = 0.573, where V0 is the ultimate coalescence velocity. Second, we consider the
correction V1 of the coalescence velocity that quantifies the slow convergence to V0. Since
this correction is due to the outer flow, we make the ansatz V1 = c1C, where c1 = −2.5
is determined numerically (see the numerical matching below). Inserting this together
with V = V0 + V1 into (5.4) gives (for small h0)

V1 =
c1A2,0V0
ln(α/h0)

, with α = 2e−(2+c1A2,0) = 1.1, (5.5)

Hence, the correction to the coalescence velocity only evolves logarithmically with h0.
We remind that in dimensional terms, the slow convergence is associated to the ratio
h̄0/`, where ` is the drop height. The velocity obtained from (5.5) is in good agreement
with the results from time-dependent simulations as shown in figure 2 (solid line).

5.2. Numerical matching

Given that the expansion in h0 involves logarithms, and thus converges very slowly,
it worthwhile to numerically solve the matching conditions. This allows us to solve
the quasi-self-similarity equations at finite h0 with the matched boundary conditions
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Figure 5. Two examples of the matching inner and outer solutions at given h0, showing the
excellent agreement with time-dependent simulations.

calculated without relying on the leading order approximations (A2 ≈ A2,0, V1 ≈ c1C)
made above. Together with (4.10), the condition (5.3) implies a h0-dependent map
Kh0(V ), which is obtained by numerically solving the following equation for K:

1
2 −K
4V

−A2(V,K)

(
ln

(
2

h0

)
− 2

)−1
= 0. (5.6)

Here, A2(V,K) is obtained by numerically solving (4.4)-(4.9) at given (V,K) as an initial
value problem with (4.6) and A0 = 1 as boundary conditions. For each value of h0, the
“missing” boundary condition is thus provided implicitly by the map Kh0

(V ) resulting
from (5.6). This map can be inserted in (4.9), allowing us to find a unique similarity
solution associated to h0. The thus computed inner and outer solutions are found to be
in excellent agreement with full time-dependent simulations as exhibited in figure 5 for
two different values of h0. The symbols are snapshots from a time-dependent numerical
simulation of (2.1)-(2.2), while the black and grey solid lines give the corresponding
inner and outer solutions, respectively. From this procedure, we also get numerically
the correction to the instantaneous velocity V (h0) which can be employed to compute
the constant c1 in (5.5). The numerically obtained V1(h0) (not shown here) is in good
agreement with the expression (5.5) and exhibits, as expected, a slightly better match
with the time-dependent simulations at larger h0.

6. Conclusion

In the present work, we have analysed the coalescence dynamics of viscous liquid lenses.
We restricted ourselves to the case where the flow in the bath is negligible, which is a
consistent approximation for lenses of high viscosity. The common scenario in coalescence,
and pinch-off, is that the flow remains localised into the narrow neck region. However, it is
found for viscous lenses that the velocity field develops long logarithmic tails that generate
a flow inside the large-scale drops. A consequence of this flow is that the coalescence
velocity is not constant, but exhibits corrections that depend logarithmically on the
ratio h̄0/`, the neck size over the drop size. Only in the limiting case h̄0/` → 0, i.e.,
for a perfect scale separation, one approaches a universal velocity of pinch-off. Here, we
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analysed this scenario in full detail for the merging of two-dimensional drops, leading to
slowly evolving similarity solutions, as is confirmed by direct numerical integrations of
the thin-sheet equations.

Usually, a two-dimensional analysis of the coalescence is sufficient for sessile drops (and
inertial liquid lenses), since in those cases the flow remains confined to the neck region.
For the system discussed here, the extended logarithmic tails will make the problem
sensitive to the flow in the large scale drops. Three-dimensional liquid lenses will exhibit
a modified outer flow (3.5). The structure as presented here, however, is expected to be
valid also in the three-dimensional case; only the numerical coefficients in (5.4) should
be affected.

More generally, the dynamical structure of the problem bears a strong similarity with
drop spreading, where the motion of the contact line also induces a weak flow on the scale
of the drop (Bonn et al. 2009). The spreading velocity exhibits a logarithmic dependence
on the scale separation between drop size and the characteristic scale of the contact line
in that case too. An important difference, however, is that for drop spreading the inner
problem retains a universal structure and is governed by a single similarity solution.
Here we found that for viscous lens coalescence, the dynamics evolves along a family
of similarity solutions. This resembles the description of the thin film flow between a
settling sphere and a two phase boundary by Jones & Wilson (1978). We expect that
a quasi-self-similar approach as presented here might be fruitful to a broader class of
problems.
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