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Elastohydrodynamic lubrication, or simply soft lubrication, refers to the motion of
deformable objects near a boundary lubricated by a fluid, and is one of the key physical
mechanisms to minimise friction and wear in natural and engineered systems. Hence it
is of particular interest to relate the thickness of the lubricant layer to the entrainment
(sliding/rolling) velocity, the mechanical loading exerted onto the contacting elements,
and properties of the elastic boundary. In this work we provide an overview of the
various regimes of soft lubrication for two-dimensional cylinders in lubricated contact
with compliant walls. We discuss the limits of small and large entrainment velocity, which
is equivalent to large and small elastic deformations, as the cylinder moves near thick or
thin elastic layers. The analysis focusses on thin elastic coatings, both compressible and
incompressible, for which analytical scaling laws are not yet available in the regime of
large deformations. By analysing the elastohydrodynamic boundary layers that appear
at the edge of the contact, we establish the missing scaling laws – including prefactors. As
such, we offer a rather complete overview of physically relevant limits of soft lubrication.
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1. Introduction

The introduction of a viscous liquid within the narrow gap between two moving
bodies prevents solid-solid contact, reduces friction, minimizes wear, and allows precise
motion control; a process known as lubrication. Lubrication has played a pivotal role in
major engineering milestones, from revolutionising transportation of heavy objects on
wooden sledges in ancient Egypt (Dowson 1998) to the efficient and reliable functioning
of bearings in applications on many scales ranging up to the huge rolling bearings in
todays wind turbines. The underlying hydrodynamic framework of fluid flow in thin
gaps is in fact relevant to a range of phenomena across different length scales: motion of
drops/bubbles in microfluidic devices (Bretherton 1961; Byun 2013), moving blood cells
in capillaries (Fitz-Gerald 1969; Secomb et al. 1986), biomechanics of synovial joints (Hou
et al. 1992), and the low friction of hydrogels (Porte et al. 2020; Cuccia et al. 2020) to
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name a few. However, in most of the engineering applications as well as natural systems,
one or both of the moving boundaries are deformable. As a result, lubrication flow is
coupled to elasticity through the non-local soft lubrication equations.

Since the realization of the essential coupling between deformation and flow for film
formation, the study of elasto-hydrodynamic lubrication in engineering (Tribology) has
established as a separate field of research. Its importance has only increased with the
current need of reduced material and lubricant in view of sustainability demands. More
complex time-varying and extreme operating conditions, such as higher loads and higher
temperatures, lead to increased deformation and thinner films which calls for better
understanding and improved prediction capability for engineering and design. Only
in very specific asymptotic cases analytic solutions could be derived, and numerical
solution is often needed. Pioneering work was done by Dowson and Higginson (Dowson
& Higginson 1959, 1966) and Hamrock & Dowson (1977), where the complexity of
the interaction between deformation and flow led to numerical stability problems at
large deformations. Faster computers and improved numerical algorithms (Hamrock
et al. 2004; Venner & Lubrecht 2000) allowed the study of realistic problems related
to roller bearings, gears, cam-followers, and seals. Many studies aimed at the derivation
of empirical formulas for film thickness prediction under steady conditions from the
numerical solutions. Experimental validation was obtained from the further development
of optical interferometry based techniques (Gohar & Cameron 1963; Cann et al. 1996).
At present, complex cases of contact geometries with time varying loading conditions,
roughness moving through the contact, contacts with very limited lubrication supply,
grease lubricated contacts, and coated surfaces are considered, see Wang (2019). In spite
of the plethora of problems studied and results presented the fundamental understanding
of the physical phenomena and the appropriate scaling laws developed only relatively
slowly. A recent overview is given by (Greenwood 2020).

A key feature of soft lubrication is the emergence of a non-inertial lift force, which
facilitates lubrication by maintaining the gap between the moving surfaces (Sekimoto
& Leibler 1993; Skotheim & Mahadevan 2004). For micron sized particles flowing in
a channel with soft walls, this force causes radial migration of particles (Davies et al.
2018) and promotes particle sorting in microfluidic devices (Geislinger & Franke 2014).
A precise measurement of this elastohydrodynamic force can function as a contact-free
tool to probe the local rheology of soft materials (Leroy et al. 2012; Wang et al. 2015). For
sufficiently soft elastomers, this force is strong enough to sustain the weight of millimeter
sized metal cylinders which slide along a deformable wall (Saintyves et al. 2016), and
may result in intricate trajectories (Salez & Mahadevan 2015; Rallabandi et al. 2017).

Naturally, it is of fundamental interest to explain how the gap thickness evolves from
the coupling between fluid pressure and elastic deformation. The answer depends on
details of the physical limit under consideration: Since deformation of a soft layer crucially
depends on the geometry, and boundary conditions at the free surface, scaling laws
relating the lift force to the lubrication layer are very different in different physical
limits. Indeed, recent microfluidic experiments involving polymer brushes, cross linked
elastomers, and ionic microgels as soft boundaries have probed elastohydrodynamic
interactions in a few different limits, and experimentally found very distinct scaling
laws (Davies et al. 2018; Zhang et al. 2020; Vialar et al. 2019).

Specifically, the elastic layer can either be thick or thin, the material can be compress-
ible or incompressible, while the elastic deformation can be large or small compared to the
lubricant thickness. A well-studied limit is when the soft layer is thin and compressible, so
that deformation is proportional to the local pressure, while assuming deformations to be
small (Skotheim & Mahadevan 2005; Urzay et al. 2007; Salez & Mahadevan 2015). This
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Figure 1. Schematic representation of a lubricated contact with a thin, compressible elastic
layer, showing the relevant length scales of the problem: elastic layer thickness d, contact size
a, the fluid film thickness h(x) and the elastic deformation u(x) defined in downward direction.
One of the edges has been magnified to show the boundary layer width `, over which lubrication
forces smooth out the elastic deformation.

allows for a perturbative approach to solve the coupled elastohydrodynamic equations.
However, most of the soft materials like elastomers and hydrogels are incompressible,
and their response is described by non-local integral equations. Furthermore, if particles
are squeezed past a soft layer, a Hertz-like contact forms, where deformation is large as
compared to the gap thickness. In this case, the effect of lubrication is primarily dominant
within a narrow boundary layer at inlet/outlet regions near the contact edges (Bissett
1989; Snoeijer et al. 2013). This lubricated Hertzian limit is not only relevant for classical
tribological applications, but also plays a role in soft matter systems such as the slippage
of soft microgel pastes (Meeker et al. 2004). Naturally, different scaling laws become
relevant in these various limits, but an overview of how these different cases emerge –
and when these are applicable – is still lacking.

Here we present a unified overview of different regimes of soft lubrication. Our asymp-
totic analysis will focus on several important cases that were not considered previously,
most notably the lubricated Hertz-like limit for cylinders on thin elastic layers on a rigid
substrate. We also explore the transition to the small deformation limit, using numerical
simulations. The paper is organised as follows. In section 2, we develop the theoretical
and numerical framework and discuss the numerous length scales of the problem. Here
we emphasise how the relative magnitudes of these length scales determine the different
asymptotic regimes of soft lubrication. The main focus of the analysis will be dedicated
to the case of thin, compressible layers, in the regime of large deformation, which is
addressed in section 3. This case is solved analytically through similarity solutions, by
which we obtain the corresponding scaling laws. In the final section 4 this is complemented
by the results for thin incompressible layers. Hence, we provide a complete overview of
all regimes, summarised in a table in the concluding section, and discuss experimental
consequences.

2. Framework

2.1. Problem formulation

We consider the two-dimensional problem of a rigid cylinder moving at constant
velocity parallel to a deformable substrate, as sketched in fig. 1. Here we consider the
translation of the cylinder, but we remark that the analysis is identical for the case that
the cylinder is rotating (Pandey et al. 2016).

Importantly, the analysis is organised in terms of the length scales that appear in the
problem (fig. 1). The hierarchy of the length scales is a crucial aspect of the lubrication
problem, as the relative sizes of these lengths determine the asymptotic limit. Hence,
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the organisation of length scales will determine the scaling laws that relate the load and
velocity to the thickness of the lubrication layer.

A first aspect of the length scales is that we assume the cylinder radius, R, to be much
larger than the width of the contact zone, a, so that the shape can locally be approximated
as a parabola. The lubricant layer thickness, h(x), and the elastic deformation, u(x), are
then related by (fig. 1)

h(x)− x2

2R
+ c = u(x). (2.1)

Here c ≡ u(0) − h(0) is the indentation of the bottom of the cylinder, measured with
respect to the undeformed elastic substrate. Another obvious length scale is the thickness
d of the elastic layer. Finally, we anticipate the emergence of a dynamic length scale `,
sketched in the inset of fig. 1, which acts as a narrow boundary layer at the edges of the
contact (Snoeijer et al. 2013). We will find that the relative magnitudes of a, d, `, u, and
the compressibility of the elastic layer (quantified by the Poisson ratio ν), will determine
how the lubricant layer h scales with the sliding velocity. We remark that, apart from
d, none of these lengths are known a priori, but follow from a consistent analysis of the
problem.

Now that the geometry is in place, we can turn to the mechanical equations. We start
with the flow of liquid within the narrow gap, which is described by the Stokes equation,
∇p = η∇2v, where p is pressure, η is viscosity and v is the velocity field. We consider a
reference system where the cylinder is stationary, and the substrate moves with a velocity
V to the right. Since both the film thickness and its gradient are small compared to the
width of the contact, using no slip boundary conditions the velocity profile within the
gap can be written in the lubrication limit,

vx (x, z) =
1

2η

∂p

∂x

[
(z − u)2 + (z − u)h

]
+
[
1 +

z − u
h

]
V. (2.2)

Incompressibility of the liquid requires that, at steady-state, the flux Q =
∫ u
u−h vxdz

remains constant. As a result, integration of (2.2) gives the Reynolds equation (Reynolds
1886),

∂p

∂x
= 6V η

h− h∗

h3
, (2.3)

where h∗ = 2Q/V .
Next, we couple the pressure p(x) to the elastic deformation u(x) of the solid. This

is most conveniently done by transforming the problem to the Fourier domain (f̃(q) =∫∞
−∞ f(x)e−iqx dx; f(x) =

∫∞
−∞ f̃(q)eiqx dq

2π ). Namely, the elastic deformation of the
substrate in Fourier domain is given by

ũ(q) = K(q)p̃(q), (2.4)

where the Green’s function K(q) reads (Hannah 1951; Wang 2019),

K(q) =
(1− ν)

Gq

[
(3− 4ν) sinh(2qd)− 2qd

(3− 4ν) cosh(2qd) + 2(qd)2 + 5− 12ν + 8ν2

]
. (2.5)

In this expression ν is the Poisson ratio, G is the shear modulus, while d is the layer
thickness. For a given pressure, the backward transform to u(x) is to be performed
numerically. However, the above kernel can be simplified for various limiting cases, leading
to analytical expressions of u(x) in real-space. We distinguish between two limits defined
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Kernel expansion Deformation relation

Half space (qd� 1) K(q) =
1− ν
G

1

|q| u(x) = −1− ν
πG

∫
ln |x− x′|p(x′)dx′

Thin layer (qd� 1),
compressible (ν 6= 1

2
)
K(q) =

d(1− 2ν)

2G(1− ν)
u(x) =

d(1− 2ν)

2G(1− ν)
p(x)

Thin layer (qd� 1),
incompressible (ν = 1

2
)
K(q) =

d3

3G
q2 u(x) =

d3

3G

d2p

dx2

Table 1. Overview of asymptotes for the Fourier space Green’s function K(q), given in
(2.5). The two columns give the expansions of the Green’s function and the corresponding
pressure-deformation relations in real space.

by the quantity qd, a ratio of the substrate thickness to the typical wavelength q of the
deformation. In the short wavelength limit (qd � 1) the substrate’s response locally
reduces to that of an elastic half space K(q) ∼ |q|−1. In the opposite limit of large
wavelength or thin elastic layer (qd� 1), K(q) simplifies to different forms, respectively,
for incompressible (ν = 1/2) and compressible (ν 6= 1/2) materials. These results along
with the corresponding deformations are summarised in table 1. The main focus of the
calculations will be on the thin, compressible layers.

The analysis can be closed by either imposing a vertical load exerted on the cylinder,
or equivalently by fixing its vertical position. In our calculations we will impose the total
vertical force L, expressed in terms of the fluid pressure,

L =

∫ ∞
−∞

p(x)dx. (2.6)

The problem is defined by the system of three equations, (2.1, 2.3, 2.4), which describe
the three unknown fields h(x), p(x) and u(x). Furthermore the constraint (2.6) enables
us to find the vertical position c of the cylinder. Combined with the boundary conditions
p(±∞) = 0 and u(±∞) = 0, the problem is fully defined.

2.2. Regimes

Since our goal is to identify and describe the various limits of the elastohydrodynamic
problem, the relevant length scales need to be carefully compared. These length scales
as defined in figure 1 are given by the contact size a, the elastic layer thickness d,
the boundary layer width `, the typical surface displacement u0, and the sought-after
lubricant thickness h0. The reader can already consult table 2 for a complete overview
of the various regimes.
Small versus large deformations. Two key limits of the problem come from the

comparison between the deformation u0 and the fluid film thickness h0. When the sliding
velocity of the cylinder is high, the cylinder experiences a strong upward force due to
viscous stresses that separates it from the substrate. This gives the small deformation
limit, where h0 � u0 (Skotheim & Mahadevan 2005; Pandey et al. 2016). By contrast,
for relatively low sliding velocity the cylinder indents the substrate with only a thin layer
of fluid in between the two, so that h0 � u0. This is what will be referred to as the
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large deformation limit (Bissett 1989; Snoeijer et al. 2013); remark that since typical
deformations compared to the layer thickness remain small, the typical strains remain
small as well, so that we still work in the context of linear elasticity.
Short versus long wavelengths. In the large deformation limit, a narrow lubrication

boundary layer develops at the edge of the contact which regularizes the jump in
pressure gradient caused by elasticity. Comparing the width of this boundary layer `
to the substrate thickness d, we can further distinguish two limits in the regime of large
deformations. When `� d, the elastic problem is in the long wavelength limit, in which
the thin-layer approximation (qd� 1) is valid over the full width of the contact. In the
short wavelength limit (`� d), the thin elastic layer approximation does not hold at the
edge of the contact, and substrate locally responds like a half space (qd� 1) within the
boundary layer.
Compressible versus incompressible elastic layers. For each of the three above

mentioned limits, one can choose a suitable response function given in table 1. For a
comparatively thin layer, d� `, one needs to make an additional distinction between a
compressible and an incompressible material. This distinction is made since the leading
order term of the Taylor expansion of the kernel scales with (1− 2ν), which vanishes in
the incompressible case (ν = 1

2 ) making the next order term dominant.
In the rest of the paper, we develop solutions of the elastohydrodynamic equations and

in table 2 we summarise these solutions through the scaling laws for the different regimes
discussed above.

2.3. Non-dimensionalization

While various of the cases reported in table 2 are already available in the literature,
we are not aware of any lubrication analysis of large deformations on thin elastic layers.
Therefore, we will from now on consider lubricated contacts with thin elastic coatings,
and we primarily focus on the case of compressible layers. We introduce dimensionless
variables that are suitable for this specific case (in the long-wave limit of the elastic
deformation), and identify the single dimensionless number that governs the solution.

We consider the geometric relation (2.1) along with the deformation on thin compress-
ible layers as given in table 1. Combining these two equations we get,

h(x) + c− x2

2R
=
d (1− 2ν)

2G(1− ν)
p(x). (2.7)

The small deformation limit has been solved before in Skotheim & Mahadevan (2005),
but here we consider the opposite limit. To non-dimensionalize the above equation for
this limit we introduce the following scales,

x = x̄a, h = h̄u0 = h̄
a2

2R
, p = p̄

3L

4a
, (2.8)

where variables with an overbar are dimensionless. From this, one infers a natural
characteristic horizontal scale, the contact size a, as

a =

[
3

4

LdR (1− 2ν)

G (1− ν)

]1/3
, (2.9)

so that (2.7) reduces to

p̄(x̄) = h̄(x̄) + c̄− x̄2. (2.10)
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Here we further introduced c̄ = c/u0, based on the natural vertical scale

u0 =
a2

2R
=

[
3

27/2
Ld (1− 2ν)

R1/2G (1− ν)

]2/3
. (2.11)

Using the relation between pressure and deformation (2.10), we find that Reynolds
equation (2.3) can be written as

∂h̄

∂x̄
− 2x̄ = λ

h̄− h̄∗

h̄3
, (2.12)

which contains the single dimensionless parameter of the problem,

λ = 32
V η

L

R2

a2
. (2.13)

This parameter can be interpreted as the dimensionless velocity. The lubrication problem
for a compressible elastic layer in the long-wave limit, is thus described by a first order
ODE for the flowing thickness h̄(x̄), given by (2.12). Note, however, that there are two
boundary conditions to be imposed, namely the pressure must vanish at x̄ = ±∞, which
can be expressed in terms of h̄ using (2.10). The two boundary conditions for the first
order ODE (2.12) can indeed be satisfied by tuning the value of h̄∗. In addition, the
coefficient c̄ must be tuned such that∫ ∞

−∞
p̄(x̄) dx̄ =

4

3
, (2.14)

in order to impose the desired value of the load.

2.4. Numerical methods

To confirm the analytical results and to assess the crossover between the asymptotic
regimes, we employ two numerical methods. The first method is numerically solving
(2.12) in Wolfram Mathematica, along with the corresponding boundary conditions and
constraints. We use a shooting method for a range of values for c̄, finding the pair of h̄∗ and
λ that allows to satisfy the boundary conditions, p̄(x̄→ ±∞) = 0 and

∫∞
−∞ p̄(x̄)dx̄ = 4

3 .
Typical examples are given in fig. 3. These accurately resolve the problem as long as the
solution is self-consistent with the long-wave expansion.

However, we will find that in the limit of very small λ, the obtained solution is no longer
consistent with the long-wave expansion (of the elastic solid) that underlies (2.12), we
remark that the long-wave approximation for the liquid is satisfied for all cases considered.
In this case, we turn to finite element simulations, where the two-dimensional plane strain
problem is implemented using the library oomph-lib (Heil & Hazel 2006). A typical
example of the numerical simulation is shown in figure 2. The compressible elastic layer
is simulated by a non-linear solid model using the Neo-Hookean constitutive law with
a Poisson ratio of ν = 0.3. Since the strains in this problem always remain small, the
simulations reduce to linear elasticity and the choice of the non-linear rheology does not
influence the result. The domain has a width W = 105 u0 (|x| 6 W/2) and height d =
30 u0, and consists of refineable quad elements. The cylinder has a radius of R = 106 u0,
making for a contact size of a ' 1.4 × 103 u0. The elements in the adaptive mesh are
locally refined down to a minimum size of ∆x = 5.2 × 10−6 u0, well below the smallest
length scale, the boundary layer (` ∼ λ2/5) at the lowest λ value used. The fluid pressure
is imposed on the top boundary of the elastic layer using surface elements that simulate
the Reynolds equation (2.3). The pressure in the fluid is constrained to zero at both
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Figure 2. Typical lubricated contact obtained in finite element simulations. The colourmap
indicates the normalized trace of the strains in the thin compressible elastic layer. This result
is obtained at an intermediate value of the sliding velocity, where the elastic deformation is
comparable to the minimal lubrication thickness. The parameters in this simulation are λ = 6.4
and R = 103 u0, with all other parameters equal to those listed in section 2.4.

sides of the domain and the nodes at the bottom of the elastic layer are fixed in both the
vertical and horizontal direction. The nodes in both the left and right side of the layer
are fixed only in the horizontal direction and are subject to a no-shear condition in the
vertical direction.

3. Thin compressible layer

In this section we present results for the lubricated contact with a thin, compressible,
elastic substrate. We first illustrate the emergence of three distinct asymptotic regimes
by presenting numerical results, both from the long-wave expansion of (2.12) and based
on the finite element simulations. Then, we turn to a detailed asymptotic analysis of
the two regimes that involve large deformations, respectively corresponding to long and
short wavelengths.

3.1. Numerical results

Figure 3 reports a number of film thickness profiles h̄ = h/u0 for lubricated contacts,
for various values of the dimensionless sliding velocity λ as defined by (2.13). The results
presented in the figure were obtained from numerical integration of (2.12), and also
includes the “dry” solution, corresponding to the case λ = 0 where there is no motion.
The profiles in fig. 3 clearly reveal a qualitative change in the shape of the contact, upon
increasing the velocity. At small λ, the profiles exhibit a large elastic deformation where
the cylinder pushes deep into the soft coating. The liquid profile closely resembles that
of the “dry” solution, except near the inlet (x̄ = −1) and the outlet (x̄ = 1) regions
where the effect of lubrication is prominent. At these two edges of the contact region, we
encounter a narrow boundary layer of width `, as sketched in the inset of fig. 1. These
boundary layers will be analysed in detail below, as they are essential for computing
the entrained liquid thickness. At large λ, the liquid thickness becomes very large and
the profile is smooth over the entire horizontal range. Gradually the gap approaches the
shape of the rigid cylinder, since the elastic deformation of the coating becomes small in
comparison to the lubricant thickness.

We now take a closer look at the deformations over the full range of λ for the long-
wave description and the finite element simulations – both pertaining to thin compressible
coatings. In figure 4 we therefore plot the fluid layer thickness at the center h̄0 = h0/u0, as
a function of the dimensionless velocity λ. The layer thickness is furthermore compensated
by the scaling λ1/2 that will be derived analytically below. From the figure we can see
that for values of λ & 10−4 the two different numerical methods agree with one another
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Figure 3. Numerical film thickness profiles h̄ = h/u0 as a function of x̄ = x/a, for the case
of a compressible thin elastic layer. Lubricated contacts correspond to λ > 0, and are obtained
from numerical integration of (2.12). The case λ = 0 is a “dry” contact, given by the analytical
expression of (3.1b).

– confirming the validity of the long-wave expansion at moderate and large values of λ.
The long-wave data (represented as stars), exhibit two asymptotic regimes: h0 ∼ λ1/2

(dashed line) and h0 ∼ λ4/7 (dash-dotted line). However, it is also clear that at the
smallest λ, the long-wave description breaks down, since the numerical solution of the
true elastohydrodynamic problem (represented by triangles) gives yet another scaling
law h0 ∼ λ3/5 (solid line). We will see below that this limit emerges when the width of
the boundary layer ` becomes comparable to the thickness of the coating d, so that the
long-wave description is no longer justified.

In summary, we thus find the emergence of 3 regimes at small, intermediate and
large values of λ. The analysis for large λ has already been performed by Skotheim
& Mahadevan (2004, 2005). Hence, below we derive the intermediate asymptotics (using
the long-wave description at small λ), and the ultimate asymptotics λ� 1 based on the
short-wave description.

3.2. Long wavelength elasticity: Dry solution

Before turning to the dynamical case, we first provide the dry (static) solution of the
long-wave approximation, given by (2.10). Formally, this corresponds to λ = 0, for which
no flow takes place. This dry solution therefore corresponds to the situation where the
pressure vanishes outside the contact region, p̄ = 0 for |x̄| > 1, and the gap thickness
vanishes within the contact, h̄ = 0 for |x̄| < 1. The corresponding dry solution to (2.10)
reads,

p̄ =
(
1− x̄2

)
Θ
(
1− x̄2

)
(3.1a)

h̄ =
(
x̄2 − 1

)
Θ
(
x̄2 − 1

)
, (3.1b)

where Θ is the Heaviside step function.
Expanding these near the edges of the contact, located at x̄ = ∓1, we find

p̄ ' ±2(x̄± 1) h̄ ' ∓2(x̄± 1). (3.2)

This linear behaviour of the gap can be observed in figure 3, at the edge of the dry
solution. This asymptotics is of particular importance to the dynamical case at small
speed, where λ is small but nonzero. In that limit, lubrication effects quickly decay outside
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Large deformation, short wavelength contact
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Small deformation contact

ODE numerical solution
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Figure 4. Lubrication thickness for thin compressible coatings, combining numerical (Section
2.4) and analytical (Table 2, middle row) results. The graph reports the thickness of the fluid film
at the center of the lubricated contact, h0, as a function of the dimensionless sliding velocity
λ. The dimensionless thickness h̄ = h0/u0 is compensated by the intermediate asymptotics

h̄0 ∼ λ1/2 (dashed line). Distinct asymptotic limits are observed at small λ (solid line, h̄0 ∼ λ3/5)

and large λ (dash-dotted line, h̄0 ∼ λ4/7). We remark that each of the indicated asymptotes are
derived analytically (including the prefactors).

the narrow boundary layers near the edge of the contact, so that the static solution is
approached. Specifically, the boundary layer solutions must therefore be matched to the
linear asymptotics given by (3.2).

3.3. Long wavelength elasticity: Lubricated solution

Once the cylinder starts to move, a thin film of liquid is entrained within the contact
region and in particular, the left-right symmetry of the deformation is broken (fig. 3).
Liquid is squeezed into the contact at the inlet, at x̄ = −1, and is pushed out at the
outlet, at x̄ = 1. To analyze the behavior of (2.12) at the two lubricated edges, we look
for similarity solutions of the form

h̄ = λαH(ξ) ξ = (x̄± 1)λ−β . (3.3)

Here the + sign refers to the inlet and − to the outlet. In terms of the similarity variables,
the matching condition (3.2) becomes H(ξ) ' ∓2ξ for ξ → ∓∞. This λ-independent far-
field condition requires that α = β. The Reynolds lubrication equation (2.12) written in
terms of the above similarity variables, gives

λα−β
∂H

∂ξ
± 2− 2λβξ = λ1−2α

H −H∗

H3
. (3.4)

Anticipating that β > 0, i.e. thin boundary layers for λ � 1, the term ∼ λβ is
subdominant with respect to the constant. For the remaining equation to be independent
of λ, we need α− β = 1− 2α. Combined with the matching condition of α = β, we thus
find the exponents

α = β =
1

2
,
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while (3.4) reduces to

∂H

∂ξ
± 2 =

H −H∗

H3
. (3.5)

The solution to this equation must match to H(ξ → ∓∞) = ∓2ξ, as discussed before.
Furthermore, the gap should converge to a film of constant thickness inside the contact,
leading to ∂H

∂ξ (ξ → ±∞) = 0.

3.3.1. Inlet region

At the inlet (3.5) becomes

∂H

∂ξ
=
H −H∗ − 2H3

H3
. (3.6)

We first wish to find the constant thickness H0 that is approached when entering the
central zone of the contact (corresponding to ξ → ∞). Interestingly, H0 is not simply
equal to H∗, but is to be determined from the equation H0 − H∗ − 2H3

0 = 0. For this
film thickness to take on a positive real value, it is required that H∗ > 1

9

√
6. However,

under this condition there are still two possible solution branches of H0 for a given H∗.

For the selection of the relevant H0, we now investigate whether the solution indeed
approaches H0 for ξ → ∞. We therefore linearise (3.6) using H = H0 + H1(ξ), which
gives

∂H1

∂ξ
=

1− 6H2
0

H3
0

H1. (3.7)

This shows that the solution exponentially approaches a constant film thickness when
H0 >

1
6

√
6. This condition selects the branch of acceptable H0, which for a given value

of H∗ indeed decays to a flat film below the contact. We need to separately consider the
special case where H0 = 1

6

√
6 and H∗ = 1

9

√
6. In this case the similarity solution can

even be found in closed form,

ξ = −1

2
H +

4

9
H0 ln

( 1
2H +H0

H +H0

)
+

1

36 (H −H0)
. (3.8)

This solution exhibits an algebraic decay to the flat film of thickness H0 as ξ →∞, and
therefore should also be considered.

It will turn out that, indeed, the special case of H0 = 1
6

√
6 and H∗ = 1

9

√
6 provides

the relevant solution for the lubrication problem. This will be shown by analysing the
“central region”, as done below in Sec. 3.3.3. Hence, the correct inlet thickness reads

Hin =
1

6

√
6 ≈ 0.408, (3.9)

while the corresponding value for H∗ is given by

H∗ =
1

9

√
6 ≈ 0.272. (3.10)
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3.3.2. Outlet region

The similarity equation for the outlet differs from (3.6) only in the sign of the last
term on the right hand side,

∂H

∂ξ
=
H −H∗ + 2H3

H3
. (3.11)

Anticipating that H∗ = 1
9

√
6, we could find a lengthy closed form solution to (3.11) using

Mathematica (not given here). Remarkably, the solution approaches a constant thickness
Hout as ξ → −∞ that turns out to be different from the inlet thickness Hin. Indeed,
solving ∂H

∂ξ = 0 for H∗ = 1
9

√
6, one finds

Hout =
1

6

√
6

[(√
2 + 1

) 1
3 −

(√
2− 1

) 1
3

]
≈ 0.243, (3.12)

which is significantly below Hin. This means the liquid film cannot possibly be flat within
the central region connecting the inlet and outlet, and we need to treat this region
separately.

3.3.3. Central region

As just demonstrated the constant film thickness at the inlet and outlet cannot be
equal, these satisfy two different equations for the same value of H∗. To find the variation
in film thickness across the central zone, another similarity solution has to be introduced,
namely,

h̄ = λ1/2H(x̄). (3.13)

Since this similarity solution does not scale the solution in horizontal direction, this
equation is valid when |x̄| . 1−λ1/2, i.e. over the full width of the contact excluding the
boundary layers. Substituting this into the lubrication equation (2.12) gives an algebraic
equation for the film thickness,

H−H∗ + 2x̄H3 = 0, =⇒ x̄ =
H∗ −H

2H3
. (3.14)

Since H describes the central zone up to the boundary layers, (3.14) needs to cover the
entire domain −1 < x̄ < 1. One verifies that this is only the case when H∗ 6 1

9

√
6. This

condition is exactly opposite to the requirement derived from the inlet solution, which
only gives physical solutions for H∗ > 1

9

√
6. Hence, the only possibility for the central

zone to connect inlet and outlet is when H∗ = 1
9

√
6, as anticipated above.

3.3.4. Summary and numerical validation

Figure 5 summarizes the key results of this section. The panels (a-c) respectively report
the similarity solutions for the narrow boundary layers at (a) the inlet, (c) the outlet
and (b) the central region that connects the two. The symbols represent the analytical
solutions derived above, and these are plotted along with scaled FEM numerical solutions
(solid lines, for various λ). An excellent agreement is observed in all three regions.

The similarity solution also provides the exact expression for the fluid film thickness
h0. For this we evaluate (3.14) at x = 0, which gives immediately that the (scaled) film
thickness at the center of the contact is equal H∗ = 1

9

√
6. In dimensional form it gives
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Figure 5. Fluid film thickness profiles at the (a) inlet, (b) central region and (c) outlet of a
lubricated contact on a compressible thin layer in the long wave limit. The solid lines represent
rescaled FEM solutions for 4.99×10−4 6 λ 6 2.26×10−2, while the symbols denote the similarity
solution derived in section 3.3. The solution in (b) is plotted over the full range |x̄| < 1, but is
not valid in the region near the edge of the contact.

h0 =
a2

2R
H∗λ1/2 =

[
24

37/2

√
η3V 3

G2L

Rd(1− 2ν)

1− ν

]1/3
, (3.15)

This result, including the theoretical prefactor, is used in fig. 4 (dashed line), which
shows that the numerical solutions of the long-wavelength approximation indeed con-
verge towards the derived similarity solution. With respect to the full resolution of the
elastohydrodynamic problem using finite elements, the solution (3.15) appears as an
intermediate (long-wave) asymptotics.

3.4. Short wave elasticity: the ultimate asymptotics for λ� 1

The numerical results obtained by finite element simulations, shown in fig. 4, revealed
that at very small λ, another limit develops. The reason for this is that the boundary layer
width in the long-wave theory was found to scale as ` ∼ λ1/2, so that at sufficiently small
λ it becomes comparable to the thickness of the elastic layer – at which point the long-
wavelength description becomes inconsistent. Hence, the ultimate small λ asymptotics
involves the hierarchy of scales `� d� a, and requires the full kernel of (2.5). Below we
first consider the corresponding static problem, to identify the appropriate horizontal,
vertical and pressure scales. Subsequently, in the next subsection, we use the dry solution
to match the boundary layers.

3.4.1. Dry solution

In fact, even the static indentation problem with d� a, already involves the full kernel
(2.5). This problem goes back to Meijers (1968), who considered the Hertz contact on
layers of arbitrary thickness. On the scale of the contact width a, the static solution of the
long-wavelength description, (3.1a, 3.1b), is perfectly valid when d� a. Near the edges,
however, the linear behaviour of the pressure gives way to a square-root dependence,
as is illustrated in fig. 6(a). The reason for this is that near the edges, the elasticity
is governed by the short-wavelength limit of the the elastic kernel (2.5). Introducing
ζ = x ± a, indicating the unscaled distance to the contact edge, this gives the elastic
relation
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Figure 6. (a) Schematic representation of the pressure profile of a static contact, on a thin
compressible layer. The long-wave approximation (red dashed) breaks down near the edge of
the contact, at a distance comparable to the thickness of the elastic layer (in this case d ∼ 0.1a,
where d is the layer thickness and a the contact width). (b) Pressure profile at the edge of a dry,
static contact on a thin compressible layer, resolved using finite element simulations (symbols).
The data are fitted with (3.17) shown as the solid line, from which we obtain the numerical
constant Ap ≈ 1.33 defined in (3.19).

h(ζ) + c− (ζ ∓ a)
2

2R
= −1− ν

πG

∫ ∞
−∞

ln |ζ − ζ ′|p(ζ ′)dζ ′, (3.16)

which combines (2.1) and the deformation from table 1 in the limit qd � 1. It is well-
known that this equation gives

p ' A
√
±ζ, (3.17)

at the contact edge (Snoeijer et al. 2013), where the scaling properties of A remain to
be determined. This behaviour is indeed manifestly different from the linear behaviour
obtained from the long-wave expansion (3.2), which in terms of a dimensional scaling
law can be written as

p ∼ ± L
a2
ζ, (3.18)

with a given by (2.9). To estimate the value of the constant A, we now use a matching
of the two descriptions, as is depicted schematically in fig. 6(a). This is done by equating
(3.17) to (3.18) at a distance |ζ| ∼ d. This matching gives an expression for the parameter
A,

A = Ap

[
G2L√
dR2

(1− ν)2

(1− 2ν)2

]1/3
, (3.19)

where Ap is a (dimensionless) constant. The value of the constant is obtained from a
numerical solution of the static dry contact problem, using the finite element method.
We calculate the pressure profile of this contact – in absence of lubrication effects – in
accordance with the parameters in section 2.4. The result is given in fig. 6(b), from which
we deduce that Ap ≈ 1.33 ± 0.09 by fitting (3.17) in the region where the pressure has

converged to the short-wave approximation, i.e. A2
pζ̂ < 2.0× 10−5.

Now that we know the behavior of the static solution near the contact edge, we can
identify the proper scalings for p, h and ζ. This is important, since these will subsequently
be used to describe the dynamic boundary layers. To establish the scalings, we first take
two derivatives of (3.16), which gives
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Figure 7. Fluid film thickness profiles at the (a) inlet and (b) outlet of a lubricated contact on
a compressible thin layer in the short wave limit (i.e. the ultimate regime for λ� 1). The solid
line represents a rescaled FEM solution for 4.75 × 10−7 6 λ 6 7.42 × 10−5, while the symbols
show the similarity solutions by Snoeijer et al. (2013). These similarity solutions are shifted
horizontally to align with the numerical solutions.

∂2h(ζ)

∂ζ2
=

1

R
− 1− ν

πG

∫ ∞
−∞

∂p(ζ ′)

∂ζ ′
1

ζ − ζ ′
dζ ′, (3.20)

where we also performed an integration by parts. Demanding that the three terms in this
equation are of the same order, while also respecting the scaling of A in (3.17,3.19), we
find the appropriate scalings to be

p =
A2
p

2

[
GL2

Rd

(1− ν)7

(1− 2ν)4

]1/3
p̂, (3.21a)

ζ =
A2
p

2

[
L2R2

G2d

(1− ν)10

(1− 2ν)4

]1/3
ζ̂, (3.21b)

h =
A4
p

4

[
L4R

G4d2
(1− ν)20

(1− 2ν)8

]1/3
ĥ. (3.21c)

With this, the dimensionless equation describing the elasticity of the layer reads

∂2ĥ

∂ζ̂2
= 1− 1

π

∫ ∞
−∞

∂p̂(ζ̂ ′)

∂ζ̂

1

|ζ̂ − ζ̂ ′|
dζ̂ ′, (3.22)

while the asymptotics of the static solution reduces to

p̂ '
√
±2ζ̂. (3.23)

3.4.2. Lubricated solution

We now turn to the dynamical case, by expressing the Reynolds equation (2.3) in the
new variables of (3.21). This gives

∂p̂

∂ζ̂
= λs

ĥ− ĥ∗

ĥ3
, (3.24)

which is of the same form as before. However, owing to the new scaling, the parameter
that gives the dimensionless velocity is different, and reads
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λs =
96

A8
p

[
η3V 3d4RG5

L8

(1− 2ν)16

(1− ν)37

]1/3
. (3.25)

The analysis of the boundary layer is now given by the system (3.22, 3.24), with
matching condition (3.23). This reduced problem is strictly identical to that of the
boundary layers on a half-space, as previously described by Snoeijer et al. (2013). Hence

the solution is exactly the same, and gives a thickness ĥ ∼ λ3/5s , a boundary layer width

ζ̂ ∼ λ2/5s , while the pressure p̂ ∼ λ1/5s . For detailed derivations we refer to Snoeijer et al.
(2013). Note, however, that in dimensional variables the result is different. In particular,
we find for the dimensional flowing thickness

h0 = 0.4467
A4
p

4

[
L4R

G4d2
(1− ν)20

(1− 2ν)8

]1/3
λ3/5s ,

=
1.7271

A
4/5
p

[
d2R8η9V 9

G5L4

(1− 2ν)8

(1− ν)11

]1/15
, (3.26)

where the numerical constant 0.4467 was determined in Snoeijer et al. (2013) by solving

ĥ∗ from the boundary layer problem, while we remind that Ap ≈ 1.33. This result is
given as the solid line in fig. 4, and indeed accurately describes the ultimate λ � 1
asymptotics.

The structure of the boundary layers is further illustrated in fig. 7. There, the similarity
solutions from Snoeijer et al. (2013) are reproduced (symbols), and compared to the
scaled FEM simulations at very small λ. All curves indeed collapse, confirming the validity
of the similarity analysis. Interestingly, for this case the thickness of the lubrication layers
leaving the inlet and entering the outlet directly align. The central zone is therefore
perfectly flat – this is to be contrasted with the result for the long-wave similarity
solutions of fig. 5, for which the inlet and outlet were connected by a nontrivial central
region.

4. Discussion

The aim of this work is to present all scaling laws governing the movement of a cylinder
over an elastic substrate in the presence of a fluid. Some of these scaling laws were
derived previously in the literature, but focussing on separate regimes – importantly,
the limiting cases of thin elastic layers with large deformations had not previously been
considered. This important gap is filled in the present paper, thereby offering a complete
and comprehensive overview.

Table 2 summarises both previous and our newly obtained results. All the different
regimes of soft lubrication are organised in terms of the length scales d (thickness of the
elastic coating), a (size of the contact), u0 (scale of elastic deformation) and ` (boundary
layer width near the contact edges). In terms of experimental parameters, the table
should be read as follows. For fixed material properties, magnitude of the applied load L
determines the typical size of the contact a. Hence, upon specifying the load one selects
one of the rows of table 2, comparing the contact size to the elastic layer thickness.
Then, at very small velocity V one starts in the left column, where the flowing thickness
h0 � u0, referring to the case of relatively large elastic deformation. Subsequently, upon
increasing the velocity, the boundary layer ` and the lubrication film h0 increases, and
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Large deformation (u0� h0) Small deformation
`� d `� d (u0� h0)

d� a 0.603

[
η3V 3

G2L
R3(1−ν)2

] 1
5

(Snoeijer et al. 2013)

Not physically possible
(` . a)

[
3π

8

η2V 2

GL
R2(1−ν)

] 1
3

(Pandey et al. 2016)

d� a

ν 6= 1
2

∼
[
η9V 9

G5L4
R8d2

(1−2ν)8

(1−ν)11

] 1
15
[

28

37

η3V 3

G2L
R2d2

(1−2ν)2

(1−ν)2

] 1
6

[
6π

8
√

2

η2V 2

GL
R

3
2 d

1−2ν

1−ν

] 2
7

(Skotheim & Mahadevan 2005)

d� a

ν = 1
2

∼
[
η15V 15

G7L8
R12d6

] 1
25 no long-wave

asymptotics

[
15π

8
√

2

η2V 2

GL
R

1
2 d3
] 2

9

(Skotheim & Mahadevan 2004)

Table 2. Scaling laws for the film thickness at the center of a cylinder, denoted h0, in the
various regimes of soft lubrication. The limits are expressed in terms of length scales, as defined
in fig. 1. Previously available results have been indicated by the corresponding reference. Results
without a reference have been derived in the present manuscript.

one progressively moves to the second and third columns, ultimately reaching the small
deformation limit (h0 � u0).

There are a few important features in this table. At very small velocities (left column),
the scaling h0 ∼ V 3/5 is the same for all cases. In this case, the width of the boundary
layer is the smallest scale in the system and thereby these exhibit a universal structure.
Differences arise only from matching these boundary layers to different (static) outer
solutions. On the contrary, at very large velocity (right column) the scaling laws always
involve the combination (ηV )2/L. So, when working at a fixed separation distance instead
of at fixed load, one finds the well known scaling law for the lift force L ∼ (ηV )2 (Sekimoto
& Leibler 1993; Skotheim & Mahadevan 2004; Greenwood 2020). A key result of our
analysis is the emergence of an intermediate asymptotics, h0 ∼ V 1/2 for the thin,
compressible layer – closed form analytical solutions for this case are provided.

From an experimental perspective, it is of particular interest to consider the extension
of the scaling laws in table 2 to three-dimensional spherical contacts. While the exact
solutions are not valid for spherical contacts, the specific features listed in this paragraph
do remain valid. For large deformation contacts on an elastic half-space Snoeijer et al.
(2013) demonstrated the validity of h0 ∼ V 3/5 in the three dimensional situation. The
reason for this is that the boundary layer remains small compared to the contact size,
and the local problem is effectively two-dimensional. Note, however, that the scaling
with elastic constants and the load changes in the three-dimensional case. For example,
for the semi-infinitely thick layer, the relation between lift force (load) and velocity was
predicted as F ∼ (ηV )3/4G1/4 (Snoeijer et al. 2013). Indeed, this scaling law was recently
recovered experimentally in Zhang et al. (2020). We remark that the scaling h0 ∼ V 3/5

will be valid for the three-dimensional case for the entire left column of the table, and
the same holds for h0 ∼ V 1/2 in the middle column – the reason being that the boundary
layers in these cases are always small compared to the contact size. Finally, for the small
deformation contacts in the right column, Skotheim & Mahadevan (2005) showed how

snoeijerjh
Highlight
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Figure 8. Lubrication thickness for thin incompressible coatings, combining numerical (Section
2.4) and analytical (Table 2, middle row) results. The graph reports the thickness of the fluid
film at the center of the lubricated contact, h0, rescaled according to (A 4) as a function of
a dimensionless sliding velocity. The dimensionless sliding velocity uses ai as defined in (A 3).

Distinct asymptotic limits are observed at low velocity (solid line, h̄0 ∼ λ3/5) and high velocity

(dashed line, h̄0 ∼ λ4/9). The prefactor of the high velocity asymptote is derived analytically,
while for the low velocity asymptote the data was fitted by (A 11), with Ai,p ' 1.85.

the universality in the lift force L ∼ (ηV )2, also for spherical contacts. This scaling in
the small deformation limit was indeed observed experimentally for spherical contacts
(Davies et al. 2018; Zhang et al. 2020; Vialar et al. 2019). Note that when verifying the
dependence on elastic modulus and thickness, care must be taken to select the correct
limit (thin versus thick, compressible versus incompressible).

Another new result of our study is the scaling law for a thin incompressible layer
subjected to large indentation. Leaving the details in appendix A, here we discuss the
key features of this limit. In the limit where the boundary layer represents the smallest
scale, ` � d, the only change compared to the compressible case is in the static “dry”
solution, leading to different exponents of geometric and material parameters. However,
the scaling h0 ∼ V 3/5 is robust. Next we consider the intermediate range, d � ` � a,
where the small boundary layers are in between the coating thickness and the contact size.
Interestingly, this case does not admit a consistent long-wave description, and therefore
a proper intermediate asymptotic regime appears to be missing. The resulting long-
wavelength ODE can be derived – unlike the compressible case, however, it does not
admit solutions at small λ that connect the inlet and the outlet region. For completeness,
we show in fig. 8 the numerical relation between the central thickness h0 and the velocity
V obtained by finite element simulations. It very nicely confirms the scalings of the
bottom row in table 2, corresponding to the small and large speed asymptotics for thin
incompressible layers.

In conclusion, our study identifies key geometric parameters in the soft lubrication
problem of compressible and incompressible elastic solids. From an experimental
perspective, our results point out the importance of: (i) the ratio of elastic coating
thickness to contact size, (ii) the Poisson ratio of the layer (compressible versus
incompressible), (iii) the ratio of elastic deformation over the lubricant thickness. When
interpreting experiments, one must verify the relevant regime, with Table 2 serving as a
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guide. Our unified framework also connects the two most studied limits of the problem:
the lubricated Hertzian contact regime, relevant for many industrial applications, and
the large separation (small deformation) regime, important in microfluidic and biological
contexts. We anticipate that the results presented here to have important implications
beyond the realm of soft lubrication, e.g. in understanding the rheology of suspension flow
in channels (Rosti et al. 2019), size dependent migration of particles (Rallabandi et al.
2018), and direct measurement of interfacial rheology in soft matter systems (Garcia
et al. 2016).
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Appendix A. Thin incompressible layer, small velocity

The derivation of the dry contact between a cylinder on and an incompressible thin
layer is similar to that of a compressible layer. The main difference lies in the elastic
Green’s function of table 1, which differs in the long-wave limit. Combined with (2.1),
the elastic response gives

h(x)− x2

2R
+ c =

d3

3G

∂2p

∂x2
. (A 1)

In principle, this relation can be combined with the Reynolds equation (2.3) to yield
an ODE for h(x). It turns out, however, that this long-wave expansion does not admit
solutions at small λ that connect the inlet and the outlet region. Therefore, we only
focus on the ultimate asymptotics at λ � 1, where the boundary layers width ` � d
and are described by the short-wave kernel. The subsequent analysis now runs parallel
to that of Section 3.4. The boundary layers exhibit a universal structure, but the
corresponding scales need to be identified from matching to the static solution (now,
on thin incompressible layers). In particular, we know the asymptotics to be of the form

p ' Ai
√
±ζ, (A 2)

where ζ = x±χai is the distance from the edge, and we need to identify Ai of the static
solution.

For this, we proceed as in Section 3.4. We first consider the static long-wave solution,
from (A 1), which gives the relevant horizontal length scale ai,

ai =

[
5

6
√

3

Ld3R

G

]1/5
. (A 3)

We introduce the scalings,

p =
5
√

3L

16ai
p̄, x = aix̄, h =

a2i
2R

h̄. (A 4)

As before the dry problem can be split into two distinct regions, which gives the
conditions h̄ = 0 where |x̄| < χ and p̄ = 0 where |x̄| > χ. Note that the size of
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the contact is not given by ai, but by χai. This is because incompressibility causes
the contact to be larger than the length over which the cylinder is below the surface
of the undeformed layer. Incompressibility dictates that the volume of the layer is
conserved,thus

∫∞
−∞

[
h̄− (x̄2 − 1)

]
dx̄ = 0, which gives that the size of the contact

χ =
√

3. Using this result the dry solution is found to be,

h̄ =
(
x̄2 − 1

)
Θ
(
x̄2 − χ2

)
(A 5a)

p̄ = 1
9

(
9− 6x̄2 + x̄4

)
Θ
(
χ2 − x̄2

)
. (A 5b)

Interestingly, while the pressure is a continuous function, the film thickness is a discon-
tinuous function. Equation (A 1) predicts that the surface of the layer follows the cylinder
when |x̄| < χ, and then suddenly becomes flat.

We now need to compare the “true” asymptotics of the statics solution, given by (A 2),
to that of the long-wave approximation, which near the edge of the contact (x̄ = ∓χ) is
given by

p̄ ' ± 4
3 (x̄± χ)

2
, (A 6)

which in dimensional form gives the scaling,

p ∼ ± L
a3i
ζ2. (A 7)

Equating this expression to (A 2) at a distance |ζ| ∼ d, we find

Ai = Ai,p

[
G3L2

d3/2R3

]1/5
, (A 8)

where Ai,p is a numerical constant that remains to be determined. To recover the
“universal” boundary layer equations, we scale the problem as,

p =
A2
i,p

2

[
GL4

d3R

]1/5
p̂, (A 9a)

ζ =
A2
i,p

2

[
L4R4

G4d3

]1/5
ζ̂, (A 9b)

h =
A4
i,p

4

[
L8R3

G8d6

]1/5
ĥ. (A 9c)

With this, the elastic deformation and the Reynolds equations reduce to (3.24) and (3.22),
but with a different dimensionless velocity,

λs,i =
96

A8
i,p

[
η5V 5G11d12

L16R

]1/5
(A 10)

Therefore, the resulting central thickness of the fluid film is therefore given by,

h0 = 0.4467 λ
3/5
s,i

A4
i,p

4

[
L8R3

G8d6

]1/5
=

1.7271

A
4/5
i,p

[
η15V 15d6R12

G7L8

]1/25
. (A 11)
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É. 2012 Hydrodynamic interaction between a spherical particle and an elastic surface: A
gentle probe for soft thin films. Phys. Rev. Lett. 108 (26), 264501.

Meeker, S. P., Bonnecaze, R. T. & Cloitre, M. 2004 Slip and flow in soft particle pastes.
Phys. Rev. Lett. 92 (19), 198302.

Meijers, P. 1968 The contact problem of a rigid cylinder on an elastic layer. Appl. Sci. Res.
18 (1), 353–383.

Pandey, A., Karpitschka, S., Venner, C.H. & Snoeijer, J. H. 2016 Lubrication of soft
viscoelastic solids. J. Fluid Mech. 799, 433–447.

Porte, E., Cann, P. & Masen, M. 2020 A lubrication replenishment theory for hydrogels.
Soft Matter Advance Article.

Rallabandi, B., Oppenheimer, N., Zion, M. Y. B. & Stone, H. A. 2018 Membrane-induced
hydroelastic migration of a particle surfing its own wave. Nat. Phys. 14 (12), 1211–1215.

Rallabandi, B., Saintyves, B., Jules, T., Salez, T., Schönecker, C., Mahadevan, L. &
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