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The wetting of polymer brushes exhibits a much richer phenomenology than wetting of normal
solid substrates. These brushes allow for three wetting states, which are partial wetting, complete
wetting and mixing. Here, we study the transitions between these wetting states for brushes in
contact with polymer melts and compare them to predictions using enthalpic arguments based on
brush and melt interactions. We show that the transitions are shifted compared to the enthalpic
predictions and that the shifts can be positive or negative depending on the length of the melt
polymer and the brush grafting density. The reason for this is that these brush and melt param-
eters can have a positive or negative effect on the entropic contribution to the free energy of the
system. Our results highlight the relevance of entropy in predicting the exact wetting transitions,
which is important for the design of brush-based coating applications.

1 Introduction
Polymer brushes consist of long macromolecules densely end-
attached to a surface.1 They are popular building blocks in the
design of functional surface coatings due to their versatility and
simplicity to manipulate.2,3 For example, these brushes have been
employed as smart sensors4–6 or to manage surface lubricity7–9

and adherence.10,11 Surface wettability is also tuned straightfor-
wardly with polymer brushes, which has resulted in the develop-
ment of moisture management systems12 and self-cleaning sur-
faces.13 For these applications, it is important to understand the
wetting of polymer brushes.

Wetting of polymer brushes deviates from wetting behavior on
solid surfaces.14,15 While the solids are either partially or com-
pletely wetted, polymer brush coatings can also absorb liquids,
which gives rise to three wetting states, partial and complete
wetting and the mixed state.16 The wetting state of the sys-
tem is determined by the brush-liquid interactions and the self-
affinity of the brush (see figure 1). The three different states
are separated by two transition-lines: the mixing to demixing
transition (dashed) and the complete to partial wetting transi-
tion (dash-dot). To a large extent, these transitions can be un-
derstood using enthalpic arguments. When the affinity of the
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brush with the liquid, εBL, is less strong than the average self-
affinities for the brush, εBB, and the liquid, εLL, the transition
from mixing to demixing will occur. This happens when one
goes from left to right crossing the vertical gray dashed line,
W = εBB + εLL − 2εBL = 0, in figure 1. If the self-affinity of the
liquid, εLL, is stronger than the affinity of the brush with the liq-
uid, εBL, a transition from complete wetting to partial wetting
can be observed. This happens when one goes from left to right,
crossing the inclined gray dash-dotted line in figure 1. Though
these enthalpic arguments capture the global behavior, there are
clear deviations between the predicted transitions (gray) and the
transitions extracted from recent molecular dynamics (MD) sim-
ulations16 (black). These deviations have been attributed to en-
tropic effect.16 Yet, how entropy effects these deviations is not yet
known.

In this paper, we will elucidate the role of entropy in the pre-
diction of the wetting phase diagram of brushes wetted by poly-
meric nanodroplets. From early work on the wetting of brushes
by chemically identical polymer melts, it is known that entropic
effects can cause counter-intuitive phenomena such as demix-
ing14,17–22 between the brush and the melt. This effect has
been observed to strongly depend on the grafting density and the
molecular weight of the melt and can result in autophobic dewet-
ting,14,21,23,24 where melt droplets are formed on the chemically
identical brush.

To understand the phenomena of demixing reported previ-
ously,14,17–22 one needs to consider the different entropic con-
tributions to the free energy.17 Without end-grafting of brush-
polymers, melt and brush-polymers would mix to gain transla-
tional entropy. However, since brush-polymers are constrained,
they cannot gain translational entropy upon mixing. Instead,
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Fig. 1 (a-c) Snapshots of simulation cells showing a polymer droplet
(blue), interacting with a polymer brush (orange) for the three wetting
states. (d) Interaction-based phase diagram depicting the relation be-
tween the states of wetting and brush self-interaction εBB and the inter-
action parameter W . Observed are mixing (red triangles), complete wet-
ting (orange squares) and partial wetting states (yellow circles). The gray
lines indicate the enthalpic predictions for the mixing to demixing transi-
tion (W = εBB + εLL −2εBL = 0, dashed) and the transition from complete
to partial wetting (εBL = εLL, dash-dot). The black lines give the transi-
tions observed in the MD simulations of reference 16.

their entropy is reduced by mixing due to the elastic penalty for
stretching upon absorption of the melt. Because brush stretching
depends on the grafting density of the brush, the mixing to demix-
ing transition depends on the grafting density as well.17,18,25

Moreover, the translational entropy depends on the length of the
melt-chains and, therefore, the mixing to demixing transition de-
pends on the polymer length too.17,18,25

To understand autophobic dewetting, as reported previ-
ously,14,21,23,24 we have to consider the effect of entropy on the
spreading parameter S. The spreading parameter is defined as
S = γBV − (γBL + γLV), where γBV, γBL and γLV are the interfacial
tensions between the solid brush and vapor phase (BV), the brush
and liquid melt phase (BL) and the melt and vapor phase (LV),
respectively. When the spreading parameter is positive (S > 0),
complete wetting occurs and the droplet will partially wet the
surface when S < 0. The interfacial tension between chemically
identical brushes and melts γBL is negatively proportional to the
difference in entropy before and after bringing the brush and melt
in contact. For short melt polymers and low grafting densities,
the change in entropy is positive, while it is negative for long
melt polymers and high grafting densities. Thus, complete wet-
ting is observed for short chains and low grafting densities, while
partial wetting is observed for large chains and high grafting den-
sities.14,21,23,24

The above described demixing and autophobicity effects are
well characterized for brush-melt systems that are chemically
identical.17–22 Yet, for many applications, the brushes will be in
contact with chemically distinct media.26–28 The role of entropy
in wetting and, in particular, the wetting transitions for brush-
melt systems of chemically distinct media is still largely unex-
plored and we address this in the present paper, where we study
the role of entropy on the wetting transitions of polymer brushes
wetted by polymer droplets, using MD simulations.

2 Model and Methods
We use a coarse-grained bead-spring model (Kremer-Grest
model29) to represent the polymers. This model is known
to successfully describe the qualitative behavior of bulk poly-
mers,30 polymers in solvent(-mixtures)31 as well as polymer
brushes.32–34 Non-bonded interactions within this model are de-
scribed using a Lennard-Jones (LJ) potential:

VLJ = 4ε

((
σ

r

)12
−
(

σ

r

)6
)

(r < rc), (1)

using σ = 1 and a cut off length rc = 2.5σ . The potential is shifted
by its potential-value at the cut-off length.

Through this paper, we will employ Lennard-Jones units in
which σ and ε define the units of length and the unit of energy,
respectively. Considering for example poly(ethylene), these units
can be converted to real values for the polymers using ε = 30
meV and σ = 0.5 nm.30 We use a finite extensible nonlinear
elastic (FENE) potential combined with the repulsive part of the
Lennard-Jones potential to describe the bonded interactions be-
tween consecutive beads within the polymer chains:
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For VKG, the LJ interaction parameters are ε = 1, σ = 1 and
rc = 21/6σ and we use a stiffness of k = 30 ε/σ2 and a maxi-
mum extension R0 = 1.5 σ , which ensures that there is no bond-
crossing.29 Considering poly(ethylene), one polymer bead repre-
sents typically 3-4 monomers and, thus, the unit of mass [m] is
10−22 kg and the unit of time [τ] represents 0.3 ns.30

Figure 2(a) shows a typical snapshot of our simulation cell.
The snapshots are rendered using VMD.35 Our simulation cells
consist of a wall composed of single layer of Lennard-Jones parti-
cles (red) in a triangular lattice with polymers (orange) anchored
by one end to the wall particles. Each individual brush-polymer
consists of NB = 100 repeat units for all simulations presented.
The density at which these polymers are attached to the surface
is varied as σGD = 0.067, 0.15, 0.2, 0.27 chains/σ2, which equals
approximately 1.3, 3, 4 and 5.3 times the critical grafting density
for brush formation under poor solvent conditions. For grafting
densities above this critical grafting density, the system is in the
brush regime. For grafting densities below the critical grafting
density, the system is in the so-called mushroom regime. This
means our simulations are performed in the brush regime, which
is also apparent from the snapshots and density profiles given in
figure 2(b). They show a step-wise change in the brush density,
which is clearly different from the strong variation in density ob-
served for the mushrooms that are formed at densities below the
critical grafting density.36

The polymer brush is in contact with a uniform polymer melt
with a constant chain length that is varied between N = 2 and
N = 64 for individual measurements. The total number of beads
present in the polymer melt is kept constant, so the amount of
molecules wetting the brush is varied (for N = 2 there are 8000
melt molecules, for N = 64 we simulated 250 melt molecules).

Our simulations are performed at a constant box-size and vol-
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Fig. 2 (a) A typical snapshot of a quasi-2D simulation set-up of a poly-
mer droplet (blue) partially wetting a polymer brush (orange). (b) A graph
showing the polymer brush density profile for polymer chains grafted
at different grafting densities (σGD = 0.067, 0.15, 0.2, 0.27 chains/σ2).
Snapshots show corresponding brushes.

ume V , in a quasi-2D setup, as shown in figure 2(a). Our simula-
tion box is periodic in x and y, with a boxlength in x of at least 108
σ , depending on the spreading of the droplet. For small contact
angles, we increased the boxsize in x to 218 σ . The boxlength in y
is limited to 15σ to suppress Rayleigh instabilities in the infinitely
long cylindrical droplet. Yet, it is large enough to ensure that
there are no self-interactions between polymer chains. Moreover,
in this setup line-tension effects are prevented.37

The equations of motion are solved using the velocity Verlet
algorithm as implemented in LAMMPS,38 using a timestep of ∆t =
0.005τ. The simulations are performed in the NV T ensemble.
The temperature T is kept constant at kBT = 1ε (kB being the
Boltzmann constant) using a Langevin thermostat with a damping
coefficient of ξ = 1τ−1. The simulation cells are equilibrated for
107 timesteps before the production runs of 107 timesteps during
which the observables are extracted.

From the production runs we extract the density of the brush
and the melt as a function of the distance from the wall in slabs
of 0.2 σ . From these density profiles overlap integrals are calcu-
lated, which equal the product of the brush and the melt density
integrated over the distance:39 Nov =

∫
∞

0 ρM(z)ρB(z)dz, with ρM

and ρB representing the densities of melt and brush, respectively.
These overlap integrals are employed to determine whether the
brush and the melt have mixed or not. For the mixed state, the
overlap integral will reach a maximum value. From this maxi-
mum overlap value, we determine the mixing to demixing tran-
sition to occur at 50% of this maximum. We also compute the
contact angle of the melt droplet from the production runs, by
fitting spherical caps to the isodensity contours of the droplet, as
previously reported.37

To tune the affinity between the brush and the melt, relative
to the self-interaction of the brush, we alter the strength of the
Lennard-Jones potential via ε. We study two different strengths
for the self-interaction of the brush εBB, namely εBB = 1 and
εBB = 1.5. When εBB is high enough, polymer brushes are at-
tracted to one another, resulting in a collapsed polymer brush
structure. We checked that for these εBB’s, the bare brushes are
indeed in the collapsed state (see Supplementary Information, fig-
ure S1). This is in contrast to simulations by others et al.,40 where

brush-wetting was studied for low εBB and, thus, (implicit) good
solvent conditions. Similarly to soft elastomers,41–45 brushes can
deform due to surface tension and form wetting ridges.46 Due
to our choice of εBB, the brushes are relatively hard and wetting
ridges are small and do not affect the macroscopic contact an-
gle.16 We vary the interaction between the polymer brush and
polymer melt εBL between 0.375 and 1.5, while εLL = 1 is kept
constant, so that we move through the interaction-based phase
diagram from figure 1(d) along horizontal lines. From the sim-
ulations, we aim to extract generic relations and we do not in-
tend to model particular types of polymers. We allow all sorts
of interactions and do not limit this to van der Waals potentials.
Therefore, mixing rules do not apply47 and we can vary εBB and
εBL independently from each other. The interactions between the
wall and the polymer- and liquid-beads is kept purely repulsive
(ε = 1, σ = 1 and rc = 21/6σ) to prevent preferential adsorption
near the wall48 and higher order wetting transitions.49

3 Results and discussion

3.1 Mixing - demixing

First, we discuss the results of the MD simulations, addressing
the mixing to demixing transition. In our simulations, we varied
the grafting density and melt polymerization, for varying values
of W and for two values of εBB. From these simulations, we first
determine whether the system is in a mixed or demixed state.
This was done using the overlap integral of density profiles for the
brush and the polymer melt. A high overlap integral means that
mixing occurs, whereas a low overlap integral indicates demixing.
By taking the overlap integral for several values of W , data-sets
were gathered for constant values of N and σGD. These data-
sets were then interpolated to determine whether each data point
was above or below the transition-point. The resulting six phase
diagrams are given in figure 3, where the red squares denote a
mixed state and the orange triangles or yellow circles represent
the demixed (complete or partial) wetting state. We call these
phase diagrams, geometry based phase diagrams, in contrast to
the interaction based phase diagram of figure 1.

The different phase diagrams in 3 from left to right display
the results for varying values for the interaction parameter W ,
and from top to bottom the brush-brush interaction strength εBB.
These geometry-based phase diagrams illustrate that there is a
shift in the mixing to demixing transition for chemically distinct
melts wetting a brush, compared to the chemically identical wet-
ting case at W = 0. The top row shows the mixing transition
for εBB = 1.0 and the bottom row shows εBB = 1.5. In the left
and right columns, we show the effect of a shift in the interac-
tion parameter to an increased and a decreased net attraction
(∆W = ±0.0625). From the top row (εBB = 1.0), we see that
for W = −0.0625 (top left), only mixing occurs for our settings.
These results are in qualitative agreement with previous obser-
vations.50 Only for very high grafting densities and melt chain
lengths, which are not studied in the present work, one would
expect to see a transition for such a negative interaction parame-
ter.

For W = 0 (top middle in figure 3), we see a mixing to demixing
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Fig. 3 Geometry-based phase diagrams showing the influence of the grafting density (σGD) versus the degree of polymerization of the melt (N), on the
wetting behavior of the brush-melt system. The top row is measured for brush interactions εBB of 1.0, the bottom row is at εBB = 1.5. The left column
shows the phase diagram for an interaction parameter W of -0.0625, the middle for 0.0, and the right column at 0.0625.

transition. For high grafting densities and long melt-polymers, the
system is in the demixed state. For these geometric conditions,
there is an entropic penalty for mixing, because long melt poly-
mers cannot gain much translational entropy by mixing and the
entropic penalty for stretching is high for the laready stretched
polymers in high density brushes. In contrast, short polymers can
gain much more translational entropy by mixing and the poly-
mers in low density brushes stretch only little upon mixing, such
that there is an effective entropy gain when short polymers are
absorbed by low density brushes. Thus, mixing will occur for
these geometric conditions.

For W = 0.0625 (top right in figure 3), the mixing to demix-
ing transition has shifted to lower N and σGD. Under these con-
ditions, the gain in translational entropy upon mixing needs to
overcome the entropic costs of stretching brush polymers and the
attractive interactions within the brush and the melt. Therefore,
the is mixing for very short polymers (N = 2) only.

In the bottom row (εBB = 1.5, we observe no phase transitions
for W = −0.0625 (bottom left), where we observe only mixing,
and for W = 0.0625 (bottom right), where we instead observe
only demixing. For W = 0, (bottom middle) we observe a phase-
transition similar to the one for W = 0 and εBB = 1.0, but shifted
downward, implying that demixing occurs for shorter chains com-
pared to εBB = 1.0. From this we can conclude that the free energy
cost to stretch the brush polymers has increased, which is consis-
tent with the stronger interaction between the brush polymers.

To predict the transition between mixing and demixing, we will

briefly discuss the theoretical work of reference 18. For chemi-
cally identical melts and droplets, the free energy in a mean field
approximation is given by:18

F
kBT

=
L2

a2NB
+

a3

N
N2

B
LD2 . (3)

where L is the height of the brush, N is the chain length of the
melt polymers, NB is the chain length of the brush polymers, a
is the effective monomer size and D is the distance between the
anchorpoints given by D = aσ

−1/2
GD . The first term of equation 3

represent the entropic penalty that the polymers in the brush pay
upon stretching. The second term arises due to excluded volume
interactions between the polymer- and/or melt-beads in the sys-
tem. Using equation 3, a geometry-based phase diagram can be
constructed,17,18,25,51 showing the effect of varying grafting den-
sities and degrees of melt polymerization. The boundary between
the mixed and the demixed state can be found by minimizing
equation 3 with respect to the height of the brush L, resulting in:

L ∝ aNBN−1/3
σ

1/3
GD . (4)

As expected, higher grafting densities result in higher, more
stretched polymer brushes. Moreover, upon increasing N, the
brush height decreases. When employing that the brush-density
of a dry brush is of order one and given by ρ = NBσGDa3/L, we
can substitute equation 4 to obtain the boundary between dry
unmixed and mixed brushes to be:
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σGD,tr ∝ N− 1
2 , (5)

where σGD,tr is the transition grafting density above which the
melt and the brush demix.

Equation 3 can be modified to also take into account cases
where the brush and melt are chemically distinct. In such cases,
enthalpic interactions are incorporated using the Flory Huggins
interaction parameter χ = z

2kBT (εBB + εLL − 2εBL), with z being
the coordination number, which is related to average number of
neighbors of a polymer unit. The Flory Huggins parameter is pro-
portional to our interaction parameter W . Due to enthalpic inter-
actions, the free energy of the brush is now described by:18

F
kBT

=
L2

a2NB
+

a3

N
(1−2Nχ)

N2
B

LD2 . (6)

Only positive excluded volumes are allowed such that (1−2Nχ/N
should remain positive. From this equation, the transition be-
tween mixing and demixing can be obtained:

σGD,tr ∝

(
(1−2Nχ)

N

) 1
2

. (7)

Through the phase diagrams with a phase transition present
(figure 3, middle and top right), we fitted these theoretical pre-
diction (equations 5 and 7) of the mixing to demixing transition.
For chemically identical brush and melt (equation 5), we intro-
duced a prefactor α, which was utilized as a fitting parameter.
This fitting parameter can be related to the effective monomer
size and we found it to equal α = 0.82. For the chemically dis-
tinct system (W = 0.0625), we introduced a second fitting param-
eter β to correct for the difference between our interaction pa-
rameter W = 1

2 (εBB + εLL)− εBL and the definition of the Flory
Huggins parameter χ = z

2kT (εBB +εLL −2εBL), resulting in a fit of

the form: σGD,tr = α((1−2Nβ χ)/N)
1
2 . From the data obtained for

W = 0.0625, we obtained α = 0.82 (kept fixed) and β = 1.75. The
fits are shown as black lines in figure 3. It is clear that the numer-
ical data are well described by the dependency of equation 7.

From the geometry-based phase diagrams we see that a shift
in W strongly changes the mixing to demixing transition point,
as was predicted by equation 7. This prediction, however, is
strictly speaking only valid in the case of positive excluded vol-
ume interactions, meaning that (1− 2Nχ) > 0. For our setting
of W = 0.0625, this is only the case for N = 8,4 and 2. Still, for
the theoretical prediction at εBB = 1.0 in figure 3, this predic-
tion remains consistent with our numerical results. The data for
εBB = 1.5 cannot be fitted with the same equations, because εBL,
εBL and εLL are not equal at W = 0 and, therefore it does not
represent chemically identical melts and brushes.

So far, we have discussed the effect of different brush-melt
affinities on the transitions in the geometry based phase dia-
gram, as represented in figure 3. Now, we would like to dis-
cuss how variations in σGD and N influence the transitions in the
interaction-based phase diagram of figure 1. In figure 1, the black
dashed line indicates Wtr for mixing to demixing at N = 32 and
σGD = 0.15 chains/σ2. But, they can be anticipated to change
when σGD and N are varied. Therefore, we determined the tran-

sition point in the interaction parameter Wtr, for varying values of
the polymer melt and the grafting density, and the results are pre-
sented in figure 4. The datapoints illustrate the shift in the tran-
sitions due to entropy for εBB = 1.0 (blue triangles) and εBB = 1.5
(green circles) compared to transitions based on enthalpic argu-
ments alone (grey dashed lines).

Fig. 4 The interaction parameters Wtr at which the mixing to demixing
transition occurs, as measured from the overlap integral, (a) for a defined
melt length N, and (b) grafting density σGD. The gray dashed lines in
both figures describe the transition using predictions based on enthalpic
arguments alone.

In figure 4(a), Wtr is shown as a function of N. For small chains,
the transition occurs at W > 0, meaning that entropy is gained
by mixing. In contrast, the longer melt chains show a shift to
negative Wtr, because long chains gain less translational entropy
than shorter chains. This smaller amount of entropy gain is not
enough to compensate for the entropic penalty to stretch the poly-
mer brush in order to mix. Figure 4(b) depicts Wtr for varying
σGD, indicating a shift to positive Wtr for lower grafting density
brushes, and a lower, negative Wtr for higher grafting densities.
This effect of the grafting density is caused by densely grafted
brushes having to pay more of an entropy penalty for stretching
upon mixing, as compared to less densely grafted brushes.

In summary, when regarding only enthalpic interactions, the
mixing to demixing transition occurs at W = 0. Entropic inter-
actions can increase or decrease Wtr, depending on N and σGD,
where shorter chains and lower grafting densities tend to in-
crease Wtr, meaning that entropy is gained from mixing. Our mea-
surements for both chemically identical and chemically distinct
brushes and melts, show good agreement to theoretical predic-
tions from equation 7 on the occurrence of the mixing to demix-
ing transition. We have compared this theoretical transition both
to a direct geometry-based phase diagram of our system, and to
exact predictions of this transition, based on our data.

3.2 Partial wetting - complete wetting

We now focus on the transition from partial wetting to complete
wetting. For the demixed states in figure 3, we made the dis-
tinction between complete wetting (orange triangles) and par-
tial wetting (yellow circles). In the case of εBB = 1.0 we see a
transition directly from mixing to partial wetting for all grafting
densities except the highest, where a complete wetting state is
observed. For εBB = 1.5 we observe a transition from mixing to
complete wetting. We observe a complete to partial wetting tran-
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Fig. 5 Contact angle measurements for varying degrees of the interaction parameter W . (a) Shows the contact angles θ for a brush wetted by a
melt of varying degrees of polymerization N, at εBB = 1.5 and σGD = 0.15. (b) Shows the contact angles of varying melt chain lengths at εBB = 1.0 and
σGD = 0.15. (c) Depicts the influence of the brush grafting density σGD on the contact angles for N = 32.

sition for εBB = 1.5 too, but for higher values of W only, as is also
illustrated in figure 1.

Next, we will consider the effect of the grafting density and
melt polymer length on the interaction-based phase diagram of
figure 1. To do so, we plot in figure 5 the contact angles as a
function of the interaction parameter W for the different melt-
polymer lengths (left graph εBB = 1.5 and middle graph εBB = 1.0)
and grafting densities (right graph). The data shows an increas-
ing θ for increasing W , caused by the lower brush-melt interac-
tions for higher interaction parameters, that directly influence the
wettability between the brush and melt. The data also reveals
an increased wettability for shorter melt chains, caused by the
lower surface tensions of shorter polymer melt chains52 (see also
Supplementary Information, figure S2), due to their lower free
energy as a result of the higher entropy, as compared to longer
polymer melts. The right graph depicts θ plotted against W for
varying σGD. This data illustrates the rather weak dependency of
the contact angle on the grafting density.

To examine how the complete to partial wetting transition in
the interaction-based phase diagram (figure 1) changes upon
varying the brush grafting density or melt chain length, we ex-
tract Wtr from figure 5 by interpolating an exponential function
fitted to the contact angles in figure 5. The Wtr between partial
and complete wetting is the W for which θ has reached 0. The
resulting Wtr is shown in figure 6, as a function of N (left), and of
σGD (right). The wetting transitions based on the enthalpic esti-
mate εLL = εBL are given as the blue and green dash-dotted lines,
for εBB = 1.0 and εBB = 1.5, respectively.

In the left graph of figure 6, we see a rise in Wtr to positive
values for very short chains N. We can explain this through the
increased wettability for small N, that was observed from figure 5.
As mentioned, short chains have lower surface tensions γBL and
γLV (see also Supplementary Information, figure S2), owing to a
higher entropic energy for shorter chains as compared to longer
chains. For longer chains, we reach a constant value for Wtr, as

their surface tensions become similar (see figure 5). We assume
this is caused by a limit to the intermolecular forces that can sig-
nificantly contribute to the surface tension of a liquid melt.

The right graph of of figure 6 shows the dependency of Wtr

on the grafting density. We observe that Wtr slightly decreases
upon increasing the grafting density. As mentioned above, the
reason for this is the rather weak dependency of the spreading
parameter on the grafting density, which is also in agreement with
predictions from de Gennes.53.

Fig. 6 The interaction parameter transition points Wtr, for complete to
partial wetting, are plotted as (a) a function of the melt chain length N,
and (b) the grafting density σGD. The wetting transitions based on an
enthalpic estimate are given as the blue and green dash-dotted lines, for
εBB = 1.0 and εBB = 1.5, respectively.

The data from figure 6(a) can be compared directly to the
interaction-based phase diagram of figure 1. By doing so, we
can compare how wetting transitions shift by changing the poly-
mer melt length. From our data, we find that shorter N values
would cause the complete to partial wetting transition to shift to
the right, compared to the interaction-based phase diagram of fig-
ure 1 (here, transitions are marked using black lines), which was
measured for N = 32. In fact, for the shortest melt chains, our
Ntr also shifts past the theoretical predictions as given in figure 1
(gray lines).
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To conclude this paragraph, we demonstrate that a transition
from complete to partial wetting strongly depends on the length
of the melt polymers N and depends only slightly on the graft-
ing density σGD. Furthermore, we report greater wettability for
shorter melt chains, due to their having a lower surface tension
than their longer counterparts.

4 Conclusions
In summary, our results illustrate that wetting transitions are
shifted due to entropic effects compared to predictions based on
enthalpic effects alone. This shift depends on the length of the
melt polymer N and the brush grafting density σGD. When regard-
ing only enthalpic interactions, the mixing to demixing transition
occurs at Wtr = 0. Entropic interactions can increase or decrease
Wtr, depending on N and σGD, where shorter chains and lower
grafting densities tend to increase Wtr, meaning that entropy is
gained from mixing. Our results for both chemically identical
and chemically distinct brushes and melts show good agreement
to mean field theory describing the effect of N and σGD on the
mixing to demixing transition. When considering the transition
from complete to partial wetting, we find that short melt chains
show higher wettability, meaning that they gain more transla-
tional entropy upon wetting a surface completely, as compared
to long melt chains. As a result, the interfacial free energies for
short chains, γBL and γLV, are smaller. Therefore, there is a strong
effect of N on Wtr and complete wetting is observed for small N
even for very high melt-melt interactions. In contrast, we ob-
serve that the complete to partial wetting transition depends only
weakly on the grafting density. This indicates that, for the partial
to complete wetting transitions, the brush can in many situations
be regarded as a simple polymer film. Nevertheless, our results
show that entropic effects have to be incorporated when consid-
ering wetting transitions, which is important in the design of po-
tential applications such as brush-based sensors or self-cleaning
surfaces.
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