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Most of our understanding of moving contact lines relies on the limit of small capillary
numbers. This means the contact line speed is small compared to the capillary speed γ/η,
where γ is the surface tension and η the viscosity, so that the interface is only weakly
curved. The majority of recent analytical work has assumed in addition that the angle
between the free surface and the substrate is also small, so that lubrication theory can
be used. Here, we calculate the shape of the interface near a slip surface for arbitrary
angles, and for two phases of arbitrary viscosities, thereby removing a key restriction in
being able to apply small capillary number theory.

1. Introduction

The theory of the moving contact line at small capillary numbers was founded by
Voinov (1976) and generalized to arbitrary viscosity ratiosM by Cox (1986). The problem
is that if the no-slip boundary condition were to apply down to arbitrarily small scales
(Huh & Scriven 1971; Bonn et al. 2009; Snoeijer & Andreotti 2013), a contact line would
not be able to move. Therefore, one needs to invoke a small length scale on which the
conventional equations for fluid motion are relaxed. The simplest, and often physically
realistic, such choice is the introduction of a Navier slip length λ (Lauga et al. 2008),
over which a fluid may slip past a solid interface. It is generally of the order of a few
nanometers, but increases somewhat for hydrophobic surfaces (Barrat & Bocquet 1999;
Cottin-Bizonne et al. 2005). A slip length is used very widely in contact line problems
(Bonn et al. 2009; Snoeijer & Andreotti 2013; Vandre et al. 2014; Sprittles 2015) in order
to regularise the local flow and to thus allow contact line motion, but is usually not
important elsewhere in the flow. The inner length scale λ is contrasted with an outer
’macroscopic’ length scale R, for example the radius of a spreading drop or the capillary
length scale in the problem.

Cox (1986) clarified the structure of low capillary number problems in terms of the
ratio ε = ε0λ/R between the two length scales; ε0 is a numerical factor to be determined.
From a general analysis, Cox (1986) obtained

g(θeq) = g(θapp) + Ca ln ε, (1.1)

where

g(θ) =

∫ θ

0

u− cosu sinu

2 sinu
du (1.2)
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Figure 1. Sketch of geometry; the volume of integration is shown as the dotted line.

for a single phase (a liquid volume, neglecting the effect of a surrounding gas). Here,
θeq is the (equilibrium) contact angle on the microscopic scale, and θapp is the apparent
contact angle of the spreading drop, obtained by fitting a spherical cap to its shape. In
Cox’s analysis, the dimensionless capillary number

Ca =
Uη

γ
(1.3)

is assumed small, where U is the speed of the contact line. Here, η is the fluid viscosity,
and γ is the surface tension. For steady flow, it is often more convenient to instead think
of the contact line being stationary and the wall to be moving at speed U , because we
can then think of the interface as time-independent.

All that remains is to calculate the factor ε0 which determines the effective value of the
ratio of the two length scales. The advantage of (1.1) is that ε0 can be determined from
solving two separate linear problems (Eggers & Fontelos 2015). Near the contact line,
one has to find the deviation of the contact angle from θeq, on the microscopic (inner)
scale λ. On the scale of the drop, the objective is to find the deviation from θapp as the
substrate is approached from the drop (the outer scale). In the present paper, we focus
on the matching of the interface slope to a slip surface for arbitrary contact angles, and
for two-phase flows with arbitrary viscosities. The other part of the problem, matching
to the quasistatic drop surface, has to our knowledge not been done for general angles.

An approach to describe the shape of the interface is to write (1.1) as an evolution
equation for the local slope θ, as in Snoeijer (2006) and Chan et al. (2013) for a
single phase and two-phase systems, respectively. For simplicity, we neglect external
forcing (such as by gravity), which only becomes important on a macroscopic scale.
The requirement that the interface (described by its thickness h(s)), is assumed steady,
while the substrate is moving at speed U to the right, then leads to the GL (generalized
lubrication) equation. One obtains

d2θ

ds2
=

3CaF (θ,M)

h2
, (1.4)

where s is the arclength along the interface, and M = ηg/ηl the ratio of the viscosity of
the outer phase (for example a gas), and the viscosity of the liquid (cf. Fig. 1). In the
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case of a single (liquid) phase only,

F (θ) ≡ F (θ, 0) = − 2 sin3 θ

3(θ − sin θ cos θ)
. (1.5)

Here, F (θ) is related to g(θ) by F (θ) = (2/3) sin2 θg(θ). The full expression F (θ,M) for
two fluids is given in (2.11). To close (1.4), one has to simultaneously solve the geometrical
relations

dh

ds
= sin θ,

dx

ds
= cos θ. (1.6)

to find the interface shape h(x) in a Cartesian coordinate system. Integrating (1.4),
making use of the limit of small Ca, (1.6) leads precisely to the structure given by (1.1).

To build the crossover to the slip region into the GL equation, we follow Chan et al.
(2013) and introduce the modified GL equation

d2θ

ds2
=

3CaF (θ,M)

h(h+ cλ)
, (1.7)

where c is a constant to be chosen such that the solution matches properly with the slip
region. In Chan et al. (2013) this was done assuming that c = 3, which is true only for
small angles and for a single phase (Hocking 1983). Here, we calculate the dependence
of c on the microscopic contact angle θeq and on the viscosity ratio M . Once c is known,
one has to integrate (1.7) from the contact line to whichever macroscopic configuration
is required for the problem.

Let us start by sketching the structure of the analysis to compute c. It is sufficient to
consider a linear perturbation of the free surface shape around a wedge with microscopic
(equilibrium) angle θeq. Therefore we set θ = θeq − ϕ(s), and, to linear order in ϕ, all
calculations can be performed assuming a wedge geometry h = s sin θeq for the flow (cf.
Fig. 1). Linearizing (1.7) in ϕ and integrating twice, we have

ϕ =
3CaF (θeq,M)

sin2 θeq

[
h

cλ
(ln(h+ cλ)− lnh) + ln(h+ cλ)− 1

]
+ Ch+ C1.

We are interested in solutions which only grow logarithmically, corresponding to
vanishing curvature at infinity, and so C = 0. From the boundary condition ϕ(0) = 0 it
follows that C1 = 3CaF (θeq,M)(1− ln cλ)/ sin2 θeq, and so to leading order as s/λ→∞
we have

ϕ(s) =
3CaF (θeq,M)

sin2 θeq
ln
se sin θeq

cλ
. (1.8)

Here, we calculate c for arbitrary angles θeq and arbitrary viscosity ratios M , based
on earlier work by Hocking (1977), who calculates the stress on a slip wall, assuming
a straight interface h = s sin θeq. Using the fact that in the absence of inertia (Stokes
dynamics), the total force on any fluid volume vanishes, we can convert the wall force to
a force on the interface, which leads to bending of the interface, allowing us to determine
c. In addition, one may also allow for an arbitrary ratio of slip lengths λ1/λ2 at the two
fluid-solid interfaces, but no explicit results are available for this case. So in the interest
of simplicity, we will always assume λ1 = λ2 ≡ λ.
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2. Determining c from a force balance

2.1. A single phase

We start the analysis by considering the case of a single phase (the liquid, as shown
in Fig. 1), which enables us to show some of the calculations in greater detail. The idea
is to consider a force balance over the volume shown in Fig. 1, within which the Stokes
equation ∇ · σ = 0 is satisfied; σ is the stress tensor. Using Gauss’ theorem, and only
considering the force in the x-direction, we obtain∫

S

n · σ · ex = 0, (2.1)

where n is the outward normal, and S = Si + Sc + Sw. The volume is the slice of radius
s inside the fluid, where Si is the fluid-gas interface, Sc a circular arc of radius s inside
the fluid, and Sw the wall, see Fig. 1.

The force on V coming from the interface is∫
Si

n · σ · exds = −γ
∫
S1

κn · exds ' γ sin θeq

∫ s

0

dϕ

ds
ds = γ sin θeqϕ(s). (2.2)

Here, we have used the stress boundary condition (Landau & Lifshitz 1984) n·σ = −γnκ,
where κ = dϕ/ds is the interface curvature and n · ex ' − sin θeq. The integral over Sw,
representing the total force w on the wall between the origin and x = s, has been
calculated by Hocking (1977) for Stokes flow in a corner with slip at the wall, and a
free-slip condition at the interface. The contribution v of the force on Sc can be inferred
from the far-field limit of the flow, calculated by Huh & Scriven (1971). Thus (2.1) gives

γ sin θeqϕ(s) = −v − w, (2.3)

which we compare to (1.8) to find c.
To find v and w, we need to consider the flow in the wedge-shaped fluid domain (cf.

Fig. 1) of opening angle θ = θeq. In Hocking (1977), the flow is solved subject to the slip
boundary condition (with u the horizontal component of the velocity)

u(x, 0) = U + λ
∂u

∂y

on the wall. It is convenient to count the angle φ from the interface; the velocity field is
given in terms of the stream function

ur =
1

r

∂ψ

∂φ
, uφ = −∂ψ

∂r
.

The boundary conditions on both boundaries are zero normal velocity, and vanishing
shear stress σrφ = 0 on the interface. Thus for φ = θeq (the wall) we have

∂ψ

∂r
= 0, U =

1

r

∂ψ

∂φ
+
λ

r2
∂2ψ

∂φ2
,

and for φ = 0 (the interface)

∂ψ

∂r
= 0,

1

r2
∂2ψ

∂φ2
− ∂2ψ

∂r2
+

1

r

∂ψ

∂r
= 0.

In the limit r � λ we can neglect the effects of slip, and we should fall back on the
similarity solution ψ = rf(θeq) found by Huh & Scriven (1971). With the ansatz

f = a1 sinφ+ a2 cosφ+ a3φ sinφ+ a4φ cosφ, (2.4)
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the boundary conditions are

f(0) = 0, f ′′(0) = 0, f(θeq) = 0, f ′(θeq) = U.

The coefficients are (D = θeq − sin θeq cos θeq),

a1 = −Uθeq cos θeq
D

, a2 = 0, a3 = 0, a4 = −U sin θeq
D

,

and so the stresses become

σrr =
2ηU

rD
sin θeq cosφ, σrφ =

2ηU

rD
sin θeq sinφ. (2.5)

Using (2.5), and

n · σ · ex = σrr cos(θeq − φ) + σrφ sin(θeq − φ),

we find

v =

∫
Sc

n · σ · exds = r

∫ θeq

0

n · σ · exdφ = −3ηUF (θeq)

sin θeq
,

where F (θeq) is the angle dependence from the GL model given previously in (1.5). As
an aside, F (θeq) can easily be calculated from σφφ, evaluated at the interface φ = 0,
and using the stress boundary condition γκ = −σφφ|φ=0. On the other hand, using
h = s sin θeq and integrating (1.4) once, we have

κ =
dϕ

ds
=

3CaF (θeq)

s sin2 θeq
; (2.6)

comparing with σϕϕ|φ=0 yields F (θeq).

Finally Hocking (1977) has calculated the force on the wall

w =

∫
Sw

n · σ · exds = −
∫
Sw

σxyds = Uη

[
−3F (θeq)

sin θeq
ln
s

λ
+ h1

]
,

where h1(θeq) is known numerically. Known values are h1(π/2) = 4(γE − ln 2)/π, while
for small θeq, h1 = −3 ln(3/θeq)/θeq. Using (2.3), it follows that in the general case

ϕ(s) = Ca

[
3F (θeq)

sin2 θeq
ln
se

λ
− h1

sin θeq

]
,

which is precisely of the expected form (1.8). Comparing the two, we find

c = sin θeq exp

(
sin θeqh1(θeq)

3F (θeq)

)
, (2.7)

which is our main result in the case of a single phase.

The result is shown in Fig. 2 for a range of angles. For small θeq, one recovers c = 3 as
known from lubrication theory; for θeq = π/2,

c(π/2) = eln 2−γE ≈ 1.12, (2.8)

smaller by about a factor of three. Interestingly, c becomes very small for angles close to
π. For example, c(0.9π) = 1.04 · 10−4, showing that in general c cannot be inferred from
a comparison with lubrication theory.
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Figure 2. The c-factor as function of θeq/π for M = 0, calculated from the tabulated values
for h1 in Hocking (1977).

2.2. Two phases

We now generalize to the case of two phases (arbitrary viscosity ratios M), for which
the constant c has never been calculated, not even for small angles. We explain the
general structure, but explicit results are available for θeq = π/2 only.

In contrast to the previous subsection, we now have the integral (2.1) over the surface
of two volumes V1 and V2; V1 is the volume over the “liquid” phase as before (labeled 1),
V2 is the corresponding slice of the same radius s over phase 2 (the “gas”). Then (2.1),
written for each phase, becomes∫

Si

n · σ1 · ex + v1 + w1 = 0, −
∫
Si

n · σ2 · ex + v2 + w2 = 0, (2.9)

where v and w have the same meanings as before, but for each phase separately. Using
the stress condition n · (σ1 − σ2) = −γnκ, this yields

γ sin θeqϕ(s) = −v1 − v2 − w1 − w2. (2.10)

The solution for a no-slip flow, for general M , has been given by Huh & Scriven (1971).
At the interface between the two fluids we now have continuity of the tangential velocity
(the normal velocity vanishes), and of shear stress. If the stream functions in either phase
are ψ1/2 = rf1/2(θeq), the boundary conditions are

f1(0) = f2(0) = 0, f ′′1 (0) = Mf ′′2 (0), f ′1(0) = f ′2(0), f1(θeq) = 0,

f ′1(θeq) = U, f2(θeq − π) = 0, f ′2(θeq − π) = −U.

The results are a little too complicated to write out here, but as in (2.6), we can calculate
the general form of F (θ,M) in (1.4), by computing the normal stress on the interface
from either phase, giving

σ
(2)
φφ

∣∣∣
φ=0
− σ

(1)
φφ

∣∣∣
φ=0

= γκ =
3Uη

r sin2 θeq
F (θeq,M).
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Figure 3. The c-factor as function of log10M for θeq = π/2. Horizontal (red) dashed lines are
the asymptotes of c for M = 0 (c ≈ 1.12) and M →∞ (c ≈ 12.60).

Comparison with (1.4) then shows that

F (θ,M) = −2 sin3 θ

3

M2F1(θ) + 2MF3(θ) + F1(π − θ)
MF1(θ)F2(π − θ) + F1(π − θ)F2(θ)

, (2.11)

where

F1 = θ2 − sin2 θ, F2 = θ − sin θ cos θ, F3 = θ(π − θ) + sin2 θ;

note the sign error in Chan et al. (2013).
Furthermore, it follows from the Huh-Scriven solution, after a lengthy but elementary

calculation, that

v1 + v2 = −3UηF (θeq,M)

sin θeq
.

The shear force on the wall now has contributions from both phases, and it follows from
Hocking (1977) that

w1 + w2 = Uη

[
−F (θeq,M)

sin θeq
ln
s

λ
+ h1 +Mh2

]
.

Taken together with (2.10), this yields the interface deformation

ϕ(s) = Ca

[
3F (θeq,M)

sin2 θeq
ln
se

λ
− h1 +Mh2

sin θeq

]
,

and comparing with (1.8)

c = sin θeq exp

(
sin θeq(h1 +Mh2)

3F (θeq,M)

)
, (2.12)

now involving two numerical constants h1 and h2. This completes our calculation, but it
remains to calculate the constants h1 and h2, which are functions of θeq and M . According
to Hocking (1977) this can be done explicitly for a right angle θeq = π/2, for which

h1 =
(1−M)ha + 2Mhb

1 +M
, h2 =

−(1−M)ha + 2Mhb
1 +M

, (2.13)
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where ha = (4/π)(γE − ln 2) and hb = −1.539. The geometrical factor is

F (π/2,M) = − 4

3π

(M + 1)2π2 − 4(M − 1)2

(π2 − 4)(M + 1)
(2.14)

for right angles. It is now a simple matter to compute the c-factor, shown in Fig. 3, as a
function of log10M . For small M (to the left of the figure), one recovers (2.8). For large
M , on the other hand, c rises significantly towards c→ exp (−π(ha + 2hb)/4) ≈ 12.60 as
M → ∞, showing once more that the behavior for finite angles is significantly different
from the lubrication result.

3. Discussion

To illustrate and validate our results, we consider a plate being pushed into a container
of liquid 2, with an outer liquid 1, as shown in Fig. 4 (a). We compare full numerical
simulations of this problem, using the finite elements method (FEM) described in detail
in Kamal et al. (2018), and based on a framework benchmarked in (Sprittles 2015), with
results of the GL equation for Ca up to 0.1. We show an example with M = 0 and one
with M = 1, with a contact angle of π/2 (Fig. 4 (b) and (c), respectively). On the left,
the solid line is the interface profile found from FEM, the red dashed line comes from
integrating (1.7) using the expression of c in (2.7), as obtained by the present theory;
very good agreement is found.

To demonstrate the importance of using the correct value of c in order to obtain this
agreement, we also plot the profile obtained using the value c = 3, proposed previously
(Snoeijer 2006; Chan et al. 2013). However, this value is only appropriate in the limit of
small contact angles and no outer fluid (M = 0). As a result, the dot-dashed blue, which
is the profile thus obtained from the GL equation, differs significantly from the “exact”
result, obtained from direct numerical simulation.

In order to focus on the solution very close to the contact line, we also plot the relative
deviation between the FEM simulation and solutions obtained from integrating (1.7)
on the right of Fig. 4. For the solid line we use the correct value of c, the dashed
line represents the value c = 3. For the smaller capillary number, using the c-value
as calculated in the present paper, the deviation is negligible, and even for a capillary
number Ca = 0.1, the relative error remains small; when the capillary number becomes
of order unity the GL equation fails (Kamal et al. 2018), since it is an expansion for
small Ca only. On the other hand for c = 3 the relative error is significant in both cases,
as one approaches the contact line.

In conclusion, we have analyzed the Cox-Voinov theory with slip, for arbitrary contact
angles and arbitrary viscosity ratios. Closed form expressions are provided using the
generalized lubrication equation, which is shown to be a powerful tool to calculate
interface flows involving moving contact lines in situations in which the interface slope is
not necessarily small. The present paper provides a consistent version of the GL equation
for arbitrary contact angles.
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