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ABSTRACT
We present a flexible setup for determining the rheology of visco-elastic materials which is based on the mechanical response of
a magnet deposited at the surface of a slab of material and excited electromagnetically. An interferometric measurement of the
magnet displacement allows one to reach an excellent accuracy over a wide range of frequency. Except for the magnet, there is
no contact between the material under investigation and the apparatus. At low frequency, inertial effects are negligible so that
the mechanical response, obtained through a lock-in amplifier, directly gives the material complex modulus. At high frequency,
damped waves are emitted and the rheology must be extracted numerically from a theoretical model. To validate the design,
the instrument was used to measure the rheology of a test polydimethylsiloxane gel which presents an almost perfect scale free
response at high frequency.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5064599

I. INTRODUCTION

Measuring the visco-elastic response of soft solids (i.e.,
nonpolycrystalline) is necessary to understand their struc-
tures.1 As such, rheology is used to characterize the mechani-
cal behavior of a large variety of systems: reticulated polymers,
gels,2 biological tissues,3 etc. The need to explore rheologi-
cal properties in a large frequency range and down to micro-
or nano-scale4 has recently triggered many efforts to design
new setups using for instance the surface force apparatus,5,6

various piezoelastic oscillators,7,8 or ultrasonic wave propa-
gation.9 However, in many applications, rheological proper-
ties are still measured with conventional shear rheometers
in which a flat sample is held between two plates. Measur-
ing both the mobile plate displacement and the applied force
yields the complex shear modulus µ = G′ + iG′′, where G′(ω) is
the storage modulus and G′′(ω) is the loss modulus.10 An accu-
rate measurement requires a perfect control and determina-
tion of the sample geometry which has to match the plates of

the rheometer as well as a perfect contact between the sample
and the plates.

Here, we present the principle of a rheometer where
the sample is submitted to indentation rather than shear.
Indentation has been widely used to characterize static or
transient mechanical properties of solids11,12 but not to deter-
mine the frequency dependence of the rheological response.
In our setup, a magnetic oscillatory force is imposed on the
indenter which is a permanent magnet. The magnet displace-
ment is measured optically: there is no contact between the
apparatus and the sample. The magnet inertia is small so
that its displacement can be measured over 7 decades in fre-
quency up to 10 kHz. As shown below, an instrument can
be built easily with simple and mostly off-the-shelve com-
ponents. We derive the theoretical equations of the dynami-
cal system necessary to obtain the intrinsic shear modulus µ
from the raw mechanical response. As an example, we work
out the detailed response of silicone gel samples in various
geometries.
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II. DESCRIPTION OF THE APPARATUS
The indenter is a small magnetic disc of radius R, which

is placed on the surface of the soft solid under study. A mag-
netic force F is applied with a coil positioned above the magnet
(see Fig. 1). F is proportional to the current I in the coil so that
the force calibration can be easily performed with the mag-
net on a precision scale and operate the coil with DC current.
In order to avoid electrical resonances and to ensure that F
and I are proportional up to 10 kHz, it is important to mini-
mize the stray capacitance between neighboring wires in the
coil. To build the coil, we used a copper wire with a 0.2 mm
thick insulation, wrapped around a hollow cylinder. The ver-
tical displacement Z of the magnet is measured here with
a commercial laser-interferometric vibrometer (SP-S model
from SIOS Messtechnik GmbH), within a nominal resolution of
20 pm.

One can infer from dimensional analysis that in the static
limit, for a sample much larger than R in all directions, the lin-
ear response should obey the scaling law: F ∼ µ0RZ, where µ0
= G′(ω = 0) is the static shear modulus. We therefore define
the raw output of the experiment as the complex effective
modulus K(ω) = K′(ω) + iK′′(ω),

K ≡
1
R
F
Z

. (1)

K(ω) is measured using a digital lock-in amplifier using the
intensity in the coil, measured with a shunt resistor, as a
reference signal. Below we demonstrate how this measured
quantity can be converted to the actual rheology µ(ω) of the
sample. The in-phase signal K′(ω) characterises the conserva-
tive part of the system (stiffness and inertia). The quadrature
signal K′′(ω) reflects dissipative processes.

This design offers a great flexibility since the force range
can be changed easily by modifying the coil, the magnitude of
the current excitation, or the size of the magnet. In order to
use sample sizes in the range of 1-10 cm and to avoid strong
finite size effects, Nd magnets with a radius R from 1 to 5 mm
and a thickness around 0.5 mm constitute a rational choice.
This sets the typical size of the coil in the cm range. In our
case, the inner and outer diameters of the coil are respectively
about 10 and 25 mm and its height about 15 mm. With ∼500
windings, the typical value for F/I is then 0.01 N/A. In order

FIG. 1. Sketch of the rheometer: the magnetic force on the magnet is proportional
to the current, and the amplitude and phase of the displacement of the magnet are
measured with a laser vibrometer and a lock-in amplifier.

to induce a measurable displacement with such a small force
(under, say I = 1 A, the typical elastic modulus must be smaller
than 1 MPa, a range that covers many usual soft solids). Mea-
surement reproducibility requires a good alignment of the coil
and the magnet and a fixed distance between these two ele-
ments. For our setup, 1% reproducibility requires a positioning
accuracy of about 0.1 mm.

III. RHEOLOGICAL MEASUREMENTS
IN THE OVERDAMPED LIMIT

As a test material, we have used a soft polydimethylsilox-
ane (PDMS) gel (Dow Corning CY52-276, prepared in 1:1 ratio
and cured at room temperature during 24 h) for which the
static modulus µ0 is of the order of 1 kPa and which is nearly
incompressible (Poisson’s ratio ν ' 0.5). For such a soft gel, a
standard AC generator delivers a high enough current (0.1 A
peak) to get a 100 µm displacement at vanishing frequency. In
the experiment reported here, the displacement Z is measured
with a laser vibrometer, offering a high sensitivity and a large
bandwidth. Other schemes can be envisioned, including sim-
ple optical imaging, as the magnet can be visualized from the
side. We emphasize that the use of a laser vibrometer makes
the alignment of coil and magnet very easy.

We first focus on the overdamped case, where the inertia
of the magnet and of the gel can be neglected. In this limit,
one can describe the sample’s dynamical response to the disc-
indentation using the formulas of static linear elasticity; the
dynamical response is simply obtained by replacing the static
shear modulus µ0 by the frequency-dependent µ(ω). For thick
samples e � R, we can thus consider the static solution of a
disc that indents a semi-infinite medium for which the normal
stress σ below the indenter reads11

σ = −
2µ

π(1 − ν)
√
R2 − r2

Z, (2)

where r is the radial distance from the origin. Neglecting solid
capillary effects, the normal stressσ vanishes outside the con-
tact with the magnet (r > R). The force between the magnet
and the sample is found by integration of the stress and gives

K =
F
RZ
=

4µ
1 − ν

. (3)

This provides the “conversion factor” between the effective
modulus K (i.e., the scaled force measurement) and the intrin-
sic rheology µ for the case of thick samples. In many practical
cases, however, samples are available only in the form of lay-
ers of thickness e small compared to R. In this opposite limit, it
is simpler to consider the incompressible case ν = 1/2 in order
to apply the lubrication approximation for which the normal
stress σ at the free surface obeys the momentum balance (see
the Appendix),

∂2σ

∂r2
+

1
r
∂σ

∂r
=

3µ
e3

Z. (4)

This can be integrated to

σ =
3µ
4e3

(r2 − R2)Z, (5)
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which gives a force-displacement relation

K =
F
RZ
=

3πµR3

8e3
. (6)

Equations (3) and (6) provide the asymptotic results, respec-
tively, for the large and small ratio e/R. For the general case of
arbitrary thickness, we define the conversion function κ(e/R)
as

K = µ κ(e/R). (7)

This formula has been determined by numerical solution
of the (incompressible) elastic problem for arbitrary thick-
ness and is shown as the solid line in Fig. 2. In order to
check our setup and to measure κ, we have performed sys-
tematic measurements of K(ω) at low frequency for R in the
range of 1–5 mm and e in the range of 1–100 mm. First, we
verify that the rheological data K(ω) for various e/R can be
collapsed to a single curve (the inset of Fig. 2). This con-
firms that, in the non-inertial regime, the same κ applies to
all frequencies. In addition, the scaled data coincide with an
independent measurement of µ(ω) using an Anton-Paar
rheometer, up to the frequency of f = 100 Hz (ω ' 628 rad/s).
For the PDMS gel considered, the complex modulus is
very accurately described13–17 by µ(ω) = µ0[1 + (iωτ)n], with
µ0 = 1.3 kPa, τ = 0.13 s, and n = 0.55. Our data are perfectly
fitted with the same law for µ(ω), with small variations of µ0
and τ depending on the curing procedure and the age of the
sample. To complete the comparison, we first verified for a
sample much larger than the magnet in all directions (e/R �
1) that κ ' 8, as expected from (3) in the incompressible limit.
Then, we have systematically analyzed the results to samples
of finite thickness. As shown in Fig. 2, the experimental data

FIG. 2. Scaling factor κ = K/µ as a function of the aspect ratio e/R. Dots: exper-
imental values obtained from the rescaling of K(ω). The symbol size reflects the
experimental error bars. Line: theoretical prediction in the overdamped limit (the
Poisson ratio ν = 1/2). Inset: rescaled rheology µ(ω) for the different ratio e/R,
superimposed to that obtained in a conventional Anton-Paar rheometer (red dots).

are in good agreement with the theoretical curve, determined
numerically.

In the above calculation, we have neglected any contri-
bution of capillary forces although adhesion may be present
in the experiment. The relative contribution of adhesion
and elasticity is given by the dimensionless number µ0R/γ,
where γ stands for the typical solid surface tension. This
elasto-capillary number compares the typical elastic stress
to the Laplace pressure: for a large enough magnet, i.e.,
for R � γ/µ0, adhesive effects can be safely neglected.
Here, the elasto-capillary length γ/µ0 is around 10 µm,
which is 3 orders of magnitude smaller than the magnet
radius.

IV. DYNAMICAL BEHAVIOR IN THE INERTIAL LIMIT
A. General features

We now turn to the dynamical behavior of the system at
high frequency, for which inertial effects have to be taken into
account. Here, we consider only large samples to avoid any
finite-size effect. Measurements of the effective modulus K
are shown in Fig. 3 in the full angular frequency range, from
ω = 5 × 10−3 rad/s to 2 × 104 rad/s.

An obvious feature of K(ω) is a resonance at an angu-
lar frequency ωR around 1 kHz, which is followed by a
change of sign of the effective storage modulus K′. At angular

FIG. 3. In-phase K′ and out-of-phase K" response as a function of the angular
frequency ω for the PDMS gel. By convention, the quantity is plotted with a solid
line when positive, and when negative, its opposite is plotted in the dotted line.
Orange and red lines: measurements for a sample of PDMS gel much larger than
the magnet (R = 5 cm). Blue and black lines: prediction for K′ and K" assuming
that the gel shear modulus can be approximated by µ = µ0[1 + (iωτ)n].
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frequencies well below the resonance, the effective modu-
lus K(ω) is simply proportional to the elastic modulus µ(ω),
while above ωR, the oscillating magnet excites damped elas-
tic waves inside the sample. Hence, the conversion from K(ω)
to µ(ω) becomes more intricate as it involves the gel’s inertia.
More precisely, at large frequency, an effective mass scaling
as ∼ρgR3 is set into an oscillatory motion, leading to an inertial
term in K′ scaling as −ρgR2ω2. The asymptotic behavior inω2 is
clearly visible in Fig. 3 (with a prefactor of approximately 1.6).
The resonance frequency coincides with the crossover from
the quasi-static regime to the inertial regime and therefore is
expected to scale as

ωR ∼
1
R

√
G′R
ρg

, (8)

where G′R is the storage modulus at the resonance frequency.
This is indeed consistent with the experimentalωR when using
a multiplicative factor of about 1.5.

In addition, the inertia due to the magnet must be taken
into account to extract the force. Namely, the force F enter-
ing the definition of K in (1) is the force acting on the gel,
which is obtained from the total force acting on the magnet
by adding −Mmω

2Z. This correction involves the magnet mass
Mm = πρmR2d, which is proportional to the density ρm ' 7.5
g/cm3 and to the thickness d. In order for the gel inertia to
dominate over the magnet inertia, one needs d/R to be much
smaller than ρg/ρm. This condition is marginally realized in the
example of Fig. (3), for which we have chosen a small aspect
ratio of d/R = 0.08 (R = 5 mm and d = 0.4 mm). In such a sit-
uation, the accuracy of the measurement is not affected when
the correction is subtracted.

B. Determination of the rheological properties
at high frequencies

In order to extract the rheology µ(ω) from the raw data
K(ω) at high frequencies, one needs to numerically solve
the dynamical response in the presence of inertia. Here, we
present a solution strategy for incompressible media (details
given in the Appendix). The key ingredient is to determine
the dynamic Green’s function of the system, which gives the
relation between the normal stress σ at the surface and the
surface displacement H, for independent spatial modes. To
compute the spatial modes, we introduce the stream function
in cylindrical coordinates ψ(r, z). Incompressibility is ensured
when expressing the displacements ur and uz in terms of the
stream function as ur = −

1
r∂zψ and uz =

1
r
∂
∂rψ. Then, the modes

of wavenumber k are described by (see the Appendix)

ψ = [Aekz + Be−kz + CeQz + De−Qz] rJ1(kr) with Q ' k −
ρgω

2

2kµ(ω)
.

(9)
Hence, the spatial modes exhibit a radial structure described
by a Bessel function, while the vertical structure is a superpo-
sition of exponentials. Note the explicit dependence on the gel
density ρg, expressing the inertia. The coefficients A, B, C, and
D are determined by the boundary conditions, consisting of
vanishing radial and vertical displacements on the bottom of

the sample and vanishing shear stress at the free surface and
outside the magnet, and imposed displacement in the contact
area with the magnet (see the Appendix). For an infinitely thick
sample, the associated Green function G relating the stress
to the surface displacement (for wavenumber k) takes the
form

G = σ
H
= µ

(
3k +

Q2

k
−

4k2

k + Q

)
. (10)

The final step is to find the superposition of modes that
describes the disc-indenter, which requires that H = Z for
r < R and σ = 0 for r > R. This constitutes a standard mixed
problem which can be easily solved iteratively in both direc-
tions: either one assumes that µ(ω) is known and K(ω) is
determined or the other way around.

In Fig. 3, we compare the direct measurements of K to the
prediction of the model including inertia. We assumed that the
expression µ(ω) = µ0[1 + (iωτ)n] holds in the whole frequency
range, but the parameters are extracted from the overdamped
regime (i.e., for ω < 100 rad/s). The calculated value K(ω) is
found to be in almost perfect agreement with the measure-
ment. Without any adjustable parameters, one recovers the
resonance frequency with a good accuracy as well the inertial
behavior at high frequency where |K′| ∼ −ω2.

Figure 4 shows the opposite route, where we use the
inversion of the model to deduce µ from the measurement
of K. As K and µ are directly proportional in the quasi-static
regime, one recovers the excellent agreement of Fig. 3 in the

FIG. 4. Storage modulus G′(ω) and loss modulus G′′(ω) as a function of the
angular frequencyω for the PDMS gel. Orange and red points: measurements for
a sample of PDMS gel much larger than the magnet (R = 5 cm), deduced from the
theory from K′ and K′′ (Fig. 3). Blue and black lines: fit obtained in the quasi-static
domain (ω < 100 rad/s) by the analytical formula µ = µ0[1 + (iωτ)n], here
extended to high frequencies.
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range ω < 100 rad/s. However, we have now gained access
to two more decades in frequency, exceeding 104 rad/s. An
important experimental aspect is that at large frequency, the
real part of the response K′ is dominated by inertia: as a conse-
quence, its dependence on G′ and G′′ becomes subdominant.
K′′, on the other hand, still depends primarily on the rheology.
The deduction of µ from K becomes therefore more and more
sensitive to the accuracy of the measurement. This requires
an accurate calibration of the phase lag introduced by the
vibrometer. Between 103 rad/s and 104 rad/s, a 5% inaccu-
racy on K results into a 25% effect on µ. Similarly, all quantities
measured independently (the indenter radius R, its mass, the
sample density ρ, and the calibrated constant relating F to
I) must be measured within a few per thousand accuracy to
reach the percent accuracy on the rheology.

Further improvement of the method should utilize the
prior assumption that the rheological response function is
causal: the Fourier transform of µ must vanish at positive
times. Accordingly, µ must obey the Kramers-Kronig relation,
a fact that is not used here. As a consequence, the measured
rheology could be improved by projecting it on the space of
admissible function µ(ω), which would compensate for the
lack of information extracted from K′ in the inertial regime.

V. CONCLUSION
In conclusion, the technique is particularly interesting by

its simplicity, the possibility to obtain rheological measure-
ments in the quasi-static and in the high-frequency regime,
and the possibility to perform the measurement on small sam-
ples. The absence of contact between the magnetic probe and
the main part of the apparatus makes the proposed method
very suitable to characterize rapidly the mechanical properties
of biomedical tissues.3 In this context, it is particularly inter-
esting to have a rheometer that can be brought to the patient
to perform in vivo measurements.
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APPENDIX: RESPONSE FUNCTION
1. Axisymmetric dynamic Green’s function
of an incompressible medium

We consider an incompressible layer of visco-elastic
material of thickness e that is characterised by a complex
shear modulus µ(ω) = G′(ω) + iG′′(ω). The layer has vanish-
ing displacements at the bottom. The top surface is free from
stress, except on a disk of radius R where an oscillatory dis-
placement is imposed. Taking a temporal Fourier transform
and considering a single mode of angular frequency ω, the
dynamical equation reads

− ρω2~u = −~∇p + µ(ω)~∇2~u (A1)

where ~u is the spatial model of the displacement field.
We consider cylindrical coordinates r, z and introduce the

axisymmetric streamfunction ψ to ensure incompressibility
defined by,

ur = −
1
r
∂zψ and uz =

1
r
∂

∂r
ψ. (A2)

Projecting the dynamical equation in polar coordinates, one
gets

−ρω2ur =−
∂

∂r
p + µ

(
1
r
∂

∂r
(r
∂ur

∂r
) −

ur

r2
+
∂ur

∂z2

)
,

−ρω2uz =−∂zp + µ
(

1
r
∂

∂r
(r
∂uz

∂r
) +

∂uz

∂z2

)
.

(A3)

Eliminating pressure between the two equations, we get an
equation on the stream function,

∆
(
ρω2 + µ∆

)
ψ = 0 with ∆ =

(
r
∂

∂r

(
1
r
∂

∂r

)
+

∂

∂z2

)
. (A4)

Spatial modes can be related to Bessel functions, noting that
the differential equation r( f′(r)/r)′ = −k2f(r) has solutions,
rJ1(kr) and rY1(kr). Along the direction normal to the surface,
the equations are homogeneous. The vertical structure of a
mode is therefore a superposition of exponentials of decay
rate q, which satisfies the equation

(q2 − k2)
(
ρω2 + µ(ω)(q2 − k2)

)
ψ = 0. (A5)

Solutions are q = ±k or q = ±Q with

Q2 = k2 − κ2 with κ2 =
ρω2

µ(ω)
, (A6)

where by continuity, at small κ, the root must obey

Q ' k −
κ2

2k
. (A7)

The solution for ψ therefore reads

ψ = [Aj exp(kz) + Bj exp(−kz) + Cj exp(Qz) + Dj exp(−Qz)] rJ1(kr)

+ [Ay exp(kz) + By exp(−kz) + Cy exp(Qz)

+Dy exp(−Qz) ] rY1(kr), (A8)

where the constants are set by the boundary conditions. The
pressure field is obtained by the integration of ∂

∂rp,

p = p0 + κ2
(
(Aj exp(kz) − Bj exp(−kz))J0(kr)

+ (Ay exp(kz) − By exp(−kz))Y0(kr)
)
. (A9)

At the bottom of the layer, we impose a vanishing displace-
ment of ur = 0 and uz = 0,

ur(z = −e) = (Ajke−ke − Bjkeke + CjQe−Qe − DjQeQe)J1(kr)

+ (Ayke−ke − Bykeke + CyQe−Qe − DyQeQe)Y1(kr) = 0,

(A10)

uz(z = −e) = [Ajeke + Bje−ke + CjeQe + Dje−Qe] rJ0(kr)

+ [Ayeke + Bye−ke + CyeQe + Dye−Qe] rY0(kr) = 0.

(A11)

At the free surface located at y = 0, we impose a null vanishing
stress of σxy = 0 and we want to determine the disturbance to
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the normal stress σyy. The condition for the tangential stress
reads

∂

∂r
uz + ∂zur = −(2(Aj + Bj)k2 + (Cj + Dj)(k2 + Q2))J1(kr)

− (2(Ay + By)k2 + (Cy + Dy)(k2 + Q2))Y1(kr) = 0.

(A12)

Using regularity of the solution in r = 0, the second Bessel
function which diverges at the origin must be excluded. The
three boundary conditions then reduce to

2(Aj + Bj)k2 + (Cj + Dj)(k2 + Q2) = 0,

(Ajke−ke − Bjkeke + CjQe−Qe − DjQeQe)J1(kr) = 0,

(Ajeke + Bje−ke + CjeQe + Dje−Qe) rJ0(kr) = 0.

Now, we wish to relate the normal stress at the free sur-
face, σ = σyy(y = 0), to the surface displacement h = uy
(y = 0),

σ = σzz(z = 0) = 2µ∂zuz − p

= µ
(
2k((Aj − Bj)k + (Cj − Dj)Q) − κ2(Aj − Bj)

)
J0(kr), (A13)

and
Z = uz(z = 0) = (Aj + Bj + Cj + Dj)kJ0(kr). (A14)

Eliminating the coefficients Aj, Bj, Cj, and Dj, we obtain
the green function

σ

Z
= µ

Q
(
5k4 + 2k2Q2 + Q4

)
cosh(ek) cosh(eQ) − k

((
k4 + 6k2Q2 + Q4

)
sinh(ek) sinh(eQ) + 4kQ

(
k2 + Q2

))
k(k2 −Q2)(k cosh(ek) sinh(eQ) −Q sinh(ek) cosh(eQ))

. (A15)

In the limit where e goes to infinity, the Green function
reduces to

σ

Z
= µ

(
3k +

Q2

k
−

4k2

k + Q

)
, (A16)

= µ

(
4k −

κ2

k
−

4k2

k + Q

)
. (A17)

This equation is presented in the main text and forms the basis
for the numerical inversion from the force measurement to
the rheology µ(ω).

2. Asymptotic expansions
When inertia is negligible, Q tends to k and Green’s

function takes the limiting form,

σ

Z
= µ

2k
(
2e2k2 + cosh(2ek) + 1

)
sinh(2ek) − 2ek

. (A18)

At small e/R, we can simplify further by taking the limit
ek→ 0 which coincides with the lubrication approximation,

σ

Z
=

3µ
k2e3

. (A19)

In real space, this gives back the equation presented in the
main text,

∂2σ

∂r2
+

1
r
∂σ

∂r
=

3µ
e3

Z(r) (A20)

which gives for σ,

σ =
3µ
4e3

(r2 − R2)h. (A21)

The force therefore gives the result presented in the main
text,

F
ZR
=

3πµR3

8e3
. (A22)

At large ω, conversely, we expect

σ = −
ρω2

k
Z (A23)

which will therefore lead to the scaling law,

F
ZR
∼ ρω2R2 (A24)

as is evidenced also in our experiments.

3. Discrete Hankel transform
Numerically, we use the discrete Hankel transform

defined by

f(r) =
N−1∑
n=0

f̂nJ0(αnr), (A25)

where the discrete eigenvectors αn denotes the nth root of
Bessel function (αn ' 3π/4 + nπ at large n). To project the con-
tinuous equations, we evaluate them at N discrete values of r
labeled rk and defined by

rk =
αk
αN

(A26)

so that

f(rk) = fk =
N−1∑
n=0

2
αNJ2

1 (αn)
f̂nJ0

(
αkαn
αN

)
(A27)
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and

f̂n =
N−1∑
k=0

2
αNJ2

1 (αk)
fkJ0

(
αkαn
αN

)
. (A28)

The mixed problem, defined by an imposed displacement Z(r)
normalised to 1 for r < R and a vanishing normal stress σ(r) for
r > R, is solved using this representation for both the displace-
ment Z(r) and the stress σ(r). The Hankel transform is used
to compute σ, when Z is known, and reciprocally, using the
Green function in the reciprocal space. The algorithm is itera-
tive. At each stage, Z is imposed to be unity for r < R but is kept
as it is for r > R. The associated stress is determined, which
is set to 0 for r > R. The new test profile Z(r) is then deter-
mined using the Green function backward. When this simple
algorithm does not converge, a small factor ε is introduced to
superimpose the old profile, weighted by 1 − ε and the new
one, weighted by ε .

The force on the indenter is measured as

F = 2π
∫ 2π

0
rσyy(r, 0)dr (A29)

using the integral relation

∫ R

0
2πrf(r)dr =

N−1∑
n=0

2R
αnαNJ2

1 (αn)
f̂nJ1(αnR). (A30)
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