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Some members of the vegetal kingdom can achieve surprisingly fast movements making use of a clever
combination of evaporation, elasticity, and cavitation. In this process, enthalpic energy is transformed into
elastic energy and suddenly released in a cavitation event which produces kinetic energy. Here, we study
this unusual energy transformation by a model system: A droplet in an elastic medium shrinks slowly by
diffusion and eventually transforms into a bubble by a rapid cavitation event. The experiments reveal the
cavity dynamics over the extremely disparate timescales of the process, spanning 9 orders of magnitude.
We model the initial shrinkage as a classical diffusive process, while the sudden bubble growth and
oscillations are described using an inertial-(visco)elastic model, in excellent agreement with the experi-
ments. Such a model system could serve as a new paradigm for motile synthetic materials.
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Unlike animal cells, the swelling and shrinkage of plant
cells are fundamental for the motion of the whole body of
the plant. The key is the wall surrounding the cells: a thin
but stiff wall that allows the cells to sustain large pressure
differences [1]. Motion in plants often occurs over
extremely separated timescales, one in the range of hours
and/or days, related with tissue swelling or shrinkage and
the other in the order of fractions of milliseconds, related
with mechanical or thermodynamics instabilities. This fast
motion typically involves the storage of elastic energy in
the system and its quick (and often dramatic) release. One
example of such quick release of energy is triggering by
elastic instabilities, like the snapping of the Venus flytrap
[2]. It can also involve more violent phenomena as
cavitation, as in the fern sporangia [3]: The fern’s cells
shrink when they dehydrate. This induces a deformation of
the sporangium, which results in accumulation of elastic
energy. This energy is then quickly released in a sudden
cavitation event inside several of the fern’s cells, which
restores the elastic energy stored in the fern and catapults
the spores at large distances [3]. A synthetic analog system
was studied in the past [4] by cutting out cavities inside
water-soaked hydrogels, while others have instead used a
laser into hydrogels to generate a cavity, soaked it in water,
and then left it to dehydrate [5,6]. In such examples, the
hydrogel’s high liquid affinity and rigidity yielded rela-
tively small deformations which did not result in a
significant release of mechanical energy.
In this Letter, we consider cavitation through evaporation

of a drop in a soft gel [7] putting special emphasis in the
cavitation and bubble expansion in the elastic medium.
This system serves as a mechanical analog of a plant cell,
where the use of large elastic deformations provides an

attractive route for the conversion of elastic to mechanical
energy. After a slow diffusion-limited droplet shrinkage
in which elastic energy is stored in the material, a rapid
cavitation event follows, releasing the energy suddenly.
This system allows us to monitor for the first time the whole
dynamics of such complex process, from the day-long
fading of the liquid droplet, to the millisecond birth and
growth of the cavitation bubble. Moreover, we show that
these features are accurately captured by a modified
Rayleigh-Plesset equation, accounting for the viscoelastic
properties of the medium.
The system under study is a single millimetric water

droplet trapped in an elastic medium. The gel used is Dow
Corning poly(dimethylsiloxane) (PDMS) Sylgard184
mixed in a 1∶10 ratio (curing agent:base polymer). The
static shear modulus μ0 of this gel is 0.7 MPa, as measured
using a rheometer (Anton Paar MCR 502). Figure 1(a1)
shows an image of the droplet in its initial state. A
transparent containing box is filled with uncured PDMS
and placed inside a chamber with a Peltier temperature
control unit (DataPhysics Instruments) at 70 °C. After an
initial precuring period of the gel of 15 min a water droplet
is inserted in the center of the box, either using a micro-
pipette or a tapered capillary, depending on the desired
initial droplet radius R0. The injection of the droplet at this
moment allows us to locate the droplet steadily at a given
location, while the polymer structure is still not fully
reticulated, avoiding the presence of an initial stress field
in the PDMS. This experimental setup has been specifically
designed to capture both the whole droplet shrinkage
process (spanning approximately a day) and the final
cavitation event (which occurs in milliseconds) in one
single experiment with good temporal and spatial
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resolution. To this end, we use two side view cameras, one
recording at one frame per minute (Ximea MQ013MG-
ON) and a high-speed camera (Photron SAX-2), mounted
in the perpendicular direction. The high-speed camera is
installed to capture the dynamics of the cavitation event, at
the final stage of the experiment. Image triggering is used to
start recording at frame rates in a range from 360 to
450 kfps. The duration of the full experiment varies from 3
to 50 h depending on the initial drop radius R0 (from 200
to 1000 μm).
A typical experiment exhibits three stages, as shown in

Fig. 1(a). At first, the droplet shrinks isotropically due
to diffusion of water vapor into the surrounding PDMS
[Fig. 1(a1)]. Then, at a certain time the droplet looses its
spherical shape due to an elastic instability [Fig. 1(a2)].
During evaporation of the water droplet, the droplet size
decreases and elastic stress builds up at the interface with
the deformed material. Eventually, such stress is partially
released by the formation of surface folds, triggering the so-
called creasing instability [9–12]. In a somewhat different
setup, Milner et al. [7] studied the onset of creasing for
droplets immersed in gels. In the present work, creases are
observed below a critical radius R=R0 ¼ 0.73� 0.05, in
agreement with Ref. [7]. Finally, as the droplet further
evaporates, a negative pressure builds up inside the drop
due to the tensile stresses exerted on the cavity, ultimately
leading to cavitation [Fig. 1(a3)].

The final radius of the bubble is close to the initial
droplet radius (0.98 R0), such that plastic deformation is
negligible. The bubble in our study remains stable after the
cavitation event occurs. This differs from the behavior of
laser-induced bubbles in air-saturated hydrogels [13], in
which gas diffusion leads to further bubble growth. An
example of how the radius RðtÞ typically evolves over time
is provided in Fig. 1(b). After the creasing, the droplet is no
longer spherical and we characterize its size with an
effective radius using its projected area. The shrinking
process is not altered substantially by the breaking of
spherical symmetry, illustrated by the smoothness of RðtÞ
in Fig. 1(b). Finally, the data captured during the cavitation
event are blown up in Fig. 1(c). A key feature of the
experiment is the disparity of timescales in this single
experiment, which span 9 orders of magnitude.
We now proceed with a more detailed analysis of each

of the stages, starting with the slow droplet shrinkage. We
hypothesize that this is a diffusion-limited evaporation
process in thermal equilibrium, since water and PDMS
have low affinity and no convection is present in the
system. Rewriting the droplet radius R as a function of time
t, this predicts R0

2 − R2 ¼ 2DΔct=ρ [14]. Here, R0 rep-
resents the initial droplet size, ρ the density of water in its
liquid phase, D the diffusivity of the water vapor in the gel,
and Δc ¼ c� − c∞ the concentration gradient between the
interface and the far field (the last two properties are
temperature dependent). The inset in Fig. 2 shows the
typical change in radius R2

0 − R2 versus time for different
experimental conditions. The linear trend over a wide range
of temperatures and ambient humidities (not shown here)
confirms the diffusive behavior.
To quantitatively test the diffusion model, we represent

the data in dimensionless form by scaling the radius as
R=R0 and time as t� ¼ t=tF ¼ t2DΔc=ðρwR2

0Þ. For the

(a1) (a2) (a3)

(b) (c)

FIG. 1. Different phases in the life of a droplet in a dry and
elastic medium. (a1) The initial water drop in a PDMS-based gel
starts to shrink isotropically by evaporation. (a2) While shrinking,
the elastic medium is deformed, certain amount of elastic energy
is released by creasing at the solid-liquid interface. (a3) Even-
tually, enough negative elastic pressure is accumulated and a
cavitation event occurs: A bubble of approximately the same size
as the original liquid droplet is created. (b) The curve shows the
evolution of the effective droplet radius in time and illustrates the
disparity of timescales, from a day to a fraction of a millisecond.
The corresponding instants for the images in the (a) panels are
also indicated. (c) An enlargement of the cavity radius dynamics
just after cavitation occurred at tcav. A movie of the full droplet
evaporation is given in the Supplemental Material [8].

FIG. 2. Evaporation of a water droplet in PDMS: The plot
shows the linear trend of the dimensionless droplet area loss
1 − R2=R2

0 against the dimensionless time t� ¼ t=tF, for different
initial radii and temperatures. The inset shows the same data in
dimensional units.
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latter scaling, we take the diffusivity D at different temper-
atures from [15], while Δc is obtained by fitting the slopes
in the inset in Fig. 2. Following this approach we achieve a
collapse of the data, shown in the main panel, with values
Δc ¼ 40–50 mol=m3. These are in good agreement with
data from [16]. Hence, we conclude that the shrinkage of
the droplet inside this elastic material is governed by a
relatively simple diffusion-limited process.
The evaporation of the water droplet eventually leads to a

very rapid cavitation event, the final stage in the droplet’s
life, at typical values of R=R0 ¼ 0.48� 0.1. The exact
location of the bubble nucleation is hard to determine from
the images, but it seems to occur often at the liquid-gel
interface. Since cavitation occurs here due to the tensile
elastic stress that builds up in the gel, we estimate it by
computing the elastic energy for a spherical cavity, which
can be written as ϵel ¼ 4πμR3

0FðξÞ. In this expression μ is
the shear modulus, ξ ¼ R=R0 the scaled bubble radius, and
for a neo-Hookean solid the dimensionless function is
FðξÞ¼ 5

6
ξ3−ξ2−1

3
þ 1

2ξ [17,18]. The minimal energy appears
at ξ ¼ 1, at which the elastic medium is undeformed with
respect to its reference state, and a tensile elastic stress
appears for ξ < 1. The (negative) pressure inside the cavity
can then be computed using the virtual work principle
ΔpδVcav ¼ δϵel þ γδAcav, where we also introduced sur-
face tension γ, and the volume Vcav and area Acav of the
cavity or drop. Using the spherical approximation for the
cavity, estimating the virtual work from δR, one obtains
the pressure inside the cavity

pcav ¼ p∞ þ 2γ

R
þ μ

ξ2
F0ðξÞ; ð1Þ

where p∞ is the atmospheric pressure far away from the
droplet. Upon creasing ξ ¼ 0.73, using μ ¼ μ0, this results
in pcav ¼ −1.3 MPa, this pressure can be seen as a
lower bound for the pressure upon which cavitation occurs.
Under extreme deformations, PDMS (1∶10) is better
described using the Gent model [7], which takes into
account the finite extensibility of polymer chains.
However, for ξ ¼ 0.73 no significant difference in F0ðξÞ
is present for the two material models.
Suddenly, cavitation irrupts: A bubble appears and

expands quickly, occupying almost the entire cavity pre-
viously occupied by water. Images of the early growth of
such bubble are shown in the Supplemental Material [8].
Two distinct stages can be observed: At early times, the
bubble grows at constant velocity [19] and fills up the
cavity. By tracking the bubble growth velocity in that
stage (vi) [8] we can probe the pressure of the liquid: Using
vi ¼ 30 m=s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2ΔP=ð3ρÞp
[20,21], we obtain ΔP ¼

−1.4 MPa, which is indeed consistent with the value
estimated from creasing. Previous studies [7] also observed
cavitation events in similar PDMS-formulation just before
creasing. Although there is no general consensus regarding

the critical pressure for cavitation in water, our values seem
to yield somewhat lower tension as compared to other
systems [22,23]. This difference can be explained by the
fact that cavitation occurs in a more heterogeneous way in
the PDMS matrix, due to its hydrophobic properties and
porosity. In the later stage, the bubble has reached the
cavity walls and the cavity expands to almost its original
size. We will continue analyzing this last stage of growth.
As can be seen in the Supplemental Material [8], the cavity
is initially not perfectly spherical, as a result from the
creasing event prior to cavitation. Therefore an effective
radius is used to analyze the growth of this cavity.
The inset in Fig. 3 shows the growth of the elastic cavity

as a function of time, for several initial droplet sizes. The
main panel in Fig. 3 shows the result in dimensionless
form, also including smaller initial droplet sizes. For all
sizes we observe a power law for the growth stage, followed
by (damped) oscillations and eventually a nearly static
shape at R=R0 ≈ 0.9. A few minutes after the cavitation
event, the cavity will eventually grow to R=R0 ≈ 0.98,
practically recovering the initial droplet size. In Fig. 3, time
is rescaled using R0=

ffiffiffiffiffiffiffiffi
μ=ρ

p
, where

ffiffiffiffiffiffiffiffi
μ=ρ

p
is the shear wave

velocity. This appears to be the appropriate timescale for
the cavity growth, showing that the dynamics emerge from
an interplay between the cavity’s inertia and the gel’s
elasticity. This is corroborated by the appearance of
oscillations. However, they do not appear for all initial
droplet sizes: Oscillations are not observed for the smallest
droplet size (R0 ¼ 172 μm), suggesting a transition from
overdamped to underdamped oscillations.

FIG. 3. Dynamics of the elastic cavity. The inset shows the
growth of the cavity for different initial droplet radii. The main
figure shows the nondimensionalized growth dynamics R=R0 as a
function of t

ffiffiffiffiffiffiffiffi
μ=ρ

p
=R0 (with μ ¼ 1.7 MPa, see text). In both

figures a power law of 2=5 is displayed. The same legend applies
for the two figures. The Supplemental Material [8] contains high-
speed movies of the cavitation event and the subsequent cavity
growth.
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Interestingly, all experiments performed for different
initial droplet sizes yielded the same power law for the
cavity growth (Fig. 3). This can be explained using the
expression for the kinetic energy, which for an incom-
pressible medium surrounding a spherical bubble reads
ϵkin ¼ 2πρR3 _R2. The term ρR3 represents the added mass
of the cavity, and the same scaling should apply for cavities
that are not perfectly spherical. As cavitation occurs, the
elastic energy is quickly released, and assuming that the
growth occurs at constant kinetic energy, we obtain
_R2 ∼ 1=R3, and thus R ∼ t2=5. Indeed, this is the scaling
observed experimentally for all elastic cavities (Fig. 3).
Fitting these experimental curves with R ¼ at2=5 gives us
the prefactor a, which allows us to extract a typical value
for the kinetic energy ϵkin ∼ 0.25 mJ. This can be compared
to the elastic energy accumulated before cavitation, 0.77 mJ
in the spherical approximation, which is indeed of the same
order of magnitude. The difference between these values
could be attributed to several factors as the remaining
liquids kinetic energy, heat release and/or experimental
inaccuracies. Note that the enthalpy required for the droplet
to shrink is supplied as thermal energy and is in the order of
1 J (see the Supplemental Material [8] for a more detailed
calculation). Consequently, only a small fraction of this
energy is consumed to deform the elastic medium.
The scaling R ∼ t2=5 can be also obtained as the inertially

dominated solution of the Rayleigh-Plesset equation [24].
We use here a modified Rayleigh-Plesset equation for
cavities in elastic media given by

ρ

�
RR̈þ 3

2
_R2

�
¼ pcav − p∞ −

2γ

R
−

μ

ξ2
F0ðξÞ − 4η

R
_R; ð2Þ

where we introduced an effective viscosity η of the sur-
rounding medium [21,25]. The use of a damping of this
“viscous” form can be derived only for small deformations,
where the effective viscosity can be inferred from the loss
modulus as G00 ¼ ηω, see Supplemental Material at [8].
Note that considering the static solution _R ¼ 0 to this
equation, we recover (1) for the pressure inside the cavity.
Similar formulations of the Rayleigh-Plesset equation in
elastic media have been previously used in the context of
forced bubble oscillations [26–29].
We proceed by analyzing the cavity oscillations

observed in Fig. 3 by considering small perturbations of
the type RðtÞ ¼ Rcð1þ ϵeiωtÞ, and linearizing (2), with Rc
the size of the elastic cavity. This gives an expression
for the oscillation frequency,

f ≡ ReðωÞ
2π

≃
1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

ρR2
c
−

η2

ρ2R4
c

s
; ð3Þ

accounting for elasticity and viscous damping. Here, we
omitted subdominant contributions due to the adiabatic

expansion of the vapor inside the cavity, and due to surface
tension, which are respectively smaller by 10−1 and 10−3.
The result (3) indeed predicts a transition from overdamped
to underdamped oscillations, occurring at a critical drop
radius R� ¼ η=

ffiffiffiffiffi
μρ

p
. In Fig. 4 we present our experimental

measurements for the frequency, obtained by fitting RðtÞ to
exponentially damped oscillations. In this figure f ¼ 0
represents the overdamped case. Given that the bubble has
not yet fully recovered, we defined the cavity radius Rc as
the mean of the maximum and minimum value of the first
oscillation. To compare the experimental data to (3), we fit
these data points using both the shear modulus μ and
viscosity η as adjustable parameters. The values found
(μ ¼ 1.7 MPa and η ¼ 8.5 Pa s) result in R� ¼ 210 μm.
The fitted values for the shear modulus and viscosity match
very well with available literature on rheological measure-
ments of PDMS at high frequencies [30] and with our own
measurements (see Supplemental Material at [8]). The
excellent agreement in Fig. 4 shows that the oscillations
are quantitatively captured by a viscoelastic Rayleigh-
Plesset-type model [31].
In summary, we have studied a cavitation process similar

to that found in the cells of the fern sporangia. Our
experiments capture and quantify the slow diffusive evapo-
ration, which leads to a buildup of negative elastic pressure
that eventually leads to a very fast cavitation. We provided
detailed insight into the cavitation dynamics, which was
accurately described by an inertial-(visco)elastic model.
Understanding the mechanism by which certain plants are
able to transform enthalpy into mechanical energy could
lead a way to design synthetic materials able to perform
similar fast motions making use of the this smart energy
transformation found in nature.

FIG. 4. Oscillation frequency of the elastic cavity. The exper-
imental data is shown together with the solution of the Rayleigh-
Plesset equation (RP) including elasticity and viscosity [Eq. (3)].
The fitted values for the material parameters of the elastic
medium, μ and η, are also given.
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