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In Newtonian mechanics, an overdamped system at steady-state is governed by a local balance of mechanical stress,
but also obeys a global balance between injected and dissipated energy. In the classical literature of purely viscous
drop spreading, apparent differences in “dissipation” and “force” approaches have led to unnecessary debates, which
ultimately could be traced back to different levels of mathematical approximation [1]. In the context of wetting on a
soft solid, Zhao et al. [2] interpret their experiments by a model based on viscoelastic dissipation inside the substrate.
It is claimed that this global dissipation model is fundamentally different from the local mechanical model presented
by Karpitschka et al. [3]. The purpose of this Letter is to demonstrate that: (i) The models by [2] and [3] are in fact
strictly equivalent, (ii) The apparent difference can be traced back to an inconsistent approximation made in [2].

Following the analysis in [2], there is a step where the dissipation per unit volume is integrated over depth (equation
44 to 45 of the Supplement). The analysis provides no information on the explicit depth-dependence; the integral is
estimated to scale with the wavenumber as 1/k, arguing that this is the extent by which the deformation penetrates
into the layer. Such an approximation is inconsistent, however, since the finite thickness h0 induces a screening of the
modes of wavenumber k <∼ 1/h0. This is a key point, since this estimation underlies the scaling laws presented in the
main text.

To resolve this issue explicitly, we propose to perform the depth-integral at the very start of the analysis, and
compute the dissipation P as
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In the last step, and for the rest of the analysis, we strictly follow [2] by keeping track only of the normal displacement
h(x− vt) and the normal traction σ(x− vt). We then proceed with the exact same formula for σ proposed in [2, 3],
and obtain an expression in terms of the Fourier transform h(k):
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where µ(ω) = G′(ω) + iG′′(ω) is the viscoelastic modulus and K(k) is the spatial Green’s function that accounts for
the finite layer thickness. In the second step we used the explicit form of h(k). This result differs from the estimation
given in equation 45 in the SI of [2]. However, balancing this explicitly integrated formula for the dissipation with
the power injected by capillary forces, one exactly recovers equations 22-23 in [3], even up to the prefactors.

As expected, the dissipation route proposed in [2] leads, once derived consistently, to the same prediction as the
mechanical approach [3] under the same assumptions: small solid surface deformations in order to use the Green’s
function formalism, and constant solid surface tension, decoupled from strain. For fully quantitative comparison with
experiments, future work should go beyond these restrictions.
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