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Water bottle flipping physics
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The water bottle flipping challenge consists of spinning a bottle, partially filled with water, and
making it land upright. It is quite a striking phenomenon, since at first sight, it appears rather
improbable that a tall rotating bottle could make such a stable landing. Here, we analyze the physics
behind the water bottle flip, based on experiments and an analytical model that can be used in the
classroom. Our measurements show that the angular velocity of the bottle decreases dramatically,
enabling a nearly vertical descent and a successful landing. The reduced rotation is due to an
increase in the moment of inertia, caused by the in-flight redistribution of the water mass along the
bottle. Experimental and analytical results are compared quantitatively, and we demonstrate how to

optimize the chances for a successful landing. © 2018 American Association of Physics Teachers.

https://doi.org/10.1119/1.5052441

I. INTRODUCTION

In May 2016, a senior high school student named Michael
Senatore enters a stage carrying a partially filled bottle of
water. He is participating in the school’s annual talent show,
and the auditorium is packed. There is music playing in the
background as he approaches the center of the stage in a
funny way (swagger move). Suddenly, he gets serious, stands
straight, focuses on a table standing in front of him, and
throws the bottle in the air with a spin. The bottle flipped
once and landed standing perfectly upright on a table. This
brings down the house, and the students burst into wild
cheers. Everything was filmed with a smartphone camera.’
Within weeks, this 30s clip becomes viral on the internet,
and kids around the globe are seen attempting the “water
bottle flipping challenge,” as it came to be known.>?
Michael Senatore ended up selling the famous bottle for
$15000 (or at least one signed by him).*

Rotational physics often involves rather counterintuitive
phenomena like the rotation of cats in free-fall’ or Olympic
divers,® and the remarkable water bottle flip is no exception.
Yet, the flip offers an original and very insightful illustration
of the fundamental principles of rotational mechanics. In
Fig. 1(a) (and in the supplementary material, video footage’),
we present a series of snapshots of a successful flip. At first
sight, it appears rather improbable that a tall rotating bottle
could land stably in an upright position. After all, once
released, the bottle’s angular momentum with respect to the
center of mass must be conserved. For a rigid body rotation
around a principal axis, the conservation of angular momen-
tum implies a rotation with a constant angular velocity, mak-
ing a smooth landing rather unlikely. However, the sloshing
of the water leads to a redistribution of the mass along the
bottle. This change in mass distribution is clearly visible in
the top row of Fig. 1 (while the bottle is in the air) and will
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increase the moment of inertia. Conservation of angular
momentum then implies a decrease in the rotational veloc-
ity—leaving the impression of the bottle being suspended
horizontally in the air for a moment. When performed suc-
cessfully, the flip ends with a nearly vertical descent that is
followed by a smooth landing.

In this paper, we demonstrate how the water bottle flip can
be used in the classroom. In Sec. II, we show how the com-
plex dynamics of the bottle can be imaged in experiments
and how it can be analyzed by separating the motion into a
translation of the center of mass and a rotation around the
center of mass. Since the physics of water sloshing is highly
complex in itself, we present an alternative that is more suit-
able for analysis: The “tennis bottle flip,” shown in Fig. 1(b)
(and in the supplementary material, video footage’). In this
system, the water is replaced by two tennis balls—indeed,
the successful tennis bottle flip clearly demonstrates that the
redistribution of mass is the physical ingredient behind the
flip. Subsequently, in Sec. III, we show how the flip can be
described by a theoretical model, even allowing quantitative
comparison to experiments.

Based on the observations and modeling, we close by
addressing an important question that arises when attempting
a water bottle flip challenge (Sec. IV): Why does there exist
an optimal amount of water in the bottle for best flipping?
Millions of flippers seem to disagree on the precise value,
but they do agree that the optimal filling fraction should be
between 1/4 and 1/3 of the total height of the bottle. Can we
explain these values from mechanical principles?

II. EXPERIMENTS

We start by describing how to visualize the dynamics dur-
ing a bottle flip and how to analyze the resulting motion. The
experiment is designed with the classical approach to the
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Fig. 1. Compositional photographs of a water bottle flip (top), and a tennis bottle flip (bottom). In both cases, the redistribution of mass inside the bottle leads
to an increase in the moment of inertia—slowing down its rotational speed and allowing for a near-vertical descent.

dynamics of extended bodies:®° The motion is decomposed
into a translation of the center of mass and a rotation around
the center of mass. This decomposition is natural since the
only external force is gravity, which exerts no torque around
the center of mass. As such, the water bottle flip serves as a
prime example of conservation of angular momentum.

In addition to the water bottle and the tennis bottle shown
in Fig. 1, we will also consider a “rigid bottle” that contains
an immobilized mass. The rigid bottle serves two purposes:
to verify that we recover the usual rigid body rotation and to
highlight the importance of the movable mass for a success-
ful bottle flip.

A. Experimental setup and analysis

The experimental setup used in this study consists of a
black background, a lamp for illumination, and a digital cam-
era o-6000. Each experimental run (or bottle flip) takes
roughly 1 s. Here, we recorded the films at 50 frames per sec-
ond, a shutter time of 1/1600 s, and a resolution of 2 megapix-
els. Our recommendation is to use a minimum of 20 frames
per second to gather enough data points, a maximum shutter
time of 1/200 s to avoid blur in the moving bottle, and a mini-
mum resolution of 1 megapixel (most smartphone-cameras
satisfy such requirements nowadays). We typically ran 10
successful flips per bottle type with the same fillings and
select the cleanest landings among them for analysis.

The rotational motion is quantified by the angular velocity
w =d0/dt. This quantity can be measured by tracing the top
and bottom of the bottle on the videos. Another key ingredi-
ent of the analysis is to determine the motion of the center of
mass of the total system. For the rigid bottle, the center of
mass obviously remains at a fixed position along the bottle
for all times. However, it is rather difficult to accurately
determine the center of mass of the sloshing water—from
the images, one cannot infer the precise distribution of water
inside the bottle. Here, we simply proceed by an approximate
analysis that is detailed in Sec. III B, based on the maximum
height of the water mass along the bottle. This complexity of
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the water bottle [Fig. 1(a)] is our prime motivation for intro-
ducing the tennis bottle [Fig. 1(b)]. Namely, the exact positions
of the tennis balls are easily determined. Subsequently, the
center of mass is obtained by taking the mass-weighted aver-
age of the positions of the two balls and of the bottle’s center.

In summary, the experimental measurements consist of
tracking the top and bottom of the bottle in each frame and
of tracking the following additional points to determine the
center of mass: (a) Water bottle: the maximum height of the
sloshing water / on each frame (see Fig. 2). (b) Tennis bot-
tle: the position of the tennis balls for each frame during the
flip. The acquired digital images were imported into a com-
puter, and the tracking was performed manually using
ImageJ,'® simply using the point tool with auto-measure.
The data were then processed using MATLAB.'" All manu-
ally tracked sets of data were filtered using smoothing
splines (with a low smoothing factor of 0.99) to reduce the
user-induced bias and noise.
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Fig. 2. Sketch of the geometrical parameters for the water bottle and tennis
bottle. The total height of the bottle is H, while the distribution of water/
balls is indicated as /. The axis of rotation is indicated as well.
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Fig. 3. Analysis of the motion during the flip for (a) a bottle with immobilized mass, (b) a water bottle, and (c) a tennis bottle. In all panels, the gray dashed lines
represent the complex trajectories of the top and bottom of the bottle. The continuous (blue online) lines describe the center of mass motion, which to a good
approximation is found to follow a parabolic trajectory. In the experiments shown, H =23 cm for the rigid and water bottles and 28 cm for the tennis bottle.

The experiments presented below were performed with a
water bottle of mass m;,=25g and height H=23cm. The
filling fraction used was 0.39. For the tennis bottle experi-
ments, a tennis ball has a mass of 58 g; the tennis bottle has a
mass of 48 g, a height of 28 cm, and a radius of 3.7 cm.

B. Results

Figure 3 shows typical trajectories obtained from our
experiments on the rigid bottle (panel (a)), the water bottle
(panel (b)), and the tennis bottle (panel (c)). The various
curves, respectively, trace out the edges of the bottle (gray
lines) and the center of mass position (blue lines). In all cases,
the center of mass follows the expected parabolic trajectory
associated with free-fall motion. The parabola is most con-
vincingly observed for the rigid bottle and tennis bottle [Figs.
3(a) and 3(c)]. In these experiments, the center of mass was
indeed accurately determined, while this measurement was
more approximate for the sloshing of water [Fig. 3(b)].

Our prime interest, however, lies in the rotational aspects
of the motion. It is clear from Fig. 3 that the rotation of the
rigid bottle is very different from both the water bottle and
the tennis bottle. This is further quantified by considering the
angular velocity w = d0/dt, where the angle 0(¢) describes
the orientation of the bottle over time. The raw data of
AO(t) = 0(t) — O(t =0) are shown in the inset of Fig. 4. After
using smoothing splines, we differentiate AO(¢) to obtain
o(t). In Fig. 4, we plot @ (normalized by the initial value )
versus time (normalized by the time of landing fp). As
expected, the angular velocity is perfectly constant for the
rigid bottle (the horizontal row of filled circles, color red
online). By contrast,  is found to decrease dramatically for
both the water bottle (the bottom curve of filled circles, blue
online) and the tennis bottle (the middle curve of filled
circles, yellow online). These results reveal that a gentle
landing can be achieved due to a significant reduction in the
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bottle’s angular velocity w. The dashed lines in Fig. 4 corre-
spond to the model developed in Sec. III.

C. Interpretation

The secret behind a successful water bottle flip—the
reduced rotational velocity—can be understood from the
conservation of angular momentum. The combined system
of the bottle and the water is acted upon only by gravity and
therefore experiences no resultant torque around the center
of mass. Consequently, the total angular momentum L
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Fig. 4. Angular velocity w as a function of time ¢, respectively, normalized
by the initial xy and the final time #. The datasets correspond to the bottle
with an immobilized mass (squares, red online), the water bottle (circles,
blue online), and the tennis bottle (diamonds, yellow online). Dashed lines
correspond to the model described in Sec. III. Inset: the angle
A0 = —0(r)- 0(0) versus ¢, from which the main figure was derived.
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around the center of mass must be conserved: L =/ is con-
stant, where / is the moment of inertia relative to an axis
passing through the center of mass. The moment of inertia of
a rigid body is constant over time, so that @ must remain
constant—in perfect agreement with our experiment (Fig. 4,
red (online) markers). However, the mobility of the liquid
gives rise to a redistribution of the mass inside the bottle dur-
ing the flip, which implies that rotational inertia / is no lon-
ger constant. This change in / explains the reduction of the
angular velocity observed in Fig. 4: As the liquid mass
spreads out, the total moment of inertia / around the center
of mass will increase, accompanied by a lowering of w to
maintain the same value of L=/Iw. The same argument
applies for the tennis balls that “spread out” during the flip,
for which we indeed also observe a decrease in o.

III. MODEL

We now present a quantitative description of the experi-
ments by modeling the redistribution of mass. We first dis-
cuss the tennis bottle and subsequently propose a (highly
simplified) one-dimensional model for the effect of sloshing
inside the water bottle. In both cases, we provide a quantita-
tive comparison to experiments. Finally, the model is used to
address the question of what determines the optimal filling
factor for a successful water bottle flip.

A. The tennis bottle flip
1. Center of mass

We start out by deriving the formula of the center of mass,
which was already used for analyzing the experiment. The
geometry of the tennis bottle is sketched in Fig. 2.

The bottle is essentially a hollow cylinder of radius R,
height H, and mass m,. Assuming that the cylinder is up-
down symmetric, its center of mass is located at a position
H/2. The tennis balls are modeled by hollow spheres of
radius R and mass m,. The lower ball remains at the bottom
of the cylinder while the top of the upper ball is located at a
position £ that can change in the course of the experiment
[cf. Fig. 2]. The center of mass of the two balls is thus
located at A/2.

The total center of mass of the combined system—bottle
and balls—is obtained by a weighted average of the respec-
tive centers of mass. Hence, one verifies that the combined
center of mass position ¢y is located at

1
mp + 2m; 2 0

my, + 2m;
Clearly, hcy varies during the experiment, as it is a function
of the position of / of the second ball.

2. Moment of inertia

The next step is to determine the moment of inertia / of
the combined system. Given that the angular momentum is
conserved only around the center of mass, we also need to
determine / with respect to the axis through the center of
mass.

Let us first consider the bottle. We assume that the bottle’s
mass is perfectly localized in a very thin wall at the outside
of the cylinder (hence, ignoring the mass in the top and
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bottom of the cylinder). With this, we can determine the
moment of inertia in two steps. First, we consider the
moment of inertia of the bottle with respect to the bottle’s
center of mass that is located at H/2, around the axis indi-
cated in Fig. 2. This axis is perpendicular to the cylinder’s
symmetry axis, and the corresponding moment of inertia
reads

I, = %’ (6R> + H?). )

However, the rotation takes place around the center of mass
of the total system hcy;, defined by Eq. (1). Hence, the axis
of rotation in the experiment is parallel to the axis used for
Eq. (2) but shifted by a distance (H/2) — hcy. The relevant
moment of inertia is then obtained by using the parallel axis
theorem. This gives

2
H
I, =1, +my (3 - hCM>
2
m H
21—5(61?2 + H*) +my <§_hCM) . 3

In a similar fashion, one obtains the moment of inertia of
the two tennis balls. Approximating the balls as thin-walled
hollow spheres, we obtain

2

I = §m,R2 + my(R — hem ), %)
2 2 2

I :§m,R +m,(h—R—hCM) . (®)]

The first terms on the right hand side are the sphere’s
moment of inertia around its center of mass, while the sec-
ond terms account for the parallel displacement to /ey of
the total system.

Finally, the total moment of inertia during the tennis bottle
flip reads

I(h) =1, +1) + 1. (6)

Each of these terms is a function of %, due to the dependence
of ey on the position £ of the second ball.

3. Comparison to experiments

To compare the model to experiments, we make use of the
fact that the angular momentum around the center of mass,
L =Iw, must be conserved during the flip. According to this,
we directly conclude that the dimensionless angular fre-
quency o(f)/wg can be expressed as

o) _ fo

with I(h) given by Eq. (6). Here, we introduced the initial
moment of inertia /o = I(hy), which corresponds to the situa-
tion prior to the flip when the two tennis balls are at the bot-
tom of the container. Upon inspection of Fig. 2, one finds
ho == 4R .

We now present two tests of our predictions. First, we
insert the experimentally obtained /4(¢) in Eq. (6) and use Eq.
(7) to predict the angular velocity w(¢). The result is shown
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as the yellow (color online) dashed line in Fig. 4. Clearly, it
gives a very good description of the experimental data.

However, an even more direct verification of Egs. (6) and
(7) is obtained by plotting the experimental o versus the
experimental 4. In this case, the comparison between theory
and experiment is without any input from experiment. The
result, presented in Fig. 5, shows an excellent agreement
without adjustable parameters.

B. The water bottle flip: A minimal one-dimensional
model

We now return to the case of the water bottle, for which
the distribution of mass is obviously much more intricate.
Our purpose here is not to provide a fully quantitative
description of the sloshing fluid mass inside the bottle, which
would require a detailed numerical treatment of the Navier-
Stokes equations. Instead, we wish to propose a minimal
model that allows for a tractable approximate description of
the water bottle flip. For this, we propose a simplified one-
dimensional model. We assume that the mass of water m,, is
always distributed uniformly along the bottle, starting from
the bottom and reaching up to a height % (see Fig. 2). This
height /2 will vary with time as the bottle is spinning in the
air. Again, we denote the minimum value of the height as A,
which corresponds to the situation prior to the flip where all
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306}
3
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Fig. 5. Experimental results for the angular velocity @ of the tennis bottle
(top panel) and the water bottle (bottom panel). Results of the models are
shown in continuous (red online) lines.

737 Am. J. Phys., Vol. 86, No. 10, October 2018

mass is collected at the bottom. The maximum possible
value of £ is given by the height of the bottle H. For simplic-
ity, we further assume the mass to be distributed along the
axis of the bottle.

1. Center of mass

Once again, we first determine the center of mass of the
combined system of the bottle (mass ) and the water
(mass m,,). The center of mass can be found by taking the
weighted average of the center of mass of the bottle, located
at H/2, and of the distributed water, located at //2. With this,
the center of mass position can be found as

Ho o ok
—m m, my, + my, —
hew = 2 ML h H 8)
my, + m,, 2\ mp+m, )

This expression has been employed for obtaining the posi-
tion of the CM in the water bottle experiments (see Fig. 3).

2. Moment of inertia

The next step is to determine the moment of inertia of the
system /, measured with respect to the center of mass hcy.
In analogy to the tennis bottle, we separately determine the
moments of inertia of the bottle /, and water /,,, which leads
to the total moment of inertia / =1, + I,,. Using the parallel
axis theorem, we find the bottle’s moment of inertia to be

" 2
Iy = Io +my (3 - hCM> . 9

Here, I, is the moment of inertia of the bottle relative to an
axis passing through its own center of mass (located approxi-
mately at H/2), while the second term accounts for the shift to
the system’s center of mass at hcyg. Since we consider a sim-
plified one-dimensional description, we will from now on use
I = (1/12)myH?. This is the expression valid for thin objects
where all mass is located along the axis and is also recovered
from Eq. (2) with R = 0. Equation (2) in fact allows for an esti-
mation of the correction induced from the fact that the water
mass is not on the axis, the relative error being 6R2/H2, which
yields an error about 12% for the water bottle used in our study
(R/H=~1/7). In a similar fashion, we can express the moment
of inertia of the one-dimensional water column as

1 h :
I,=—mh +M(=—h ) 1
e+ <2 CM) (10)

The total moment of inertia then reads

[=1, +I,:%(m;,H2+mwh2)

2 2
H h
+my <_hCM) + my, <_hCM> ; (11)
2 2
where it is understood that /iy, is given by Eq. (8).

3. Comparison to experiments

We now make the same comparison to the experiments as
we did for the tennis bottle. This is again based on
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but now with /(%) based on Eq. (11).

The first comparison is shown as the blue (color online)
dashed line in Fig. 4, where we used /(f) measured in the
experiment. The same data are shown in Fig. 5, now plotting
w versus h. Without any adjustable parameters, the model
gives a reasonable account of the reduction of @ during
water bottle flips, especially given the oversimplification of
the sloshing in this one-dimensional description. Some of the
features, such as the appearance of an inflection point half-
way through the flip, are not captured, which could be due to
the fact that the mass does not remain distributed along the
central axis of the bottle.

IV. CAN WE PREDICT THE OPTIMAL FILLING
FRACTION?

Encouraged by these observations, we now turn to the
question of what is the optimal filling fraction, f=ho/H, to
accomplish a water bottle flip. It is obvious that an optimum
should exist. Namely, both an empty bottle (f=0) and a
filled bottle (f= 1) cannot accommodate any mass redistribu-
tion and hence will not exhibit any slowing down of w.
According to the model, what would be the optimal f?

A. Reducing the angular velocity

Since for a given w, one wishes to reduce w as much as
possible, we will look for the minimum of the ratio Io/I(h).
For each filling fraction, the maximum moment of inertia
I1nax 1s attained when the water is maximally distributed, i.e.,
for h = H. Hence, we need to find the value of f for which 1,/
I 1hax attains a minimum. Although the expression in Eq. (11)
appears rather cumbersome, it is possible to find an analyti-
cal form for the function G(f) = Iy/Inax- For this, we first
define the mass ratio

M= mw,max , (]3)
mp

where m,, max 1S the water mass for a filled bottle. With this,
we can express m,, = fim,, max = fMmy, and insert this in Egs.
(11) and (8). With the help of Maple13 or Mathematica,'” the
remaining expression can be brought to the form

Iy MY AMP — 6Mf? + AMS + 1
Inas (1 + Mf)? '

(14)

This relationship is plotted in Fig. 6 as the curve to the right
(the blue [color online] curve) for M = 20. Typically, water
bottles that can contain 0.5 1 of water have a mass of approxi-
mately 25 g. This implies M = 500/25 =20, for which G(f)
exhibits a minimum at f =~ 0.41. The corresponding reduction
iS Wmin/®o =~ 0.36, which we remark to be in close agreement
with the reduction achieved experimentally in Fig. 4 (in our
experiments f'=0.39).

B. Lowering the center of mass

One might argue that the optimization involves more than
just the reduction of w. After all, the dynamics of the landing
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Fig. 6. Two criteria for the optimal flip are shown. On the left y-axis, G(f) is
plotted as a dashed line. Its minimum (i.e. maximum moment of inertia
increase //1,) gives us the first criterion for an optimal bottle filling fraction

/- On the right y-axis, the lowest achievable center of mass position /i¢.,/H,

plotted as a continuous line, gives us another criterion for an optimal flip.
The plot shows the case of bottle water/bottle mass ratio M = Myater max/
Myorite = 20.

is also of key importance. Clearly, the stability of the landing
would benefit from having the center of mass as low as pos-
sible. Another relevant minimization would therefore be sy
evaluated for h=hy. Again, with the mass ratio M, the
expression in Eq. (8) can be written as

hCM_l 1—|—Mf2
7—z<1+Mf>~ (1

This result is shown in Fig. 6 (red curve), again for M = 20.
Now, the minimization with respect to f can be performed
analytically and yields

VI+M-—-1

F=—"y

(16)
For M =20, this gives f=0.18.

With these two criteria of having a low angular velocity
and a low center of mass, our crude model provides a predic-
tion for the optimal range. This is shown as the gray zone in
Fig. 6. The figure shows that good filling fractions lie in the
range of approximately 20%—40%. This is consistent with
the reports found on the Internet, which typically quote
1/4-1/3.

V. DISCUSSION

To summarize, we have presented the physics of the water
bottle flip as a contemporary illustration of the principles of
rotational mechanics. It allows for a variety of experimental
and theoretical explorations that are suitable for undergradu-
ate physics courses. In fact, the research presented here was
initiated, and to a large extent executed, by the five under-
graduate students who appear as the first authors of this
paper.'* Possible extensions of this work are to investigate
the role of horizontal momentum for a successful landing or
to analyze the landing itself.

Apart from its intrinsic interest, the principle of redistribu-
tion of mass finds applications in a variety of contexts. For
example, Olympic divers extend their arms and legs as much
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as possible to reduce their rotational speed and dive into the
water in a straight position. Similar strategies are used in
granular dampers, in which solid particles inside a shaky
object are used to damp undesired oscillations and stabilize
the object.15 These examples give a broader perspective on
the physics behind the water bottle flip.
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Crystal Wave Fronts Models

This set of diagrams of optical wave fronts as they pass through anisotropic crystals was in the collection of apparatus
at Kenyon College when I arrived in 1964. In these crystals the speed of light is different along mutually-perpendicular
axes and this produces a rotation of the direction of polarization of linearly polarized light falling on them. I would
like to hear from readers who have used similar models. (Picture and Notes by Thomas B. Greenslade, Jr., Kenyon

College)
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