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When does a drop, deposited on a cold substrate, stop spreading? Despite the practical
relevance of this question, for example, in airplane icing and three-dimensional metal
printing, the detailed mechanism of arrest in solidifying spreading drops has remained
debated. Here we consider the spreading and arrest of hexadecane drops of constant volume
on two smooth wettable substrates: copper with a high thermal conductivity and glass with
a low thermal conductivity. We record the spreading radius and contact angle in time for a
range of substrate temperatures. The experiments are complemented by a detailed analysis
of the temperature field near the rapidly moving contact line, by means of similarity solutions
of the thermohydrodynamic problem. Our combined experimental and theoretical results
provide strong evidence that the spreading of solidifying drops is arrested when the liquid at
the contact line reaches a critical temperature, which is determined by the effect of kinetic
undercooling.
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I. INTRODUCTION

The spreading of liquid drops on a solid substrate that is below the liquid’s freezing temperature
is a phenomenon encountered in various applications. For example, raindrops that impinge and
subsequently freeze on cold surfaces can negatively affect the operation of airplanes, wind turbines,
or transmission lines. Anti-icing surfaces prevent this icing by minimizing the contact time between
drop and substrate or delaying heterogeneous nucleation of the liquid [1–4]. Other applications can
be found in the three-dimensional (3D) printing of micrometer-sized molten metal drops for precise
fabrication [5,6], thermal spray coating [7], soldering [8], and lava flows [9].

The solidification of spreading drops is a challenging problem due to the combination of a moving
contact line [10] with simultaneous heat transfer and phase transition [11]. More specifically, the
problem is complicated by the singularity in both stress [12] and heat flux at the contact line [13–15].
Under isothermal conditions, the spreading of low-viscosity drops on a smooth complete wetting
substrate exhibits two distinct regimes, in which the capillary-driven motion is resisted either by
inertia or by viscous dissipation close to the contact line [16]. The spreading dynamics has been
studied extensively, including the effects of partially wetting substrates [17,18], viscous drops [19],
and complex substrates [20]. The bulk freezing of water drops deposited on a cold substrate has also
attracted attention in recent years [21–25], with a focus on explaining the singular conical tip [22–24].

In this paper we focus on the short-time spreading dynamics of liquid drops on cold substrates.
The moment of contact line arrest determines the final contact area of the drop with the substrate and
its global shape. However, despite its importance in above-mentioned applications, the mechanism
of solidifying spreading drops has remained subject to debate. The relevant question is the following:
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FIG. 1. Sketches of the different hypotheses for contact line arrest. Arrest occurs when (a) the contact angle
of the spreading drop equals the angle of the freezing front at the contact line [14,15], (b) a critical volume at
the contact line is solidified [26], and (c) the liquid at the contact line reaches a critical temperature (present
work).

When does a drop, deposited on a cold substrate, stop spreading? More strikingly, one may even
wonder why the drop spreads at all, as one could expect immediate freezing at the initial contact of the
drop with the undercooled substrate. A few interpretations can be found in the literature. Schiaffino
and Sonin [14] studied the forced spreading of molten wax on a solid wax target. Microdrops
were generated at a few kilohertz rate and impacted the substrate to form a spreading sessile liquid
macrodrop. In their work it was assumed that a dynamic solidification front grows from the basal
plane [see Fig. 1(a)]. The drop would then stop spreading as soon as the contact angle reaches the
angle of the solidification front at the contact line. The experiments showed a dependence of the
arrest contact angle on the Stefan number St = c�T/L (the ratio of sensible heat to latent heat) as
θa ∝ St1/2. Here c is the specific heat capacity, �T is the difference between the melting temperature
and the substrate temperature, and L is the specific latent heat. However, a prediction of this angle
is not possible due to the contact line singularity of the heat flux from the solidification front into
the solid. A comparison to numerical calculations yielded a cutoff length scale of 0.1–1 μm for
their experimental conditions, but the physical interpretation of the cutoff remains questionable
[15]. More recently, Tavakoli et al. [26] studied the forced spreading of alkanes on glass by
dispensing the liquid at a rate of 5–600 μL/min. In their work it was assumed that solidification starts
from the contact line [see Fig. 1(b)], where the cooling time is taken to be the time after touchdown
of the drop. The drop would then stop spreading once a critical volume of liquid at the contact line
is solidified. For this criterion to be valid, the nucleus of the growing solidified volume needs to
follow the moving contact line. It is not specified how this relates to the usual spreading, where
fresh liquid is continuously supplied to the contact line. Both these mechanisms [14,26] are based
on solidification of a part of the drop as an arrest condition, so the latent heat of the liquid is an
important parameter.

In this work we address the arrest condition by experiments of spreading hexadecane drops; the
drops are gently deposited at constant volume on smooth wettable substrates of a different material.
We report spreading curves and contact angle measurements of hexadecane drops spreading on
substrates with high (copper) and low (glass) thermal conductivity (Sec. II). To explain our results,
we propose a different mechanism, based on crystallization kinetics [see Fig. 1(c)]. A drop then is
arrested when the liquid at the contact line reaches a certain critical temperature that depends on
the velocity of the contact line (Sec. III). To account for the effect of the thermal properties of the
substrate, we solve the Navier-Stokes and heat equations locally near the contact line and show how
this changes the moment of arrest.

II. EXPERIMENT

A. Method

Figure 2(a) shows a sketch of the experimental setup. A liquid drop is formed at the end of the
needle and gently deposited (We = ρlv

2R0/σ � 1, with ρl the density, v the impact speed, R0 the
initial drop radius, and σ the surface tension) onto the cold target substrate. We carried out spreading
experiments with hexadecane (C16H34, Sigma-Aldrich), a simple linear alkane with a well-defined
freezing temperature Tf = 18 ◦C. The hexadecane is heated to an initial temperature Ti = 28 ◦C
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FIG. 2. (a) Sketch of the experimental setup (not to scale). (b) Snapshots at the moment of contact line
arrest of (the lower part of) hexadecane drops spreading on a copper substrate for various substrate temperatures
T0. The arrest spreading radius Ra and arrest contact angle θa are indicated in red.

before entering the needle [see Fig. 2(a)]. We verified that increasing the initial temperature up to
48 °C does not have a significant influence on the spreading of the drops on a copper substrate. The
temperature of the bottom of the substrate T0 is controlled by a Peltier element and a thermistor. We
ensure that the thickness of the substrates is larger than the characteristic thermal diffusion depth
(4αsubt)1/2 at the time scales of the experiment, such that the drop-substrate interface temperature Tint

remains constant. Here αsub is the thermal diffusivity of the substrate. We performed the experiments
on copper and soda-lime glass substrates. Condensation onto the cold substrate is largely prevented
by using a dry nitrogen atmosphere. Substrates are thoroughly rinsed with ethanol before use. The
copper substrate has such a high thermal conductivity [ksub = 397.7 W/(m K)] in comparison to
hexadecane [kl = 0.15 W/(m K)] that it can be considered isothermal. Significant thermal gradients
are much more likely in the glass substrate, as its thermal conductivity [ksub = 1.0 W/(m K)] is
close to that of hexadecane. Table I gives an overview of the relevant properties for the liquid and
solid hexadecane and the copper and glass substrates. For a discussion in terms of dimensionless
parameters we refer the reader to Sec. III B.

A drop of fixed size (for copper R0 = 725 ± 8 μm and for glass R0 = 834 ± 17 μm) is formed
at the tip of a needle and lowered onto the target substrate. Bond numbers Bo = ρgR2

0/σ , with g

the gravitational acceleration, are smaller than unity such that we can neglect the effect of gravity.
Spreading and arrest of the drops is visualized with a high-speed camera (Photron SA-7 or Photron
SA-1) recording at 10–20 kiloframes/s and a Navitar 12× zoom lens. We use a custom MATLAB

routine that extracts the drop contours via thresholding. The contours are analyzed to extract the
spreading radius and the contact angle is determined by a linear fit to the contour at the contact line,
typically resolved on a scale of 30 μm from the contact line.

TABLE I. Properties of the liquid, solid, and substrate.

Liquid (i = l) Solid (i = s) Substrate (i = sub)

Property Hexadecane Hexadecane Copper Soda-lime glass

viscosity μ (Pa s) 0.003
surface tension σ (N/m) 0.028
density ρi(kg/m3) 774 833 8960 2479
specific heat capacity ci[J/(kg K)] 2310 1800 386 760
thermal diffusivity αi(m2/s) 8.4 × 10−8 1.0 × 10−7 1.2 × 10−4 5.3 × 10−7

thermal conductivity ki [W/(m K)] 0.15 0.15 397.7 1.0
latent heat L (J/kg) 2.3 × 105

freezing temperature Tf (◦C) 18
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FIG. 3. Spreading radius versus time for a range of substrate temperatures (a) on a copper substrate and
(b) on a glass substrate (Ti = 28 ◦C). The inset in (b) shows a close-up of the stick-slip behavior on glass
for T0 = 8 ◦C (left and right contact lines). The black line is the spreading law in the inertiocapillary regime
[Eq. (1)].

B. Results

Whereas drops on a warm substrate of T0 > Tf spread into a very thin layer, drops on a colder
substrate get quickly arrested on time scales of the order of a few milliseconds. Snapshots of the
drops at the moment of contact line arrest are shown in Fig. 2(b) for different substrate temperatures
T0. For a colder substrate, spreading stops earlier and the footprint radius of the drop at arrest is
smaller. After the arrest shown in Fig. 2(b), there is still some dynamics. Namely, the bulk of the
drop is still coming down due to inertia. The contact angle then increases, while the footprint area
of the drop remains constant. After the entire drop is solidified, hexadecane drops show a dimple, a
small depression at the top of the drop, due to the increase in density upon solidification. This is in
contrast to water drops that form a conical tip due to a decrease in density [22–24].

It is important to note that bulk solidification of the drop occurs at much larger time scales
than contact line arrest. The Stefan numbers of the liquid and solid (ice) phases are both small,
Stl = cl(Ti − Tf )/L < 1 and Sts = cs(Tf − T0)/L < 1, with cl,s the specific heat capacity of the
liquid and solid phases and L the specific latent. The freezing time of the global drop is thus
dominated by the removal of latent heat and can be estimated by dividing the latent heat ρV L by
the approximate heat flux κs(Tf − T0)/R0, resulting in tf ∝ R2

0/αsSts . Here it is assumed that heat
transfer through the ice phase is slow compared to heat transfer through the substrate. Bulk freezing
times are of the order of a minute, which shows that there is a large separation of time scales between
bulk freezing and contact line arrest.

The spreading dynamics for hexadecane drops on copper are reported in Fig. 3(a). The spreading
radius r is rescaled with the initial drop radius R0 and the time after contact t is rescaled with the
capillary time scale τc = (ρlR

3
0/σ )1/2, which is 3–4 ms in our case. For substrate temperatures above

the freezing temperature (see the red data points), we recover at short time scales the isothermal
spreading law of the inertiocapillary regime [16–20]

r/R0 ∝ (t/τc)1/2. (1)

At later stages the spreading dynamics is ruled by a balance between capillarity and viscous
stress. This is the Tanner regime [16] with a spreading exponent of 1/10. For cold substrates, we
observe that the spreading radius initially closely follows the isothermal law(s), up to the moment
when the contact line suddenly stops. The colder the substrate, the earlier arrest occurs. For substrate
temperatures T0 � 5 ◦C, drops form a solidified layer before touching the substrate and spreading is
not observed.

The spreading curves for hexadecane drops on glass are reported in Fig. 3(b). For glass substrate
temperatures T0 � 12 ◦C, the drops exhibit stick-slip behavior (see the inset). The contact line is
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FIG. 4. Contact angle versus (a) time or (b) capillary number for a range of substrate temperatures on a
copper substrate (Ti = 28 ◦C). The contact angle is plotted up to the moment of contact line arrest. The black
line in (b) is the Cox-Voinov law [Eq. (3)] as fitted in the inertiocapillary regime with ln(R0/l) = 25.7.

pinned at either side, not necessarily simultaneously, after which the contact angle increases until
depinning occurs. The drop goes through a series of pinning and depinning events before the final
spreading radius is reached. In the interpretation of the data, we will focus on the moment of initial
pinning, i.e., when the arrest condition is attained for the first time.

We now turn to the time evolution of the contact angle. For substrates of T0 > Tf , the contact
angle decreases during spreading from 180° to 0° on a completely wetting substrate. Our field of
view captures this dynamics down to a contact angle of 20° [see the red data in Fig. 4(a)]. A further
decrease of the contact angle occurs outside the field of view. Again we observe two different scaling
regimes corresponding to inertial (large θ ) and viscous (small θ ) spreading, respectively. For cold
substrates, the contact angle follows the same scaling, until the contact line stops.

In Fig. 4(b) the contact angle data are plotted versus the capillary number Ca = μvcl/σ . Here μ

is the viscosity and vcl is the velocity of the contact line as derived from the spreading law [Eq. (1)].
We recover the classical Cox-Voinov behavior [27,28]

θ3 = 9 Ca ln(R0/l) (2)

in both regimes, as also shown by Schiaffino and Sonin for solidifying drops [14]. The deviations
around 70°–40° are caused by the transition between both regimes and the capillary wave arriving at
the contact line. The logarithmic factor ln(R0/l), with l the characteristic microscopic length scale
at which molecular processes regularize the viscous singularity, is determined from the curves in
Fig. 4(b) to be 25.7. Similarly large values have been measured for water drops and could point
to additional dissipative mechanisms (beyond hydrodynamics) near the contact line [29,30]. The
scaling in Fig. 4(a) (θ ∝ t−1/6 and θ ∝ t−3/10) is a direct consequence of combining the Cox-Voinov
behavior (θ ∝ Ca1/3) with the spreading laws in the inertiocapillary (r ∝ t1/2) and viscocapillary
(r ∝ t1/10) regimes.

Remarkably, as shown by both the spreading radius and the contact angle data, the drop dynamics
prior to arrest is experimentally indistinguishable from isothermal spreading without solidification.
We therefore do not expect a dramatic increase of the viscosity upon cooling down to the freezing
temperature, which is consistent with previous results for other alkanes [31].

Based on our data, we now quantify the conditions of arrest. The arrest spreading radius can be
very precisely determined from Fig. 3. The value of the contact angle increases sharply after contact
line arrest. We therefore define the minimum contact angle before arrest as the arrest contact angle.
In Fig. 5 we show the spreading radius ra and contact angle θa at contact line arrest as a function of
the substrate undercooling �T = Tf − T0. For a deeper substrate undercooling, contact line arrest
occurs faster, which results in a decrease of the arrest spreading radius and an increase of the arrest
contact angle.
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FIG. 5. (a) Arrest spreading radius and (b) arrest contact angle versus the substrate undercooling �T =
Tf − T0. Black indicates the copper substrate (properties at arrest) and red the glass substrate (properties
at first pinning event). Closed symbols indicate drops that get arrested in the inertiocapillary regime, while
open symbols indicate drops that get arrested in the viscocapillary regime or during the transition between
both regimes. Dashed lines show the model with kinetic undercooling (see Sec. III). A kinetic coefficient of
κ = 0.011 m/(s K) is used.

We compare the arrest properties of hexadecane drops spreading on copper (black) and on glass
(red). In the latter case, thermal gradients are present inside the substrate due to the lower thermal
conductivity and the temperature on top of the substrate is expected to deviate significantly from the
temperature applied to the bottom of the substrate. On glass, the cooling of the drops is therefore
less efficient, resulting in a small shift to larger arrest spreading radius and smaller arrest contact
angle for the same substrate temperature.

III. INTERPRETATION

An important observation is that the motion of the contact line is completely unaffected by the
cooling prior to the arrest. This implies that the spreading has the usual hydrodynamic features,
including a rapid motion that is due to a continuous supply of fresh liquid near the contact line.
Based on these observations, we propose a mechanism that is consistent with the kinematics of such
rapid contact line motion and therefore differs, e.g., from the criteria proposed by Schiaffino and
Sonin [14] and Tavakoli et al. [26]. In particular, we assume that the drop stops spreading when the
liquid at the contact line reaches a certain critical temperature for arrest Tcl,a , which differs from
the bulk freezing temperature. This change is attributed to the effect of kinetic undercooling, which
results in a lower solidification temperature. A secondary effect is the substrate conductivity (copper
versus glass), which is considered in a thermohydrodynamic model.

A. Spreading on a copper substrate

A copper substrate has such a high thermal conductivity that it can be considered isothermal
during the drop spreading. By continuity, i.e., neglecting any thermal resistance between liquid and
substrate, the liquid at the contact line is thus also at Tcl = T0. We first assume that the critical
temperature for arrest Tcl,a would be equal to the bulk freezing temperature of the liquid Tf . Every
drop that approaches a copper substrate with �T > 0 (T0 < Tf ) would then be predicted to freeze
instantaneously with ra = 0 and θa = 180◦, due to the large thermal conductivity of copper. However,
the experimental arrest contact angles turn out to be significantly smaller [see Figs. 2(b) and 5(b)].
We thus need to take into account an effect that delays the contact line arrest.

Our main hypothesis in this work is that the dominant effect is kinetic undercooling due to
the fast contact line motion during the initial spreading. Crystallization of the liquid becomes the
rate-limiting step in case of nonequilibrium solidification. A velocity of the freezing front can in fact
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only be sustained as long as molecules attach faster to the front than they detach, which requires
undercooling of the liquid. For small kinetic undercooling, the undercooling is linearly dependent
on the velocity of the freezing front: Tf − Tfront = vfront/κ [32–34]. Here κ is the kinetic coefficient,
which is a property of the liquid. A smaller kinetic coefficient (mobility) means that it is more difficult
for molecules to attach to the growing crystal and a larger undercooling is thus needed in order to
freeze the liquid. We assume here that the contact line of our spreading drops can only be arrested
if the freezing front velocity becomes equal to the velocity of the contact line so that vfront = vcl,a

(otherwise, any crystal nucleus would be left behind the moving contact line). A significant substrate
undercooling is thus necessary during the first stages of drop spreading, due to the very fast motion
of the contact line at that moment. With this assumption, the arrest condition can thus be written

Tcl = Tcl,a = Tf − vcl,a/κ. (3)

The contact line slows down during drop spreading, resulting in an increase of Tcl,a . We now
obtain expressions for the arrest radius and the arrest contact angle at the moment the arrest condition
is met. The relationship between the rescaled spreading radius and the contact line velocity can be
derived from the spreading law in the inertiocapillary regime [Eq. (1)]. As the prefactor is determined
to be 1.0 from a fit to the data in Fig. 3, this yields vcl = (R0/2τc)/(r/R0). Combining this with
Eq. (3) and Tcl = T0 (see above), we obtain for the arrest spreading radius

ra/R0 = R0/2τcκ�T ∝ �T −1. (4)

Combining the Cox-Voinov law [Eq. (2)] with the arrest criterion [Eq. (3)] and Tcl = T0, we
obtain for the arrest contact angle

θa = [9μ ln(R0/l)κ�T/σ ]1/3 ∝ �T 1/3. (5)

These expressions are shown as the dashed black lines in Figs. 5(a) and 5(b), respectively. It should
be noted that Eq. (4) is only valid for the inertiocapillary regime (closed symbols). A similar relation
can be found for the viscocapillary regime (ra/R0 ∝ �T −1/9). However, since most open symbols
are actually acquired during the transition between both regimes, we limit the fitting of κ to the iner-
tiocapillary regime. On the other hand, Eq. (5) should be valid in both regimes. Our model gives good
agreement with the data for κ = 0.011 m/(s K). This fitting parameter is determined from the data for
the arrest spreading radius, as its experimental determination is more accurate than that of the arrest
contact angle. We have not been able to find experimental data for κ of hexadecane in the literature.

B. Spreading on a glass substrate

1. Corner flow model with heat transfer

As shown in Fig. 5, drops spreading on the glass substrate get arrested later, at larger arrest
spreading radius and smaller arrest contact angle. The substrate temperature T0 is controlled at the
bottom of the substrate. The temperature of the liquid at the contact line is somewhat above the
substrate temperature Tcl > T0 due to the thermal gradients across the glass substrate. Therefore,
in this case the heat transfer from the liquid to the substrate, including convective heat transfer
within the liquid, needs to be considered to determine the arrest conditions. To this end, we solve
the Navier-Stokes equations (in the liquid) and heat equations (in the substrate and the liquid) in a
two-dimensional wedge geometry locally near the moving contact line [see Fig. 6(a)]. We consider a
wedge of liquid with contact angle θ moving with contact line velocity vcl over a substrate of which
the temperature T0 is controlled at the bottom, while the initial drop temperature Ti prevails far from
the contact line in the liquid.

More precisely, we will take advantage of a remarkable coincidence: In the inertiocapillary
regime, the characteristic length scales of the hydrodynamics (convection) and the thermal diffusion
(conduction) both behave as t1/2. Despite the highly unsteady nature of the process, the relative
strength of convection and diffusion therefore remains constant over time and is governed by material
parameters that will be identified below. For now, we proceed by introducing the hydrodynamic length
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FIG. 6. (a) Geometry in the contact line region for calculation of the temperature field. (b)–(d) Isotherms
(solid lines) and streamline patterns (dashed lines) for hexadecane drops on a glass substrate with a contact
angle of (b) θ = 120◦, (c) θ = 90◦, and (d) θ = 60◦. The rescaled contact line temperatures are indicated.

lν = (νt)1/2, where ν is the liquid kinematic viscosity, and investigate the dynamics on this scale
near the contact line. Note that a local formulation that includes only the contact line region requires
lν � r , which is equivalent to the condition

√
Oh � 1, where Oh = ντc/R

2
0 = μ/(ρlσR0)1/2 is the

Ohnesorge number. We also neglect the influence of the contact angle decrease compared to the
contact line velocity at the scale considered, i.e., lν |θ̇ | � vcl = ṙ . Using Eqs. (1) and (2), this can
actually be recast into the form

√
Oh � 3/θ , which is also satisfied at small Ohnesorge number (as

the maximal value of θ is π ).
Given the absence of any geometrical length scale locally near the contact line, a self-similar

(penetrationlike) solution of the complete thermohydrodynamic problem may be obtained by scaling
lengths by lν = (νt)1/2 and velocities by lν/t = (ν/t)1/2, noting that the dimensionless contact line
speed v̂cl = vclt/lν = 1/2

√
Oh is then a constant in the inertiocapillary regime of interest. The

temperatures are offset by T0 and scaled by the temperature difference Ti − T0. Thus, we represent
velocity and temperature fields in the moving frame as

⇀

V ∗ =
√

ν/t [v̂cl

⇀

1x + ⇀

V (ρ,ϕ)], (6)

T ∗
l,sub = T0 + (Ti − T0) Tl,sub(ρ,ϕ), (7)

where asterisks mark dimensional quantities, (ρ, ϕ) are the dimensionless polar coordinates near
the contact line [see Fig. 6(a)],

⇀

1x is the unit vector along its direction of motion, and subscripts
l and sub denote liquid and substrate, respectively. Substituting Eqs. (6) and (7) into continuity,
Navier-Stokes, and energy equations then yields the system

⇀∇ · ⇀

V = 0, (8)

−
⇀

V

2
− ρ

2

∂
⇀

V

∂ρ
+ (

⇀

V · ⇀∇)
⇀

V = �
⇀

V − ⇀∇p, (9)

−ρ

2

∂Tl

∂ρ
+ (

⇀

V · ⇀∇)Tl = Pr−1�Tl, (10)

−ρ

2

∂Tsub

∂ρ
+ v̂cl

(
cos ϕ

∂Tsub

∂ρ
− sin ϕ

ρ

∂Tsub

∂ϕ

)
= α Pr−1�Tsub, (11)

where p is the dimensionless pressure (redefined to incorporate a deceleration term), α = αsub/αl is
the ratio of thermal diffusivities, and Pr = ν/αl is the Prandtl number of the liquid.

Now boundary conditions at the substrate-liquid interface ϕ = 0, at the liquid-air interface ϕ = θ ,

and at the substrate-air interface ϕ = −π are (denoting by U and V the components of
⇀

V along ρ
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and ϕ, respectively)

U = v̂cl = 1/2
√

Oh, V = 0, Tsub = Tl, k∂Tsub/∂ϕ = ∂Tl/∂ϕ for ϕ = 0, (12)

V = 0, ρ2∂(ρ−1V )/∂ρ + ∂U/∂ϕ = 0, ∂Tl/∂ϕ = 0 for ϕ = θ, (13)

∂Tsub/∂ϕ = 0 for ϕ = −π, (14)

where k = ksub/kl is the substrate-to-liquid ratio of thermal conductivities and it has been assumed
that heat transfer to the ambient is negligible, implying that the isotherms within the drop and the
substrate are always perpendicular to their interface with air. Note that it is in the first of Eqs. (13)
that the velocity induced by the closing of the wedge has been neglected, as discussed above, while
the second of Eqs. (13) expresses that the liquid-air interface is stress-free. Finally, boundary/initial
conditions are needed in the far field ρ → ∞, where we impose Tsub → 0, Tl → 1, and

⇀

V → 0.
The problem (8)–(14) is thus fully defined by θ , the liquid parameters Oh = 0.023 (a value deemed

to be small enough and for which v̂cl = 3.3) and Pr = 46, and the liquid-substrate interaction
parameters α = 6.3 and k = 6.6. These values are for hexadecane drops on a soda-lime glass
substrate. For a copper substrate, α = 1370 and κ = 2640 and we assume that the substrate is
isothermal. This can also be seen by comparing the convection in the liquid with the conduction in the
solid; the relevant dimensionless parameter is r/lα , which compares the spreading radius (convection)
to the thermal diffusion length in the solid (conduction). This yields r/lα = (Pr/[α Oh])1/2, which
is 1.2 for copper and 17.8 for glass.

The physical properties are taken to be independent of temperature. We solve this boundary-
value problem numerically, using a streamfunction/vorticity formulation and finite differences [with
nonequidistant mesh to handle the fast variations occurring near the contact line ρ → 0, where we
also use classical corner solutions (see, e.g., [12]) in order to reach better convergence].

2. Mechanism

For every possible arrest contact angle θa we are now interested in the temperature of the liquid at
the contact line. Figures 6(b)–6(d) give three typical examples for θa = 120◦, 90°, and 60°. For small
contact angles θ → 0◦, the rescaled contact line temperature T̄cl = (Tcl − T0)/(Ti − T0) is close to
zero, thus Tcl ≈ T0. In those cases there is not much fluid above the contact line that needs to be
cooled down and the results are close to the results for a substrate with large thermal conductivity. If
the wedge contact angle increases, Tcl increases. Note that the coldest point in the liquid is always
found at the contact line.

We assume that the spreading of a drop can be considered as a sequence of quasisteady self-similar
solutions of Eqs. (8)–(14), with decreasing contact angle. Thus, the temperature of the liquid at the
contact line is expected to decrease during spreading. Simultaneously, the kinetic undercooling
reduces during spreading as the contact line slows down, increasing the critical temperature for
arrest (as on the copper substrate). For some critical contact angle, the condition for contact line
arrest (3) is met and the contact line stops. The results are shown as the red dashed lines in Fig. 5. Note
that these numerical results are only valid in the inertiocapillary regime, as r ∝ t1/2 is implemented.
For the lowly thermal conductive glass substrate, we used the same value for the kinetic coefficient
as for the highly thermal conductive copper substrate, κ = 0.011 m/(s K), as it is a property of the
liquid only. Hence, accounting for the increase in Tcl due to convection or diffusion compared to
T0, we indeed find a shift towards larger spreading radii and smaller contact angles on glass, in
agreement with the experiments. The numerical results are rather robust against small variations
in the initial drop temperature. A decrease from Ti = 28 ◦C to Ti = 23 ◦C causes the curve for the
arrest radius to shift downward about the symbol size.
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IV. CONCLUSION AND DISCUSSION

We studied the spreading of hexadecane drops on cold copper and glass substrates by measuring
the spreading radius and contact angle evolution in time for a range of substrate temperatures.
Drops are arrested more quickly for lower substrate temperatures and for a higher substrate thermal
conductivity. We put forward a mechanism based on the kinetics of crystallization to rationalize our
measurements of the moment of initial contact line arrest. We have shown that our experimental
data are well described by considering a critical temperature of the liquid at the contact line and
including kinetic undercooling, i.e., a nonequilibrium solidification temperature lower than the bulk
freezing temperature.

For many practical applications, it would be interesting to investigate whether this model can be
extended to impacting drops with a nonzero Weber number [8,35–38]. In many cases this involves
the impact of a material of high thermal conductivity (i.e., the 3D printing of metals) onto a material
of lower thermal conductivity such that thermal gradients in the substrate should again be considered
with a convection-diffusion model. During impact, the early time spreading radius also increases
with the square root of time, but now with the impact time τi = 2R0/v as the characteristic time
scale. In the simplest case, we expect that the contact line velocity again yields an estimation of the
required undercooling of the liquid at the contact line to obtain arrest. The validation of this model
for nonzero Weber numbers remains a challenge for future study.

Literature values for the kinetic coefficient are sparse. Experimental determination [39] is difficult,
due to the necessity of simultaneously tracking the movement of the interface and to measure
very small temperature variations. Most values reported are obtained from molecular dynamics
simulations [40–42], where, for example, the undercooling is maintained by the use of thermostats
and the velocity of the interface is computed by monitoring the total potential energy of the system
[43]. The simulations are mainly limited to metals, for which values of 0.1–1 m/(s K) are found.
The order of magnitude of these values is not too different from the fitted value for hexadecane,
κ = 0.011 m/(s K). Values for polymers are not available, but we expect them to be lower due to an
increase in molecular size, hence slower attachment kinetics.

To close, let us briefly reflect on the various proposed mechanisms for contact line arrest during
solidification. In the present work we have attempted to incorporate the rapid wetting motion in the
arrest condition, by means of a kinetic coefficient. Doing so, we have omitted the effect of latent
heat. This can be rationalized since the volume considered near the contact line is very small such
that the latent heat is expected not to be the limiting factor for solidification. This point of view is
significantly different from the mechanism proposed by Tavakoli et al. [26], which is based on the
latent heat produced by a critical volume near the contact line. A key assumption of that theory is that
this volume starts to grow at the moment of touchdown of the drop and that it moves along with at the
contact line. However, since prior to arrest we observe no difference with respect to usual spreading,
where liquid is continuously transported towards the contact line, the kinetics of this mechanism
needs to be clarified. Direct measurement of the kinetic coefficient, or of the geometry of the freezing
fronts, is necessary to decisively resolve the challenging problem of contact line arrest.
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