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Dynamical theory of the inverted cheerios effect

Anupam Pandey, *a Stefan Karpitschka,a Luuk A. Lubbers,b Joost H. Weijs,c

Lorenzo Botto,d Siddhartha Das, e Bruno Andreottif and Jacco H. Snoeijerag

Recent experiments have shown that liquid drops on highly deformable substrates exhibit mutual

interactions. This is similar to the Cheerios effect, the capillary interaction of solid particles at a liquid

interface, but now the roles of solid and liquid are reversed. Here we present a dynamical theory for this

inverted Cheerios effect, taking into account elasticity, capillarity and the viscoelastic rheology of the

substrate. We compute the velocity at which droplets attract, or repel, as a function of their separation.

The theory is compared to a simplified model in which the viscoelastic dissipation is treated as a

localized force at the contact line. It is found that the two models differ only at small separation

between the droplets, and both of them accurately describe experimental observations.

1 Introduction

The clustering of floating objects at the liquid interface is
popularly known as the Cheerios effect.1 In the simplest
scenario, the weight of a floating particle deforms the liquid
interface and the liquid–vapor surface tension prevents it from
sinking.2 A neighboring particle can reduce its gravitational
energy by sliding down the interface deformed by the first particle,
leading to an attractive interaction. The surface properties of
particles can be tuned to change the nature of interaction, but
two identical spherical particles always attract.3 Anisotropy in
shape of the particles or curvature of the liquid interface adds
further richness to this everyday phenomenon.4–6 Self-assembly
of elongated mosquito eggs on the water surface provides an
example of this capillary interaction in nature,7 while scientists
have exploited the effect to control self-assembly and patterning at
the microscale.8–12

The concept of deformation-mediated interactions can be
extended from liquid interfaces to highly deformable solid

surfaces. Similar to the Cheerios effect, the weight of solid
particles on a soft gel create a depression of the substrate,
leading to an attractive interaction.13–15 Recently, it was shown
that the roles of solid and liquid can even be completely
reversed: liquid drops on soft gels were found to exhibit a
long-ranged interaction, a phenomenon called the inverted
Cheerios effect.16 An example of such interacting drops is
shown in Fig. 1(a). In this case, the droplets slide downwards
along a thin, deformable substrate (much thinner as compared
to drop size) under the influence of gravity, but their trajec-
tories are clearly deflected due to a repulsive interaction
between the drops. Here capillary traction of the liquid drops
instead of their weight deforms the underlying substrate
(cf. Fig. 1(b)). The scale of the deformation is given by the ratio
of liquid surface tension to solid shear modulus (g/G), usually
called the elasto-capillary length. Surprisingly, drops on a thick
polydimethylsiloxane (PDMS) substrate (much thicker than the
drop sizes) were found to always attract and coalesce, whereas
for a thin substrate (much thinner than the drop sizes) the
drop–drop interaction was found to be repulsive.16 This inter-
action has been interpreted as resulting from the local slope of
the deformation created at a distance by one drop, which can
indeed be tuned upon varying the substrate thickness.

Here we wish to focus on the dynamical aspects of the
substrate-mediated interaction. Both the Cheerios effect and
the inverted Cheerios effect are commonly quantified by an
effective potential, or equivalently by a relation between the
interaction force and the particle separation distance.1,16 However,
the most direct manifestation of the interaction is the motion of
the particles, moving towards or away from each other. In the
example of Fig. 1(a), the dark gray lines represent drop trajectories
and the arrows represent their instantaneous velocities. When
drops are far away, the motion is purely vertical due to gravity
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with a steady velocity -
vg. As the two drops start to interact, a velocity

component along the line joining the drop centers develops
(-vi �

-vig, i = 1, 2) that move the drops either away or towards each
other. In Fig. 1(c), we quantify the interaction by D(-v � -

vg) =
(-v1 �

-
v1g) � (-v2 �

-
v2g), representing the relative interaction velocity

as a function of inter drop distance (d) for several interaction
events. Even though the dominant behavior is repulsive, we find an
attractive regime at small distances. In what follows, we consider
the interaction to be independent of the motion due to gravity and
develop a theory for drops on a horizontal substrate. Similar to the
drag force on a moving particle at a liquid interface,17 viscoelastic
properties of the solid resist the motion of liquid drops on it.18

Experiments performed in the over damped regime allow one to
extract the interaction force from the trajectories, after proper
calibration of the relation for the drag force as a function of
velocity.16

In this paper, we present a dynamical theory of elastocapillary
interaction of liquid drops on a soft substrate. For large drops, the
problem is effectively two dimensional (cf. Fig. 1(b)) and boils
down to an interaction between two adjacent contact lines. By
solving the dynamical deformation of the substrate, we directly
compute the velocity–distance curve based on substrate rheology,
quantifying at the same time the interaction mechanism and the
induced dynamics. In Section 2 we set up the formulation of the
problem and propose a framework to introduce the viscoelastic
properties of the solid. In Section 3 we present our main findings
in the form of velocity–distance plots for the case of very large
drops. These results are compared to the previous theory for
force–distance curves, and we investigate the detailed structure of
the dynamical three phase contact line. Subsequently, our results
are generalised in Section 4 to the case of finite-sized droplets,
and a quantitative comparison with experiments is given.

2 Dynamical elastocapillary interaction
2.1 Qualitative description of the interaction mechanism

Before developing a detailed dynamical theory of the inverted
cheerios effect, we start by a qualitative discussion of the
interaction mechanism along with the theoretical simplifica-
tions. The problem of drop–drop interaction on soft substrates
can be characterised by four length scales: the radius of the
drop (R), the thickness of the substrate (h0), the elastocapillary
length (g/G), and of course the gap separating the drops (d).
In the case of drop size much larger than all other length scales:
R c max(h0,d,g/G), one can neglect the curvature of the contact
line and the wetting ridge becomes quasi two-dimensional as in
Fig. 1(b). Furthermore the drop–drop interaction is limited to
an interaction between the neighboring contact lines. This
provides an important simplification: the liquid contact angles
at the outer contact lines of each drop are essentially unaffected
by the presence of the second drop. In addition, the wetting
dynamics on highly viscoelastic solids are completely domi-
nated by dissipation inside the substrate. Hence, dissipative
processes in the liquid are negligible and by consequence the
liquid can be considered at equilibrium. The liquid–vapor
interface thus simply takes a circular shape. For large drops,
the liquid contact angles at the interacting contact lines also
remain constant to satisfy this circular cap shape.

To understand the interaction mechanism, one can follow
two distinct routes. The first one consists of a full description of
both the forcing due to the interaction energy and the dissipative
process inside the substrate. Thus the substrate deformation
is inferred from viscoelastic theory. This description is the
dynamical theory that we set out to develop in this paper.
Alternatively, one can make use of the fact that the dissipation

Fig. 1 Dynamics of the inverted cheerios effect. (a) Ethylene glycol drops of radius R C 0.5–0.8 mm move down a vertically placed cross-linked PDMS
substrate of thickness h0 C 0.04 mm and shear modulus G = 280 Pa under gravity. The arrows represent instantaneous drop velocity. Drop trajectories
deviate from straight vertical lines due a mutual interaction. In this example only repulsive interaction is observed between the two drops. (b) A sketch of
the cross-section of two drops on a thin, soft substrate. The region around two neighboring contact lines is magnified in Fig. 2(a). (c) Relative interaction
velocity as a function of the gap d between drops for five pairs of drops. We use the convention that a positive velocity signifies repulsion and negative
velocity signifies attraction. (d) A theoretical velocity–distance plot for power-law rheology.
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is dominant only in a narrow zone near the contact line. By this,
one can approximate the substrate deformation by elasto-
statics and incorporate the effect of dissipation as a point force
that is perfectly localized at the contact line – balancing the
interaction force between the drops. The latter approach, which
will be referred to as the quasi-static approximation, was
followed in Karpitschka et al.16 Below we discuss the dynamical
viscoelastic theory in detail, while we comment on the relation
between the two descriptions in Section 3.2.

We magnify the deformation around neighbouring contact
lines in Fig. 2(a). Importantly, while dissipation is the largest
near the contact line, the fact that it is spatially distributed
ensures that it does not act as a perfectly localized point force.
By consequence, the geometry of the contact line, defined by
the solid angle ys, is completely determined by the three
respective surface tensions. This is the so-called Neumann
balance of surface tensions, which holds even when the contact
line is set into motion19 (note that in the quasi-static approxi-
mation there is an ‘‘apparent’’ violation of the Neumann
balance, see Section 3.2).

Our goal is to find the value of v for a given distance d
[Fig. 2(a)]. We assume that there is no Shuttleworth effect.20

Hence, surface stress and surface free energy are identical.
Furthermore, we assume gsv = gsc = gs that leads to the
symmetric wetting ridges of Fig. 2(a), and the liquid contact
angle (yc) becomes p/2. As demonstrated in the next section, in
first approximation the solid profile is obtained by the super-
position of the deformations due to the two moving contact
lines shown in Fig. 2(b). However, motion on a viscoelastic
medium causes a rotation of the wetting ridge by an angle fv

that depends on the velocity (while ys remains constant): the
larger the velocity, the larger the rotation angle.19 At the same
time, superposition results in a rotation of a wetting ridge due
to the local slope of the other deformation profile (H�v

0(d)) at
that location. Hence, the force balance with the capillary
traction from an unrotated liquid interface can be maintained
when both rotations exactly cancel each other. Therefore, by
equating H�v

0(d) to fv, we obtain a relation between velocity
and distance.

2.2 Formulation

In this section, we calculate the dynamic deformation of a
linear, viscoelastic substrate below a moving contact line. This
step will enable us to quantify the interaction velocity, according
to the procedure described above.

Due to the time-dependent relaxation behaviour of visco-
elastic materials, the response of the substrate requires a finite
time to adapt to any change in the imposed traction at the free
surface. Under the assumption of linear response, the stress–
strain relation of a viscoelastic solid is given by21

rðx; tÞ ¼
ðt
�1

dt 0Cðt� t 0Þ _eðx; t 0Þ � pðx; tÞI: (1)

Here r is the stress tensor, e is the strain tensor, C is the
relaxation function, p is the isotropic part of the stress tensor, I
is the identity tensor, and x = {x,y}. The overhead dot represents
a time derivative. Throughout we will assume plane strain
conditions, for which all strain components along the z axis
vanish. We are interested in the surface profile of the deformed
substrate, given by the vertical ( y)-component of displacement
vector u. For small deformations this imply uy(x,h0,t) = h(x,t).
The soft substrate is attached to a rigid support at its bottom
surface and subjected to traction T(x,t) on the top surface due
to the pulling of the contact line. In addition, the surface
tension of the solid gs provides a solid Laplace pressure that
acts as an additional traction on the substrate. For inertia-free
dynamics, the Cauchy equation along with the boundary con-
ditions for the plane strain problem are given by

=�r = 0, (2a)

syy
��
y¼h0
¼ Tðx; tÞ þ gs

@2h

@x2
; (2b)

syx
��
y¼h0
¼ 0 (2c)

u(x,0,t) = 0. (2d)

Following previous works,19,22 we solve eqn (1) and (2) using a
Green’s function approach. Applying Fourier transforms in
both space and time (x - q noted by ‘B’, t - o noted by
‘^’), the deformation can be written as,

~̂hðq;oÞ ¼ ~̂Tðq;oÞ gsq
2 þ mðoÞ

~KðqÞ

� ��1
: (3)

Forward and backward Fourier transforms (with respect to
space) of any function is defined as, ~f ðqÞ ¼

Ð1
�1 f ðxÞe�iqxdx

Fig. 2 Illustration of the interaction mechanism. (a) Schematic represen-
tation of the deformed substrate due to a repulsive interaction between
two contact lines. (b) Dynamic deformation profiles associated to each of
the contact line. Slope of the left profile at a distance d from its contact line
(H�v

0(d)) balances the rotation (fv) of the right wetting ridge. Superposition
of these two profiles give the resultant deformation.
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and f ðxÞ ¼
Ð1
�1

~f ðqÞeiqxdq
.
2p. Transformation rules are

equivalent for t 2 o. Here m(o) is the complex shear modulus
of the material and consists of the storage modulus G0(o) =
<[m(o)], and loss modulus G00(o) = I[m(o)]:

mðoÞ ¼ io
ð1
0

CðtÞe�iotdt ¼ G0ðoÞ þ iG00ðoÞ: (4)

The spatial dependence is governed by the kernel K̃(q), which for

an incompressible, elastic layer of thickness h0 reads

~KðqÞ ¼ sinh 2qh0ð Þ � 2qh0

cosh 2qh0ð Þ þ 2 qh0ð Þ2 þ 1

" #
1

2q
: (5)

Two backward transforms of (3) give the surface deformation

h(x,t).

In what follows, we perform the calculations assuming a
power-law rheology of the soft substrate, characterised by a
complex modulus,

m(o) = G[1 + (iot)n]. (6)

This rheology provides an excellent description of the reticu-
lated polymers like PDMS, as are used in experiments on soft
wetting.19,23–25 In particular, the loss modulus has a simple
power-law form, G00 B G(ot)n, where G is the static shear
modulus and t is the relaxation timescale. The exponent n
depends on the stoichiometry of the gel, and varies between 0
and 1.26–28 The experimental data presented in Fig. 1 is for a
PDMS gel with a measured exponent of n = 0.61 and timescale
t = 0.68 s.

2.3 Two steadily moving contact lines

Now we turn to two moving contact lines, as depicted in
Fig. 2(a). Laplace pressure of the liquid drops scales with R�1,
and vanish in this limit of large drops. Hence, the applied
traction is described by two delta functions (noted d), separated
by a distance d(t):

Tðx; tÞ ¼ gd xþ dðtÞ
2

� �
þ gd x� dðtÞ

2

� �
: (7)

Owing to the linearity of the governing equations, the deforma-
tions form a simple superposition

h(x,t) = h1(x,t) + h2(x,t). (8)

Here h1(x,t) and h2(x,t) respectively are the solutions obtained
for contact lines moving to the left and right.

Before considering the superposition, let us first discuss the
deformation due to a contact line centered at the origin and
moving steadily with velocity �v. The traction and deformation
are then of the form gd(x + vt), and H�v(x + vt). When computing
the shape in a co-moving frame, it can be evaluated explicitly
from (3) as

~H�vðqÞ ¼ g gsq
2 þ mðvqÞ

~KðqÞ

� ��1
: (9)

The effect of velocity is encoded in the argument of the complex
modulus m, and hence couples to the dissipation inside the

viscoelastic solid. Setting v = 0, this expression (9) gives a
perfectly left-right symmetric deformation of the contact line.
As argued, for v a 0, the motion breaks the left-right symmetry
and induces a rotation of the wetting ridge.

Now, for two contact lines located at �d(t)/2 moving quasi-

steadily with opposite velocities v ¼ �1
2

_d, the deformation in

eqn (8) can be written as

hðx; tÞ ¼ H�v xþ d

2

� �
þHv x� d

2

� �
: (10)

Under this assumption of quasi-steady motion, there is no
explicit time-dependence; the shape is fully known once the
velocity v and the distance d are specified. However, as dis-
cussed in Section 2.1, the total deformation of eqn (10) should
be consistent with a liquid angle of p/2. This is satisfied
when the ridge rotation due to motion, fv, perfectly balances
the slope induced by the second drop. Summarizing this
condition as

H�v
0(d) = fv, (11)

we can compute the velocity v for given separation d of the two
contact lines. Explicit expressions can now be found from
eqn (9), as

H�v
0 ðdÞ ¼

ð1
�1

iq ~H�vðqÞeiqd
dq

2p
; (12)

and (see ‘Methods’ section of ref. 19 for details)

fv ¼ �
1

2
Hv

0
0þð Þ þHv

0
0�ð Þ

h i

¼ �
ð1
�1
< iq ~HvðqÞ
� �dq

2p
:

(13)

In what follows we numerically solve eqn (11), and obtain the
interaction velocity as a function of d.

2.4 Dimensionless form

The results below will be presented in dimensionless form. We
use the substrate thickness h0 as the characteristic lengthscale,
relaxation timescale of the substrate t as the characteristic time-
scale, and introduce the following dimensionless variables:

�q ¼ qh0; �x ¼ x

h0
; �H ¼ H

h0
; �d ¼ d

h0
; �v ¼ vt

h0
;

�o ¼ ot; �~K ¼
~K

h0
; �~H ¼

~H

h02
; �m ¼ m

G
:

(14)

Eqn (11)–(13) remain unaltered in dimensionless form, but the
scaled deformation reads

�~H��vð�qÞ ¼ a as�q2 þ
�mð�v�qÞ
�~Kð�qÞ

" #�1
: (15)

This form suggests that the two main dimensionless parameters
of the problem are,

a ¼ g
Gh0

; as ¼
gs
Gh0

; (16)
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which can be seen as two independent elastocapillary numbers. a
compares the typical substrate deformation to its thickness, and
as discussed in the next section as measures the decay of substrate
deformation compared to h0. The assumption of linear (visco)-
elasticity demands that the typical slope of the deformation is
small, which requires a/as = g/gs { 1. In the final section we will
also consider drops of finite size R. In that case, the ratio R/h0

appears as a third dimensionless parameter.

3 Results
3.1 Relation between velocity and distance

Here we discuss our main result, namely the contact line
velocity %v of the inverted Cheerios effect, as a function of
distance %d. Fig. 1(d) represents a typical velocity–distance plot
for as = 1 and n = 0.7 obtained by numerically solving eqn (11).
The theory shows qualitative agreement with the experiments:
the interaction velocity is repulsive at large distance, but dis-
plays an attraction at small distance. The change in the nature
of interaction can be understood from the local slope of
deformation. As can be seen from Fig. 2(b), the slope %H�%v0 is
negative at small distance from the contact line. This induces a
negative velocity (attraction) to the contact line located at %d/2.
However, incompressibility of the material causes a dimple
around the wetting ridge, and at %d B 1 the slope changes its
sign and so does the interaction velocity. A fully quantitative
comparison between theory and experiment, taking into
account finite drop size effects, will be presented at the end
of the paper in Section 5.

We now study the velocity–distance relation in more detail.
In Fig. 3(a), we show the interaction velocity on a semi-
logarithmic scale, for different values of the rheological para-
meter n. In all cases the interaction is attractive at small
distance, and repulsive at large distance. The point where the
interaction changes sign is identical for all these cases. The
straight line at large %d reveals that the interaction speed decays
exponentially, %v B e�l %d. The exponent l is not universal, but
varies as l B 1/n. Indeed by rescaling the velocity as |%v|n, we
observed a collapse of the curves (cf. Fig. 3(b)) in the range
where the interaction velocities are small. The inset of Fig. 3(b),
however, shows that the collapse does not hold at very small
distances where the velocities are larger.

To understand these features, we extract the far-field asymp-
totics of the velocity–distance curve. As %v decreases for large %d,
we first expand eqn (12) for small %v to get

�H��v
0 ’ a

ð1
�1

i�q as�q2 þ
1

~Kð�qÞ

� ��1
ei�q

�dd�q

2p
þOð�vÞ: (17)

This effectively corresponds to the slope of a stationary contact
line and the viscoelastic effects drop out. Hence, at large
distances away from the contact line the deformed shape is
essentially static. The substrate elastocapillary number (as)
governs the deformed shape in far field. In the Appendix we
evaluate this static slope, which yields

%H�%v0 C aC(as)e
�~l(as) %d, (18)

indeed providing an exponential decay. This relation confirms
that as governs the decay of substrate deformation. Similarly,
we expand �f%v in eqn (13) for small %v as (see ref. 19),

�f�v ’ a
n2n�1

anþ1s cos
np
2

�vn: (19)

Hence, the rotation of the ridge inherits the exponent n from
the rheology. Comparison of eqn (18) and (19) gives the desired
asymptotic relation

�v ¼ anþ1s C asð Þ
AðnÞ

� �1
n

e�
~l asð Þ
n

�d ; (20)

with A(n) = n2n�1/cos(np/2). For as = 1, ~l = 0.783 and C = 0.069.
The red dashed line in Fig. 3(a) confirms this asymptotic
relation. The quantity A(n)%vn is independent of the substrate
rheology and collapses to a universal curve for large distances.
Only at small separation, a weak dependency on n appears
(see the inset of Fig. 3(b)).

3.2 Force–distance

We now interpret these velocity–distance results in terms of an
interaction force, mediated by the substrate deformation.
The underlying physical picture is that the interaction force
between the two contact lines induces a motion to the drops.

Fig. 3 (a) Velocity–distance plots for increasing n values (n = 0.5, 0.6, 0.7,
0.9), for the parameter as = 1. The red dashed line represents the far-field
asymptotic given in eqn (20) for n = 0.7. (b) Rescaling the velocity gives
a perfect collapse for small velocity (large distance). Inset: Rescaled
velocity vs. distance on a log–log plot. The prefactor A(n) is given by
A(n) = n2n�1/cos(np/2).
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In a regime of overdamped dynamics, dissipation within the
liquid drop can be neglected, and the interaction force must be
balanced by a dissipative force due to the total viscoelastic drag
inside the substrate. In fact, eqn (11) can be interpreted as a
force balance: the slope %H�%v0( %d) induced by the other drop is the
interaction force, while the dissipative force is given by the
rotation �f%v due to drop motion. Viscoelastic dissipation given
by the relation %G00(�o) B �on manifests itself in the ridge rotation
through, �f%v B %vn. The blue line in Fig. 4, shows the corres-
ponding dissipative force as a function of distance for n = 0.7.

In Karpitschka et al.,16 a quasi-static approach to compute
the interaction force was presented. There, the main hypothesis
was that the dissipative force can be modelled as a point force %f
that is perfectly localized at the contact line. We are now in the
position to test this hypothesis by comparing its predictions to
those of the dynamical theory developed above, where the
viscoelastic dissipation inside the solid is treated properly.
In the localized-dissipation model, the deformation profiles
are treated as perfectly static and thus involve %H%v=0

0(%d). However,
in this approximation the change in deformation profile now
leads to a local violation of the Neumann balance (cf. inset
Fig. 5(a)), since the static model has no ridge rotation, �f%v=0 = 0.
This imbalance in the surface tensions must be compensated by
the localized dissipative force %f, which can subsequently be
equated to the interaction force. Hence, for the case of large
drops, the localized-force model predicts

%f = %H%v=0
0( %d). (21)

The result of the localized-force model is shown as the red data
points in Fig. 4, showing %f versus %d. At large distance this gives
a perfect agreement with the dynamical theory. For large %d,
%H�%v0( %d) C %H%v=0

0( %d), and the dissipative force �f%v perfectly agrees
with the interaction force %f. In this limit, slope of the deforma-
tion decays exponentially with distance, and so is the inter-
action force. However, as %d - 0, the static profiles differ from
the dynamic profiles, inducing a small error in the calculation
of the interaction force.

The differences between the localized-dissipation model and
the full viscoelastic dynamic calculation can be interpreted in
terms of true versus apparent contact angles. Fig. 5(a) shows the
profile in the approximation of the localized-force model. The
inset shows the violation of the Neumann balance: the red
dashed line is the dynamic profile obtained from our visco-
elastic theory. A more detailed view on the contact angles is
given in Fig. 5(b and c). Here we compare the dynamical slope
(red dashed line) to that of the localized-force model (gray solid
line), on both sides of the contact line at %x = %d/2. The two
profiles have the same slope beyond %x B gs/Gh0. However,
differences appear at small distance near the contact line where
viscoelastic dissipation plays a role. While the dynamic profiles
are left-right symmetric, the localized-force model gives a
symmetry breaking: the difference in slope between the two
approach at the contact line gives the magnitude of %f.

In summary, the inverted Cheerios effect can be charac-
terised by an interaction force, which at separations ( %d) larger
than gs/Gh0 is independent of substrate rheology. In this regime
the interaction force can be computed assuming that all dis-
sipation is localized at the contact line – this gives rise to an
apparent violation of the Neumann balance, due to a dissipa-
tive force %f. In reality the Neumann balance is restored at small
distance, but the total dissipative force is indeed equal to %f.
At separations %d o gs/Gh0, however, the spatial distribution of
dissipation has significant effects and the localized-force model
gives rise to some (minor) quantitative errors.

4 Drops of finite size

We now show that interaction is dramatically changed when
considering drops of finite size R, compared to the substrate
thickness h0. A fully consistent dynamical theory is challenging for
finite-sized drops, since the two contact lines of a single drop are
not expected to move at the same velocity. However, the previous
section has shown that the localized-force model provides an
excellent description of the interaction force, which becomes exact
at separations d 4 gs/G. We therefore follow this approximation to
quantify the inverted Cheerios effect for finite sized drops.

4.1 Effect of substrate thickness

We assume that during interaction, radius of both the drops does
not change and the liquid cap remains circular (i.e. no significant
dissipation occurs inside the liquid). The traction applied by a
single drop on the substrate comprised of two localized forces
pulling up at the contact lines and a uniform Laplace pressure
pushing down inside the drop. The traction applied by a single
drop of size R, centered at the origin, is thus given by

TdðxÞ ¼ g sin y‘ dðxþ RÞ þ dðx� RÞ½ �

� g
sin y‘
R

YðR� jxjÞ;
(22)

expressed in dimensional form. Here Y is the Heaviside step
function. The liquid contact angle yc is unknown a priori. It is
solved self-consistently with the elastic deformation using Neumann’s

Fig. 4 Force vs. distance plot for a = 1/5 and as = 1. The blue line
represents the dissipative drag force for n = 0.7 given in eqn (13). The
red points represent the localized force given by eqn (21). Beyond small %d,
the slope of the dynamic profile is similar to its static counterpart.
As a result, two forces agree well.
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balance at the contact lines.29 Placing a second drop changes the
liquid contact angles at both the contact lines (yi,yo) from the
equilibrium value of yc (cf. Fig. 6a). Fourier transform of (22) reads

~TdðqÞ ¼ 2g sin y‘ cosðqRÞ � sinðqRÞ
qR

� �
: (23)

Considering two drops centered at x =�c/2 and x = c/2 respectively,
with corresponding tractions of Td(x + c/2) and Td(x� c/2), the total
traction induced by the two drops reads, in Fourier space is

T̃(q) = T̃d(q)eiqc/2 + T̃d(q)e�iqc/2, (24)

where the inter-drop separation d = c � 2R. Using the static
Green’s function approach, we compute the corresponding
deformation profiles. A typical profile obtained from this traction
is shown in Fig. 6(a).

The problem is closed by determining yi, and yo self-
consistently with the elastic deformation. The interaction is
found from reestablishing a violated Neumann balance by a
dissipative force (for details we refer to Karpitschka et al.16).
As such we determine the force–distance relation for varying
drop sizes. The results are shown in Fig. 6(b), for various drop
sizes h0/R. Clearly, upon decreasing the drop size, or equivalently
increasing the layer thickness, the interaction force becomes
predominantly attractive. For a thin substrate, incompressibility
leads to a sign change of the interaction force. As the substrate
thickness is increased the profile minimum is moved away from
the contact line. For an elastic half space, i.e. h0/R = N, the
deformation monotonically decays away from the contact line

giving rise to a purely attractive interaction. The inset of Fig. 6(b)
shows the interaction force for an elastic half space.

4.2 Far-field asymptotics on a thick substrate

When two drops are far away from each other, yi = yo C yc and the
liquid cap resembles its equilibrium shape. In this limit, the drop–
drop interaction is mediated purely by the elastic deformation.
Here we calculate the large-d asymptotics of the interaction force.
We follow a procedure similar to that proposed for elasticity-
mediated interactions between cells,30,31 where the cells are treated
as external tractions. The total energy of the system Etot then
consists of the elastic strain energy Eec plus a term Ew originating
from the work done by the external traction. At fixed separation
distance, the mechanical equilibrium of the free surface turns out

to give Ee‘ ¼ �
1

2
Ew (the factor 1/2 being a consequence of the

energy in linear elasticity). So, we can write Etot = Eec + Ew = �Eec.
31

Subsequently, the interaction force between the droplets is com-

puted as f ¼ �dEtot

dd
¼ dEe‘

dd
. The task will thus be to evaluate Eec

from the traction induced by two drops.
In the absence of body forces, the elastic energy (per unit

length) is written as

Ee‘ ¼
1

2

ð1
�1

TðxÞhðxÞdx

¼ 1

2G

ð1
�1

~TðqÞ ~Tð�qÞ ~KðqÞdq
2p
:

(25)

Fig. 5 (a) Resultant deformation in the localized-force model, obtained by superimposing two static profiles ( %d = 1/2, for a = 1/5 and as = 1). The gray
curve represents a resultant static profile. The red dashed curve shows the corresponding dynamic wetting ridge that maintains equilibrium shape. (b and c)
Slope of the resultant deformation profiles (dynamic and static) measured away from the contact line at %x = %d/2 = 1/4 in both directions. The red dashed lines
are the dynamic slopes, approaching g/2gs at the contact line. The gray lines correspond to the localized-force model, showing an apparent contact angle that
differs by an amount %f.
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Plugging in the traction applied by two drops given in eqn (24)
into eqn (25) we find that there are two parts of the elastic
energy: one is due to the work done by individual tractions (the
self-energy of individual drops), and an interaction term (Eint)
given by

Eint ¼
1

G

ð1
�1

~TdðqÞ ~Tdð�qÞ ~KðqÞ eiq‘ þ e�iq‘
	 
dq

4p
: (26)

To obtain the far-field interaction energy (c c R), we now
perform a multipole expansion of the traction Td(x), or equiva-
lently a long-wave expansion of its Fourier transform. The
quadrupolar traction of eqn (23) gives, after expansion

~TdðqÞ ’
ð�iqÞ2

2
Q2; (27)

were Q2 is the second moment of the traction and is given by,

Q2 ¼
Ð1
�1TdðxÞx2dx ¼

4

3
g sin y‘R2. So, the interaction energy in

the far-field reads

Eint ’
1

G

ð1
�1

ðiqÞ4
22

Q2
2 ~KðqÞ eiq‘ þ e�iq‘

	 
dq
4p

¼ Q2
2

8G
ðK 0000ð‘Þ þ K 0000ð�‘ÞÞ:

(28)

For drops on a finite thickness, the Green’s function K(x) decays
exponentially and again gives an exponential cut-off of the
interaction at distances beyond h0.

A more interesting result is obtained for an infinitely thick
substrate, formally corresponding to h0 c c. The kernel for a

half space is KðxÞ ¼ �log jxj
2p

, which can be inferred from the large

thickness limit of (5). Consequently, K 0000ð‘Þ ¼ K 0000ð‘Þ ¼ 3

p‘4
, so

that the interaction energy becomes

Eint ¼
4

3p
g sin y‘ð Þ2

G

R4

‘4
: (29)

This is identical to the interaction energy between capillary
quadrupoles,12,32,33 except for the prefactor that depends on
elastocapillary length in the present case. We calculate the force

of interaction by f ¼ dEint

d‘
, giving

f

g
¼ �16 sin

2 y‘
3p

g
GR

� � R

‘

� �5

’ �16 sin
2 y‘

3p
g
GR

� � R

d

� �5

;

(30)

where the result is collected in dimensionless groups. Here we
replaced c C d, which is valid when the drop separation is large
compared to R. The red dashed line in the inset of Fig. 6(b)
confirms the validity of the above asymptotic result, including the
prefactor. Hence, in the limit of large thickness the attractive
interaction force decays algebraically, as 1/d5, which is in stark
contrast to the exponential decay observed for thin substrates.

It is instructive to compare eqn (29) with the interaction
energy for capillary quadrupoles formed by rigid anisotropic
particles embedded in a fluid–fluid interface.5,12 In that case an
undulated triple line is formed owing to contact line pinning12

or to the change in curvature of the solid surface along the
triple line.9,34 For capillary quadrupoles the far-field interaction
energy is proportional to gHp

2(R/c)4, where Hp is the amplitude
of the quadrupolar contact line distortion. Despite an identical
power-law dependence, the prefactors in eqn (29) and in the
corresponding expression for capillary quadrupoles are different,
reflecting a different physical origin. A capillary quadrupole is
formed by four lobes located at an average distance R from the
quadrupole center: two positive meniscus displacements of ampli-
tude Hp along one symmetry axis of the particle, and two negative
displacements along the perpendicular axis. The presence of a
second particle changes the slope of equal sign meniscii along the
center-to-center line, resulting in a net capillary attraction. The
corresponding interaction force per unit length of contact line is
proportional to g(Hp/R)2(R/d)5, to be compared with eqn (30). The
non-dimensional ratio (Hp/R) is a geometric feature of the particle
that depends primarily on the particle shape and contact angle.5

This ratio is independent of the particle size. On the contrary, the

non-dimensional ratio
g
GR

does depend on the particle size, as

well as on the material-dependent scale g/G. A differentiating
feature is also that in the elastocapillary quadrupole the upward

Fig. 6 (a) Substrate deformation and liquid cap shape due to two inter-
acting drops centered at x = �5/4. The separation distance between two
neighboring contact lines is d/R = c/R � 2 = 1/2. (b) The interaction force
vs. distance plot as the substrate thickness to drop radius ratio is increased
(h0/R = 1/10, 1/5, 2/5, 1). For thick substrates the interaction becomes
predominantly attractive. Inset: Force vs. distance plot on log scale for
finite drops of an elastic half space. The red dashed line is the far-field
asymptotic representing f B d�5. The parameters used in this figure are
g/GR = 2/5, and gs/GR = 1/5. yc for this case is found to be 78.911.
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and downward distortions of the elastic surface are located along
the line of interaction, thus forming a linear quadrupole. The
identical power-law dependence for capillary and elasto-capillary
quadrupoles is incidental. It is a consequence of the fact that the
log function is the Green’s function for both the small-slope
Young–Laplace equation of capillarity and the equation governing
2D linear elasticity.

5 Discussion

Finally, let us turn to experiments of the inverted Cheerios
effect. The results in Fig. 1 already show a qualitative agreement
between theory and experiment. A quantitative comparison in
terms of ‘‘velocity vs. distance’’ is challenging for two reasons.
First, the drag force varies along the contact line of a finite drop
resulting in a variation of the interaction velocity which is
absent in our model of infinitely large drops. Second, the
experimental motion follows from a combination of drop–drop
interaction and gravity – the latter was not taken into account
in the dynamical theory. However, gravity is easily substracted
when representing the result as ‘‘force vs. distance’’, as was also
done in Karpitschka et al.16 The experimental data are repro-
duced in Fig. 7: on thick substrates the interaction is purely
attractive (panel b), while a change in sign of the interaction
force is observed on thin substrates (panel a). The two-
dimensional model presented in this paper predicts a force
per unit length f. Hence, to compare to experiment one needs to
multiply the result with a proper length over which this
interaction is dominant. The blue lines are obtained by choos-
ing a length of pR/6, i.e. a small fraction of the perimeter, giving
a good agreement with experiment. In Karpitschka et al.,16

a three-dimensional result was provided, based on the same
localized-force approach. The result is shown as the red lines in
Fig. 7 and is similar to the two-dimensional case. This good
agreement with experiment shows that the elasto-capillary
theory presented here provides an accurate description of the

physics. The similarity between the two- and three-dimensional
models shows that the interaction is dominated by the regions
where the contact lines are closest.

In conclusion, we present a theoretical model to capture the
dynamical interaction between two liquid drops on a soft, solid
surface. For large drops the interaction is limited to neighboring
contact lines, and we find the interaction velocity–distance
relation in this limit. For large distances, the velocity decays
exponentially with an exponent that depends both on substrate
rheology and surface tension. The over damped dynamics of
drop motion allow us to relate the velocity to an effective
viscoelastic drag force at the contact line. We also connect
our theory to a quasi static description of the interaction,
quantified in terms of force–distance curves, and find that
the two approaches agree well for large inter drop distances.
Motivated by this, we extend the quasi-static force calculation
to finite sized drops to show how the ratio of substrate thick-
ness to drop radius governs the nature of the interaction. In the
other physically relevant limit of small drops on a very thick
substrate, the interaction force is found to decay algebraically
for large distances. We anticipate that the dissipation mediated
interaction mechanism studied here to play a key role in
collective dynamics of drops on soft surfaces,24,35 and dynamics
of soft, adhesive contacts.

Appendix
Far-field approximation of slope

We evaluate the complex counterpart of the integrand in
eqn (17) on a contour C, given by

a
þ

^C

i�q as�q2 þ
1

~Kð�qÞ

� ��1
ei�q

�dd�q

2p
: (31)

Here %q is the complex wave vector. The contour C consists of a
semicircle of radius r centered at the origin and a straight line
connecting the ends of the semicircle. We evaluate the above

Fig. 7 Comparison between theory and experiment. The experimental data (black points) and 3D theory (red dashed lines) is reproduced from ref. 16.
The drops have an average radius (R) of 700 mm in both cases. The liquid (ethylene glycol) and the solid (PDMS) surface tensions are g = 48 mN m�1, and
gs C 20 mN m�1 respectively. Shear modulus of the substrate is G = 280 Pa. The blue lines are the interaction force obtained from the dynamical
theory developed here. (a) Attraction and repulsion on a substrate of thickness (h0) 40 mm. (b) Purely attractive interaction between drops on a thick
substrate (h0 = 8 mm). The adjustable length, multiplied with the 2D interaction force for comparison with the experiments is pR/6 for both the cases.
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integral using Residue theorem. As r - N, the integrand
vanishes on the semicircle and the contour integral simplifies
to eqn (17). For any as the integrand of eqn (31) has an infinite
number of poles on the complex plane. The leading order
behavior of the integration is governed by the pole with
smallest imaginary part ( %qpole) as other poles lead to much
faster decay.

The substrate elastocapillary number as dictates the value of
%qpole. Fig. 8 shows that below a critical as, %qpole is purely
imaginary suggesting a purely exponential decay of the defor-
mation. Beyond the critical as, %qpole has a nonzero real and
imaginary part giving rise to oscillatory behavior of slope as
predicted by Long et al.22 Hence, the large distance approxi-
mation of slope is given by,

�H��v
0 ’ aRes �

�q

as�q2 þ
1

~Kð�qÞ

0
BB@

1
CCAei�q

�d

2
664

3
775

�q¼�qpole

: (32)

For a chosen as we numerically find %qpole, and evaluate the
residue. We simplify the above equation to eqn (18) of the main
text by denoting the residue of the terms within the open
brackets as C(as) and ~l = i %qpole(as).
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