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ABSTRACT: In gas-oversaturated solutions, stable surface
nanobubbles can exist thanks to a balance between the Laplace
pressure and the gas overpressure, provided the contact line of
the bubble is pinned. In this article, we analyze how the
disjoining pressure originating from the van der Waals
interactions of the liquid and the gas with the surface affects
the properties of the surface nanobubbles. From a functional
minimization of the Gibbs free energy in the sharp-interface
approximation, we find the bubble shape that takes into
account the attracting van der Waals potential and gas
compressibility effects. Although the bubble shape slightly
deviates from the classical one (defined by the Young contact
angle), it preserves a nearly spherical-cap shape. We also find
that the disjoining pressure restricts the aspect ratio (size/height) of the bubble and derive the maximal possible aspect ratio,
which is expressed via the Young angle.

1. INTRODUCTION

When a solid is immersed in liquid under some conditions,
nanoscopic spherical-cap-shaped gaseous domains are formed
at the interface. These domains, called surface nanobubbles,
have attracted a lot of attention recently. (See reviews 1−5.)
Their existence and gaseous nature have been confirmed with
different methods, but the main challenge was to understand
the unexpectedly long lifetime of these bubbles. The surface
nanobubbles exist for days instead of microseconds, as expected
from the theory of diffusive dissolution.6 Recently, it was
established that contact line pinning of the gas−liquid−solid
contact line is crucial to the stability of the bubbles.7−12 The
effect of pinning originates from chemical and topographical
heterogeneities of the solid surface,13−17 which are omnipresent
and unavoidable. Given pinning, a stable equilibrium is
achieved through the balance of Laplace pressure and gas
overpressure due to oversaturation, which is also a necessary
condition for stable surface nanobubbles.11,12 The question we
want to address in this article is, how do disjoining pressure
effects, a concept introduced to extend the continuum approach
down to the nanoscale (e.g., refs 16,18, and 19), modify this
balance and the shape of surface nanobubbles?
It is usually assumed that surface nanobubbles can be

described by a spherical cap shape. The pressure in such a
bubble is constant and equals the ambient pressure plus the
Laplace pressure. For liquid drops on a solid, it was already
recognized13,20 that near the contact line the disjoining pressure
contributes to the total force balance and influences the

equilibrium shape of the drop. The influence of the disjoining
pressure on the shape of the drops is, however, rather
weak,21−24 and it is important only at the very edge of the
drop. This need not a priori be the case for surface nanobubbles
because strong disjoining pressure near the edge could
influence the bubble as a whole as a result of the compressibility
of the gas. However, this problem has not yet been addressed in
detail, though the relevance of the disjoining pressure for
nanobubbles and micropancakes has of course been known for
a long time.5,25

In this article, we will analyze the influence of the van der
Waals interaction (i.e., the disjoining pressure) on the
equilibrium shape of a free or pinned nanobubble. The article
is organized as follows. In Section 2, we briefly review the
approach developed for droplets on a solid surface, derive the
equation of force balance in the presence of an external field,
which is identified with the disjoining pressure, and finally
construct the Gibbs free energy for the surface bubble, which
can be considered to be a function of the bubble shape.
Analytical solutions, which are possible for two-dimensional
bubbles, are analyzed in Section 3. Axisymmetric bubbles are
discussed in Section 4. Our conclusions are presented and
summarized in the last section.
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2. FORMULATION
We aim to establish the shape of surface nanobubbles under the
influence of a disjoining pressure. The shape is characterized by
the function h(x, y) defined in Figure 1. Here we derive the

free-energy functional Φ[h] using a sharp-interface description
from which the equilibrium equations for h(x, y) can be
obtained. Assuming an equilibrium implies isothermal con-
ditions; phase transitions that may lead to local cooling are not
considered.
As a brief reminder, we first summarize the approach

commonly used for incompressible liquid drops, which is
subsequently extended to incorporate the effect of gas
compressibility as is required for surface nanobubbles. We
remind the reader that the sketch as expressed in Figure 1 is an
approximation. One could also consider a precursor film of the
nanobubble toward the surrounding liquid, which would
correspond to a local depletion of the water density in direct
contact with the wall or similarly to a local gas enhancement
because were both found in molecular simulations.26,27

However, the present sharp-interface description cannot give
detailed molecular information, but the fact that such layers are
observed in molecular simulations justifies this assumption of
our analysis.
2.1. Incompressible Liquid Drops. For incompressible

liquid drops, the change in energy when changing the shape can
be presented as the functional17,21−24

∫ γ γ γ λΦ = + ∇ + − + +⎡
⎣⎢

⎤
⎦⎥( )h x y h w h h[ ] d d 1 ( ) ( )2

sl sg (1)

Here, γ is the liquid−gas surface tension and the integral gives
the surface area. The contribution from a unit area of wetted
substrate is γsl − γsg, where γsl and γsg are the surface tensions
for the solid−liquid and solid−gas interfaces, respectively. w(h)
represents the van der Waals potential. The Lagrange multiplier
λ is introduced to perform the minimization under the
constraint of a prescribed finite volume; indeed, integral ∫ dx
dy h(x, y) represents the volume of the droplet.
On the nanoscale, i.e., for nanodrops and nanobubbles, one

cannot neglect the range of molecular interactions captured by
the effective interface potential w(h). Its influence extends to
small h, where the interface is sufficiently close to the substrate.
In the variational analysis, which gives the equilibrium equation
for h(x, y), the interface potential gives rise to an additional

pressure term, Π = −dw/dh, which is the so-called disjoining
pressure. In the macroscopic limit, the interface potential
simply vanishes, i.e., w(h =∞) = 0. We define the change in the
free energy in such a way that it disappears in the “dry” state,
which implies that w(hc) = γsg − γsl − γ, where hc is a
microscopic cutoff that will be discussed explicitly below. Using
Young’s law for the macroscopic contact angle θY, this can be
written as −w(hc) = γ(1 − cos θY). For now, it is of key
importance to note that the integral over the disjoining
pressure is related to Young’s contact angle θY because

21−24,28

∫ γ θ− Π = ∞ − = −
∞

h h w w hd ( ) ( ) ( ) (1 cos )
h

c Y
c (2)

Indeed, droplet shapes that minimizes the free energy (eq 1)
are very close to a spherical cap, with a macroscopic contact
angle θY. The Lagrange multiplier λ represents the Laplace
pressure in the drop and can be tuned to achieve the desired
drop volume. Only in close proximity to the contact line, where
h falls within the range of molecular interactions, does the
disjoining pressure alter the droplet shape.

2.2. Pressure Distribution in Compressible Gas
Bubbles. Let us now turn our attention to the case of
compressible gas bubbles. The obvious first difference with
respect to the droplet is that the gas and liquid domains in
Figure 1 are inverted. This can be accounted for by exchanging
the roles of γsg and γsl. However, upon redefining the contact
angle in the gas phase (inside the bubble so that γ cos θY = γsl −
γsg), both the formalism and the integral relation (eq 2) are still
valid. The key difference, however, is the gas compressibility.
The energy functional should not be minimized under the
constraint of constant volume, but instead we must impose the
number of gas molecules N inside the bubble. Namely, surface
nanobubbles are observed for a very long time,1−5 which means
that the bubble can be treated as quasi-static and we neglect the
escape or influx of molecules due to diffusion. Because of
compressibility, a constant number of molecules does not imply
a constant volume or a constant pressure inside the bubble.
For simplicity and for specific calculations, we assume that

the only source of the disjoining pressure is the van der Waals
(vdW) interaction, but this restriction can be easily removed if
some other interactions are involved. The interaction becomes
strong near the contact line among gas, liquid, and solid (Figure
1). In absence of external fields at the interface separating the
liquid and gas phases, temperature T and pressure P stay
constant. From the thermodynamic point of view, the vdW
interaction can be considered to be an external field acting on
the gas molecules located between the opposing walls of the
bubble. In a stationary external field, the system becomes
inhomogeneous and the pressure along the boundary is not
constant anymore. Instead, the chemical potential μ as a
function of temperature, pressure, and the parameters
characterizing the field stays constant at the interface.29

Thermodynamically, μ is the Gibbs free energy per molecule.
In an external field, it can be written as

μ μ ϕ= +P T r( , ) ( )0 (3)

where μ0(P, T) is the chemical potential in the absence of the
field and ϕ(r) is the field potential per molecule, which
depends on the position of the molecule r. The bubble will be
in mechanical equilibrium if μ = const along the gas−liquid
interface. Differentiating eq 3 with respect to the space
coordinates, we can find the force balance at the interface

Figure 1. Sketch of a surface nanobubble with vdW interaction (most
relevant in the corners) and definitions of the involved parameters.
Different media are indicated as liquid (l), gas (g), and solid (s). The
local height of the bubble h(x, y) is a function of in-plane coordinates x
and y. The maximal height in the center is H, and the footprint size is
L.
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ϕ∇ + ∇ =P
n P T

r
( , )

( ) 0
(4)

where n(P, T) is the gas concentration in the bubble, and we
made use of the thermodynamic relation (∂μ/∂ P)T = n−1(P,
T).
As was already mentioned, we assume for definiteness that

the opposing walls of the surface nanobubble attract each other
with a force per unit area that originates only from the vdW
interaction between solid and liquid molecules via the gas gap.
This force is

π
Π = −h

A
h

( )
6

H
3 (5)

where AH ≈ 10−20 J is the Hamaker constant among liquid, gas,
and solid and h = h(x, y) is the local distance between the walls
as shown in Figure 1. In the more general case,28 the vdW
interaction is not the only contribution to the disjoining
pressure Π(h). The local distance h is going to zero in the
corners, where the pressure (eq 5) diverges. In reality, this
divergence is regularized by hard-core repulsion. Such a
regularization is also critical in view of eq 2 because the
disjoining pressure in eq 5 cannot be integrated to h = 0; this
was the reason for introducing a cutoff distance hc. To control
the effect of the cutoff, we explicitly include a repulsive
contribution to the disjoining pressure as

π
Π = −

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥h

A
h

h
h

( )
6

1H
3

c
6

(6)

This pressure is motivated by the body−body Lennard-Jones
interaction.30,31 At h = hc, the repulsive and attractive
contributions are equal and the disjoining pressure becomes
zero. We note that in eq 6 we have neglected the contribution
of spatial partial derivatives to Π(h), which in general19 also
depends on ∂xh and ∂xxh, where x represents a spatial
coordinate. Given that the contact angle of surface nanobubbles
is small, this approximation is justified.
It has to be noted that the pressure (eq 5 or 6) is defined

between parallel plates, which is not the case for the bubble
walls. We can apply this equation locally by changing the
curved surface by flat patches parallel to the substrate. This is
the idea of the proximity force approximation32 (PFA) that is
widely used in the analysis of the dispersion forces. (See the
recent review in ref 33.) The application of PFA is justified if
the radius of curvature of interacting surfaces is much larger
than the distance between them. In our case, this condition
reads 8H2/(L2 + 4H2) ≪ 1. It will be assumed here that the
condition holds true. However, there is no principal problem if
the condition is broken. It just means that the specific
functional behavior (eq 5 or 6) is changed. Then a more
complicated expression has to be used, but one can apply
numerical (see the review in ref 34) and sometime analytical35

methods to determine the Π(h) function.
Attraction of the bubble walls results in an extra pressure

(disjoining pressure) experienced by a gas molecule. Because of
this pressure, the chemical potential at a constant temperature
changes on Π(h)v, where v = n(P, T)−1 is the volume per
molecule (molar volume). Therefore, the external potential ϕ
in eq 3 can be presented as

ϕ = Π h
n P T

r( )
( )

( , ) (7)

where both h and P are functions of in-plane coordinates x, y.
One can find the functional dependence of pressure by
substituting ϕ into the force balance equation (eq 4) and
expressing the concentration via the pressure with the help of
the equation of state: n(P, T) = P/kT. For simplicity, we use
here the equation of state for an ideal gas, which can be
generalized if necessary. The resulting equation for the
coordinate dependence of the pressure is

∇ + ∇ Π =
⎛
⎝⎜

⎞
⎠⎟

P
P

h
P
( )

0
(8)

It can be integrated to find an implicit dependence of P on the
local height h(x, y)

= −ΠP P P hln( / ) ( )0 (9)

where P0 is the pressure in the bubble if the interaction is
switched off (AH → 0) or when the bubble height reaches
macroscopic distances outside the range of molecular
interactions. This relation shows explicitly that the pressure
in the bubble is not homogeneous. Note that the Hamaker
constant for the liquid−gas−solid system is always positive, so
the pressure in the bubble is always larger than P0.
The pressure P as a function of the local height h is shown in

Figure 2. It is defined by two independent parameters. One is

the cutoff distance that has typical value of hc ≈ 0.2 nm.36 The
second independent parameter is β = AH/6π hc

3P0. At large
heights h ≫ hc, the pressure asymptotically approaches P0, has
its maximum at h = 31/6hc, and decreases up to P0 at h = hc.

2.3. Gibbs Free Energy for Compressible Gas Bubbles.
The thermodynamics of the coexistence of different phases in
external fields was considered in ref 37 for a number of physical
systems. We construct here the Gibbs free energy Φ[h] as a
function of the bubble shape h(x, y), which consists of volume
and surface contributions. The volume contribution is just the
sum of the chemical potentials μ for all of the gas molecules
inside the bubble:

∫ μΦ =h x P T h n P T[ ] d ( , , ) ( , )
V

V
3

(10)

We assume here a sharp interface between liquid and gas
(sharp-kink approximation22). In this case, the integrand does
not depend on the vertical coordinate z, and the corresponding
integration can be done explicitly. The lower integration limit z

Figure 2. Pressure as a function of the local height for the disjoining
pressure (eq 6). The curve is given for parameters hc = 0.2 nm and
AH/6πhc

3P0 = 100.
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= 0 corresponds to the solid−gas interface, and the upper limit
z = h is at the gas−liquid boundary. Expressing n(P, T) via the
equation of state and using the condition μ = const, we find

∫κΦ = −h x y hP h[ ] d d ( )V (11)

where κ = −μ/kT is an unknown constant, P(h) is the solution
of eq 9, and the integral is running over the bubble footprint in
the x − y plane. The right-hand side of eq 11 is proportional to
the number of molecules in the bubble. The κ constant plays
the role of a Lagrange multiplier that imposes the desired
number of molecules. Importantly, because pressure P(h) is not
constant inside the bubble, this constraint is fundamentally
different from the incompressible case, for which the constraint
involves the volume ∫ dx dy h.
The surface contribution to the Gibbs potential ΦS[h] can be

written as

∫ γ γ γΦ = + ∇ + − +h x y h w h[ ] d d [ 1 ( ) ( )]S
2

sg sl

(12)

This is in direct analogy to eq 1 for droplets, except for the
interchange between γsg and γsl due to the inversion of the
liquid and gas phases. The explicit form of the potential in the
case of the Lennard-Jones model is

π
= −

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥w h

A
h

h
h

( )
12

1
4

1H
2

c
6

(13)

Let us stress that the contributions of the interaction to ΦS and
ΦV are independent. The first one will exist even for a bubble
filled with vacuum, while the contribution to ΦV is related to
the gas molecules.
As a result, the total Gibbs free energy can be presented as

∫ γ

Φ = Φ + Φ

= + ∇ − +

h h h

x y h U h

[ ] [ ] [ ]

d d [ ( 1 ( ) 1) ( )]

V S

2
(14)

where using γ(1 − cos θY) = −w(hc) we introduced the
effective potential

κ= − −U h w h w h hP h( ) ( ) ( ) ( )c (15)

In combination with eqs 9 and 13, this fully specifies the energy
functional for compressible gas bubbles. In the next sections,
this functional will be minimized to determine bubble shapes
h(x, y).

3. TWO-DIMENSIONAL BUBBLE
We first consider the shape of a two-dimensional (2D) bubble,
which is homogeneous in the y direction. In this case, shape
h(x) can be obtained analytically and is sufficient to reveal the
essential physics. After deriving the general solution, we
consider the bubbles with and without pinning. We highlight
geometrical features and identify a bound for the aspect ratio
for pinned bubbles.
3.1. General Solution. The minimization procedure can be

carried out using the Euler−Lagrange method. Namely, for the
two-dimensional problem, the functional (eq 14) reduces to the
form

∫Φ = Γ ′h x h h[ ] d ( , )
(16)

with the energy per unity length

γΓ ′ = + ′ − +h h h U h( , ) ( 1 1) ( )2 (17)

This is the equivalent to a Lagrangian in classical mechanics, in
which case the variable is time instead of spatial coordinate x.
Minimization of the functional leads to the Euler−Lagrange
equations

∂Γ
∂ ′

= ∂Γ
∂x h h

d
d (18)

and yields the equilibrium equation

γ κ′
+ ′

′
= = −Π −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟h

h

U
h

h
h

hP h
1

d
d

( )
d

d
[ ( )]

2
(19)

The left-hand side is the Laplace pressure, surface tension times
curvature, and the right-hand side contains the disjoining
pressure and a term allowing for a finite number of molecules
N.
The bubble shape is thus determined by a second-order

ordinary differential equation (ODE), which contains κ as an
unknown parameter. As boundary conditions, we impose a
height H in the center of the bubble, where because of
symmetry one also has h′(0) = 0:

= ′ =h H h(0) , (0) 0 (20)

This means that a solution can be generated for each value of κ:
by varying κ, one finds bubble shapes that contain a varying
number of molecules. We anticipate that a unique equilibrium
solution is obtained when it is assumed that there is no pinning
of the contact line.
Because in the 2D case the functional does not depend

explicitly on x, one can find a first integral of eq 19.24 It reads

γ= ′ ∂Γ
∂ ′

− Γ = −
+ ′

−
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟h

h h
U h1

1

1
( )

2
(21)

where is a constant. Again, there is a direct analogy with
classical mechanics, where the homogeneity in time enables a
first integral of the equation of motion, which expresses the
conservation of energy. The analysis is now reduced to eq 21, a
first-order ODE with and κ as unknown parameters. The
value of can be eliminated using the boundary conditions (eq
20). This reduces eq 21 to

γ −
+ ′

= Δ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

h
U h1

1

1
( )

2
(22)

where the potential energy difference is introduced

Δ = −U h U h U H( ) ( ) ( ) (23)

An important observation here is that a solution exists only if
ΔU is not negative over the entire bubble. In the domain 0 ≤ x
< ∞, the solution can be presented in an implicit form

∫ γ
γ

= − Δ
Δ − Δ

x
h U
U U

d ( )

(2 )h

H

(24)

where all of the conditions at x = 0 are already satisfied. Note
that via eq 15 and U(h), ΔU(h)κ still appears as a parameter,
allowing for a family of bubble shapes.

3.2. Homogeneous Substrate: No Pinning. Let us first
consider the case where there is no pinning at the contact line,
which leads to the true equilibrium solution. For the disjoining
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pressure (eq 6), the balance of attraction and repulsion leads to
a solution where the bubble has a precursor film that extends to
x → ±∞. The film thickness h* can be determined from the
condition h′ = 0 inside the film. According to eq 22, this implies
ΔU(h*) = 0, and for a given value of H, this selects a unique
value of κ and consequently the number of molecules. Note
that in the limit of large bubbles H → ∞, much larger than the
range of interaction, one has U(H) → 0, which implies that the
precursor film thickness h* → hc. For small bubbles, the
precursor film is a bit larger than hc.
The existence of the precursor film means that h relaxes to

h* at infinity, and thus the bubble formally extends over the
entire domain. Still, we wish to determine a lateral bubble size
L. Here we do this by equating the radius of curvature at the
top of the bubble to a cylindrical cap, which is the solution for a
macroscopic bubble without disjoining pressure. For a
cylindrical segment with radius of curvature R, this implies
the geometrical connection

γ− = = +

=R
U
h

R
L H

H
d
d

,
( /2)

2h H

2 2

(25)

which effectively defines L.
The shape of a bubble with height H = 5 nm is shown in

Figure 3 by the solid (red) curve. We took as typical parameters
γ = 0.072 J/m2, hc = 0.2 nm, and AH = 1 × 10−20 J. According to
eq 2, these parameters correspond to θY = 21.4°. The blue
dashed curve is given by eq 25. It defines the cylindrical cap of
an equivalent size L. Note that the cap practically coincides
with the actual bubble except at the very edge. We found the
bubble size and the precursor film thickness to be L ≈ 44.4 nm
and h* ≈ 0.23 nm, respectively. The detailed behavior near the
edge is shown in Figure 3b, where the bubble edge is marked by
the vertical line and the cutoff distance is indicated by the
dashed horizontal line. Above the physical edge, the bubble
quickly reaches the asymptotic height h*.
It is interesting to emphasize the effect of the interaction on

the bubble size. The bubble that was found by the minimization
of the Gibbs free energy (eq 16) can be compared with a
classical bubble that has a contact angle θ equal to the Young
angle, θ = θY, and contains the same number of molecules N.
These two conditions completely define the classical bubble,
which is shown by the black curve in the same figure. It has a
lateral size Lcl = 62.2 nm and a height Hcl = 5.9 nm. There is a

difference between bubbles with and without an interaction
potential. This difference is the combined effect of the
disjoining pressure and the gas compressibility. How these
factors influence the shape and size of the bubble has to be
discussed qualitatively.
The pressure in the classical (2D) bubble is estimated to be

P0
cl = Pa + γ/Rcl ≈ 9.46 bar, where Pa ≈ 1 bar is the ambient

pressure and Rcl ≈ 85.1 nm is the radius of curvature of the
classical bubble. The pressure in the bubble with the vdW
interaction is distributed inhomogeneously as shown in Figure
2. In the center, it is approaching P0 ≈ 14.92 bar and sharply
increases near the edges. This inhomogeneous pressure
distribution can be responsible only for a small part of the
difference between the bubbles. The number of molecules dN/
dx ≈ h(x) P(h) in the interval dx is shown in Figure 4a. For
comparison, the same value dN/dx ≈ h(x) is given for
homogeneous pressure P(h) = P0 in the bubble. As one can see,
dN/dx near the edge is larger than in the case of the

Figure 3. (a) Two-dimensional nanobubble on a homogeneous substrate (solid red curve) with a height of H = 5 nm. The dashed blue curve shows
the cylindrical cap of an equivalent size L given by eq 25. The black curve presents a classical bubble (i.e., a bubble in the macroscopic description
where the influence of the disjoining pressure is replaced by a perfectly localized contact angle boundary condition) containing the same number of
molecules. The dashed and dashed−dotted red curves correspond to the reduced interaction with scaling factors (see the text) of λ = 4 and 256,
respectively. (b) Close-up view of the figure near the bubble edge, indicating important parameters as explained in the text.

Figure 4. (a) Distribution of the number density dN/dx of molecules
per length dx as a function of lateral coordinate x. The blue curve
presents the distribution in the actual bubble. The red curve is for an
imaginary bubble with homogeneous pressure distribution P(h(x)) =
P0. (b) Bubble shape for an incompressible gas in comparison with the
classical bubble.
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homogeneous pressure, but the integral difference in the
number of molecules is just 3%.
In the classical bubble, the vdW interaction is contracted to a

line that is the contact line. Without pinning, this line can move
freely. If the interaction has a finite distance range, then the
contact line moves inward to balance the distributed forces.
When the interaction range increases, the classical bubble will
shrink more and more. To be sure that this is the case, let us
rescale the distance h → λh in the potential (eq 13), where λ is
a scaling factor. This rescaling can be absorbed by the change in
the parameters: AH′ = AH/λ

2 and hc′ = hc/λ. Note that this
transformation preserves the basic relation (eq 2). With this
transformation, we can change the magnitude of interaction (or
equivalently the range of interaction) but keep the same θY.
The case λ → ∞ corresponds to the classical bubble. In Figure
3, the bubbles for λ = 4 and 256 are presented by dashed and
dashed−dotted curves, respectively. The actual bubble
corresponds to λ = 1. An important observation is that the
bubble approaches the classical shape rather slowly when λ
increases.
It is also possible to determine what happens if the bubble is

filled with an imaginary medium that is an incompressible gas.
For that, one has to return to eqs 4 and 7, where we cannot use
the equation of state and have to keep the concentration as a
constant: n(P, T) = n0. The only change in the Gibbs free
energy is the volume term in the effective potential (eq 15),
κhP(h), that has to be changed by κhPn, where Pn = kTn0 is a
constant with the dimension of pressure. The resulting
functional, of course, coincides with that for drops (eq 1).
Parameter Pn was chosen to be equal to the pressure in the
classical bubble, P0

cl. The condition of a constant number of
molecules is equivalent to the condition of constant volume.
The result is presented in Figure 4b. One can see that the
bubble practically coincides with the classical bubbles except for
the behavior near the very edge. Moreover, even the small
difference quickly disappears with the increase in scaling factor
λ.
We can conclude that the contraction of the bubble in

comparison to the classical one in Figure 3 is the result of both
the finite interaction range and the gas compressibility.
3.3. Pinned Bubble. If the substrate is not homogeneous,

then the bubble size can be determined by the effect of pinning.
Pinning of the contact line keeps the lateral extension L as the
footprint area of the bubble fixed. This is a crucial assumption
for the stability of the surface nanobubbles.7−12 In this article,
we assume that the bottom of the bubble is homogeneous and
that inhomogeneities occur at the contact line. This is a
reasonable assumption because the interaction is important
very close to the bubble edge. Within this approach, we cannot,
however, describe the effect of contact angle hysteresis, which is
also related to inhomogeneities on the surface.18,38 To describe
the hysteresis, we have to explicitly introduce the dependence
of the Hamaker constant on the x − y coordinates.
According to eq 22, the bubble is defined by function ΔU(h),

which via eq 15 depends on parameter κ. This function for
three different values of κ is shown in Figure 5. At h = H, the
function is zero by definition. It has a maximum when the
disjoining pressure becomes comparable with the Laplace
pressure. At even smaller heights, it also has a minimum when
the repulsive interaction becomes comparable with the
attraction. Solutions of eq 22 exist only for ΔU(h) ≥ 0.
There is a minimal value of κ such that for every κ < κmin,
function ΔU becomes negative and solutions cease to exist.

This minimal value is defined by the same condition ΔU(h*) =
0 that we used to determine the unpinned shape. Hence the
critical case coincides with the homogeneous unpinned bubble.
Expressing κmin from the condition ΔU(h*) = 0, we find

κ = − *
− * *

w H w h
HP H h P h

( ) ( )
( ) ( )min

(26)

where, as before, h* is the precursor film thickness. The critical
function (curve 1) touches the horizontal axis at one point h =
h*. Because the solution (eq 24) is singular in this point, it can
be reached only at infinity (x → ∞) so that the domain of
heights hc < h < h* is not accessible. When κ > κmin, the
minimum is positive and all heights hc < h < H are available.
Function ΔU(h) for κ = 1.05κmin and 1.10κmin is presented by
curves 2 and 3, respectively.
Three pinned bubbles of the same height, H = 5 nm, and

different size are shown in Figure 6. Curve 1 shows the bubble,

which is very close to the critical one. It corresponds to δκ = κ
− κmin = 1 × 10−4, where κmin = 0.9412. The size of this bubble,
L = 43.8 nm, is very close to that of the critical bubble. One can
see a distinctive shoulder that remains from the critical bubble
but that now has a finite length. Curves 2 and 3 are presented
for δκ = 0.01 and 0.02, respectively. The bubble sizes in these
cases, L = 39.8 and 35.2 nm, are smaller than for the critical
bubble, as was expected. It has to be stressed that for pinned

Figure 5. Function ΔU(h) in units of γ for H = 5 nm and AH = 1.36 ×
10−20 J. Curve 1 corresponds to case κ = κmin, which describes the
bubble on a homogeneous substrate. Curves 2 and 3 correspond to κ =
1.05κmin and 1.1κmin, respectively.

Figure 6. Pinned bubbles at a fixed height H = 5 nm and Hamaker
constant AH = 1 × 10−20 J for three different values of δκ = κ − κmin.
Curves 1−3 correspond to δκ = 1 × 10−4, 0.01, and 0.02, respectively.
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bubbles one cannot demand the continuity of the gas−liquid
interface. At the point of pinning, this continuity is broken by
the presence of external pinning forces. This is why derivative
h′ stays constant for the last point of the bubble in contrast to
the bubble on the homogeneous substrate.
3.4. Critical Aspect Ratio. With the increase in κ, the

bubble size decreases, as one can see from Figure 6 or deduce
from eq 25. It means that the bubble with κ = κmin corresponds
to the largest possible bubble for a given height and Hamaker
constant. In this sense, we call this bubble a critical bubble.
Therefore, the interaction restricts the aspect ratio = L H/ of
the surface nanobubbles: with the increase in , the surface
tension can no longer sustain the increasing interaction. The
largest aspect ratio cr is realized for the critical bubble. Figure
7 shows cr as a function of bubble height H for three different

values of the Hamaker constant. Actually, instead of AH we have
used in the figure an equivalent parameter θY, which is related
to AH by eq 2. When H becomes large, cr saturates at the
values shown by the dashed lines. This limit can be found
analytically.
As we already mentioned, at H → ∞ the precursor film

thickness is reduced to h* → hc and the pressure is reduced to
P(h*) → P0. Then for κmin in this limit we find from eq 26

κ → − → ∞
w h
HP

H
( )

,min
c

0 (27)

The aspect ratio in the same limit can be determined from eq
25. At the top of a large bubble, the interaction does not
contribute, and we find dU/dh|h=H → − κP0. By substituting
into eq 25 together with κ = κmin, we find for the critical aspect
ratio

θ
θ

→
+
−

→ ∞H2
1 cos
1 cos

,cr
Y

Y (28)

where instead of potential w(hc) we introduce the contact angle
according to the relation γ(1 − cos θY) = −w(hc). It has to be
stressed that this aspect ratio is equivalent to the classical

boundary condition: the contact angle is equal to Young’s
angle, θ(L/2) = θY, where θ(L/2) is the contact angle at the
bubble’s edge.
For small heights, the critical aspect ratio cr deviates from

the classical limit (eq 28) as Figure 7 demonstrates. For
example, even for H = 200 nm the deviation from the classical
limit is above 2%. Such a strong sensitivity to the interaction
was already stressed for bubbles with a fixed number of
molecules, and it is related to the compressibility of the gases.
We did similar calculations for an incompressible gas, keeping
all the other properties of the gas unchanged. The result is
strikingly different as demonstrated by the curve shown by the
open circles. In this case, 2% deviation is reached only for
bubbles with height H < 5 nm.

4. AXISYMMETRIC BUBBLE
In the previous section, a significant part of the analysis was
carried out analytically, which simplified the understanding of
the physical picture. In the case of axisymmetric bubbles, the
possibility of an analytical treatment is restricted, but we can
use the physical intuition developed in the previous section for
the interpretation of the results.
Variation of the total Gibbs free energy (eq 14) results in the

equation for the shape of an axisymmetric bubble

γ ′
+ ′

=
′⎛

⎝
⎜⎜

⎞
⎠
⎟⎟r

r
h

h

U
h1

d
d2

(29)

where h = h(r) is a function of the in-plane radius r and the
prime indicates the derivative with respect to r. As in the case of
2D bubbles, the boundary conditions at the top of the bubble
are h(0) = H and h′(0) = 0. For the axisymmetric bubble, the
problem cannot be solved analytically because eq 29 does not
have a first integral similar to eq 21.
We expect that on a homogeneous substrate there is a

continuous transition at infinity to a precursor film of thickness
h*, h → h*. Then the boundary condition at r → ∞ is h′ → 0.
Continuity also demands that the curvature at infinity has to be
zero, which is equivalent to the condition dU/dh→ 0, and then
asymptotically at large r eq 29 is linearized

γ
″ + ′ = − *h

h
r

B
h h( )

(30)

where B is a constant defined by the effective potential ΔU.
The solution of this equation is proportional to the modified
Bessel function γK r B( / ), which asymptotically at large r has
the form

γ= * + − → ∞h r h
A

r
r B r( ) exp( / ),

(31)

where A is an integration constant. The situation here is
completely similar to that for the 2D bubble on the
homogeneous substrate. The height h = h* can be reached
only at r → ∞. On the other hand, the physical size L is
determined by an equation similar to eq 25 with an additional
factor of 2 on the left-hand side, which reflects the existence of
the two principal curvatures.
The problem was solved numerically using the Runge−Kutta

method with the initial conditions h(0) = H and h′(0) = 0.
Parameter κ was chosen to satisfy the condition h′ → 0 at
infinity. This bubble describes the critical bubble, which
corresponds to the minimal value κ = κmin. Any bubble with

Figure 7. Critical aspect ratio L/H for different Hamaker constants AH
= 0.87 × 10−20, 1.36 × 10−20, 1.97 × 10−20 J, which are equivalent to
Young’s angles θY = 20, 25, 30°. The curve shown by open circles was
calculated with θY = 25° for an incompressible gas. The dashed lines
give the asymptotic values (H → ∞) for the critical aspect ratios.
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larger κ but with the same height and Hamaker constant is a
pinned bubble. Figure 8 shows three bubbles for H = 5 nm and

AH = 1 × 10−20 J corresponding to different values of κ. The
bubble shown by curve 1 is close to the critical one and
corresponds to δκ = κ − κmin = 1 × 10−4, where κmin = 0.9658.
Curves 2 and 3 are given for δκ = 0.01 and 0.02, respectively. In
comparison to a similar Figure 6 for the 2D case, one can see
that the bubble size decreases faster with the increase in κ for
purely geometrical reasons. In the inset, the dependence of the
bubble size on κ, which follows from eq 25, is shown for both
2D and 3D cases. The minimal κ values are indicated by the
dots on each curve. The difference between the 2D and 3D
curves originates from different factors in the Laplace pressure
(1 vs 2). Close to κ = κmin, derivative dL/dκ is larger for the 3D
case. This explains the faster variation of L with κ.
The critical aspect ratio as a function of bubble height for

axisymmetrical bubbles is shown in Figure 9 for three different

Young’s angles (or three different Hamaker constants). Because
in the classical limit H → ∞ the same relation (eq 28) for cr

holds true, the asymptotic limits shown by thin dashed lines are
the same as for the 2D case. One can see that the curves behave
similarly to those for the 2D case. However, for axisymmetric
bubbles the transition to the classical limit happens even more
slowly. This is again related to the geometrical reason.

5. CONCLUSIONS
In this article, we considered the influence of the disjoining
pressure on the shape, aspect ratio, and pressure distribution
inside of the surface nanobubbles. The disjoining pressure was
considered to be an external field for the thermodynamic
characteristics of the gas filling the bubble. This external field is
the reason for the inhomogeneous pressure distribution in the
bubble. We characterized the bubble with the Gibbs free energy
that includes the standard surface contribution and nontrivial
volume contribution. The latter took into account the gas
compressibility with a nonuniform pressure distribution.
Minimization of the Gibbs free energy allowed for the
determination of all of the characteristics of the bubble.
The resulting bubble shape slightly deviates from the classical

bubble (defined by Young’s contact angle θY) with the same
number of molecules but preserves the nearly spherical-cap
shape. The deviation is a combined effect of the finite
interaction range and the gas compressibility. We found that
for a fixed Hamaker constant the bubble aspect ratio L/H
(size/height) has to be smaller than a critical value H( )cr ,
which depends on the bubble height H. Because of the
interaction, a bubble with a small height cannot exist. For large
bubbles (H → ∞), the critical aspect ratio approaches that
given by the Young’s contact angle. We found deviations from
this classical limit and established that this effect is related to
the gas compressibility. Finally, we stress that the physical idea
and the main finding in ref 11, namely, pinning and a stable
balance between the Laplace pressure and the gas overpressure
as the origin of the stability of surface nanobubbles, remain
unaffected by the results in this article.
We did explicit calculations for a van der Waals interaction,

although the method applied in this article is much more
general. It can be easily generalized to include different
contributions that are typically associated with the disjoining
pressure. The surface charges on the solid surface or on the
gas−liquid interface also could be included.
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