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In this paper we exploit some analogies between flows near capillary interfaces and near elastic
interfaces. We first consider the elasto-hydrodynamics of a ball bearing and the motion of a gas
bubble inside a thin channel. It is shown that there is a strong analogy between these two lubrication
problems, and the respective scaling laws are derived side by side. Subsequently, the paper focuses
on the limit where the involved elastic interfaces become extremely soft. It is shown that soft gels
and elastomers, like liquids, can be shaped by their surface tension. We highlight some recent
advances on this new class of elastocapillary phenomena.
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FIG. 1. Dimple formation in fluid and elastic interfaces. Left: dimple below an impacting liquid drop. The air between the
drop and the rigid wall is squeezed out of the thin gap, and the resulting lubrication pressure induces a dimple measured by
interferometry. Reprinted with permission from R.C.A. van der Veen et al., Phys. Rev. E, 85 026315 (2012). Copyright 2012
by the American Physical Society. Right: Very similar dimple profiles are observed when a rigid sphere approaches an elastically
compliant substrate. Reprinted with permission from Y. Wang et al., Phys. Rev. Lett, 115 248302 (2015). Copyright 2015 by
the American Physical Society.

I. INTRODUCTION

Capillary flows and wetting phenomena appear naturally in a broad variety of contexts that involve droplets, thin
films and liquid jets. A challenging aspect in resolving such flows is that the shape of the free surface is not known a
priori, but has to be found self-consistently with the flow. Owing to surface tension, the normal stress is determined
by the curvature of the interface, which together with the kinematic boundary condition gives a nonlinear coupling to
the flow. As a consequence, even viscosity-dominated flows becomes highly nonlinear – this is exemplified explicitly in
the nonlinear lubrication (thin film) equation. Similar free boundary problems arise in the context of fluid-structure
interaction or elasto-hydrodynamics, where flow induces elastic deformation of the confining boundaries. Examples
can be found on all length scales, ranging from airfoil flutter, wind-deformed trees, flow in collapsible tubes, down to
cellular motion through the beating of flexible flagella. In all cases, the shapes of the elastic bodies have to be found
self-consistently with the flow, coupled kinematically and by elastic stresses.

Though liquid and elastic response to shape deformation are very different, the structure of the resulting flows
can be very similar. This is illustrated in Fig. 1, comparing an image of liquid drop impact (left panel [1]) and the
approach of a rigid sphere above a soft elastic layer (right panel [2]). In both cases, a squeeze flow appears in the thin
gap between the impactor and the substrate; this leads to a build-up of a lubrication pressure that is able to deform
the droplet and the elastic layer [1–7].

In the first part of this paper we will fully work out the analogy between capillary and elastic flows for two closely
related problems: the motion of a bubble in a narrow channel [Bretherton’s problem, Fig. 2(a)] and the elasto-
hydrodynamic lubrication appearing in deformable ball bearings [Fig. 2(c)]. The former is a paradigmatic example
for capillary flows [8–11], while the latter is classical in the context of tribology [12–16]. Here we show that both flows
exhibit the same mathematical structure, and we will derive the resulting scaling laws using the very same method
in both cases.

Elastic lubrication phenomena are not restricted to the context of very stiff bearings, but are also encountered for
rubber seals or for very soft (bio)materials such as articular cartilage. Interestingly, when considering exceedingly soft
matter, the wetting and lubrication becomes even more intricate and the analogy with liquid interfaces takes on a
whole new meaning. Namely, gels and elastomers themselves posses a solid surface tension γs, and as a consequence
share common mechanical features with liquid interfaces [17–22]. Indeed, surface effects can compete with, and even
dominate over, bulk elastic effects when the Young’s modulus E of the solid is sufficiently small. More precisely, one
can define the ratio of solid surface tension over Young’s modulus, γs/E, as the elastocapillary length. This length
sets the scale below which capillary effects of the solid dominate over its bulk elasticity. For common soft gels with
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FIG. 2. Three similar lubrication problems. (a) A long bubble moving inside a channel [8]. (b) A flexible plate that leaves
a thin liquid film [23]. (c) A sliding Hertzian contact [12, 16]. The red dashed zone in all three panels indicates the “inner
region” of height H and length L, which is described by a lubrication flow. Panel (a) adapted from F.P. Bretherton, J. Fluid
Mech. 10, 116 (1961), reproduced with permission from Cambridge University Press. Panel (b) adapted from J. Seiwert et al.,
J. Fluid Mech. 715, 424 (2013), reproduced with permission from Cambridge University Press. Reproduced from Snoeijer et
al., Phys. Fluids 25, 101705 (2013), with the permission of AIP Publishing.

moduli in the range of 1-100 kPa, this length γs/E can become as large as 1-100 microns and leads to a new class of
elastocapillary phenomena that are currently actively explored [20–22].

In the second part of the paper we therefore highlight some striking features of elastocapillary interfaces, and discuss
some deep connections between between the adhesion of solids and the wetting of liquids.

II. LUBRICATION OF BUBBLES AND SOLIDS

To illustrate the analogies between capillary lubrication and elastic lubrication, we will focus on two prototypical
problems: Bretherton’s analysis of long bubbles in a narrow tube [Fig. 2(a)] and the elasto-hydrodynamic lubrication
in tribology [represented here by a soft slider in Fig. 2(c)]. Both cases involve the steady motion of a deformable object
parallel to a rigid wall, with a prescribed velocity U , lubricated by a thin liquid film of thickness H. A third example
that exhibits a similar structure is that of the “flexible scraper” that leaves behind a thin liquid film [Fig. 2(b)].

The question we address for all cases in Fig. 2 is how the thickness of the lubrication film scales with the sliding
velocity, i.e. H ∼ Uα. Though the three lubrication flows exhibit different scaling exponents α, the structure of
the problems is strictly identical. A key ingredient is that the lubrication film becomes asymptotically thin at low
velocities, so that the hydrodynamics affects only a small region – this lubrication zone is indicated by the red dashed
circles in Fig. 2. The height H and width L of this hydrodynamic zone are unknown a priori and have to be determined
self-consistently. At larger scales, the elastic or capillary interfaces are essentially at equilibrium. The purpose of this
section is to highlight the equivalent structure of these elastic and capillary lubrication flows. We work out the three
cases in the form of scaling analysis; the full solution involves a more detailed matched asymptotic expansion based
on similarity solutions, for which we refer to [8, 16, 23].

A. Bretherton bubbles: α = 2/3

We first focus on the flow in the thin film below the bubble, for which a more detailed zoom is given in Fig. 3. The
flow can be solved by the Stokes equation, which in the lubrication approximation reduces to

dp

dx
= η

d2vx
dy2

. (1)

The horizontal fluid velocity naturally scales as vx ∼ U , while the vertical coordinate is set by the film thickness
y ∼ H. However, the horizontal length scale x ∼ L and the pressure scale p ∼ P are still unknown, and we therefore
write (1) as

Lubrication :
P

L
∼ ηU

H2
. (2)
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FIG. 3. Zoom of the lubrication zone, shown as the dashed regions in Fig. 2. This “inner region” has a horizontal scale L and
a vertical scale H. In the frame co-moving with the deformable interface, denoted h(x), the wall is moving with velocity U .

The horizontal scale is sometimes referred to as the length of the “dynamical meniscus” [11].
A second equation results from the relation between pressure p(x) inside the lubrication film and the shape of the

interface h(x). For capillary interfaces this is given by the Laplace pressure p = −γd2h/dx2, which in terms of the
scaling law gives

Deformation : P ∼ γH

L2
. (3)

The two equations (2) and (3) do not yet fully specify the lubrication layer, since there are three unknown scales:
the horizontal and vertical lengths H and L, and the pressure scale P . The problem is closed by a matching condition
that connects the small-scale lubrication region to the large-scale interface profile. The latter is essentially unaffected
by the the thin flowing layer, so that at large scale the interface is at equilibrium. For the Bretherton problem, the
meniscus has a curvature that is fixed by the channel size R. In order for the thin film region to match with this
outer shape, h ∼ x2/R, the lubrication film should satisfy a geometric matching condition

Matching : H ∼ L2

R
, (4)

which provides the desired meniscus curvature R−1.
The various scales can now be determined from equations (2,3,4), e.g. by eliminating the pressure P and the

horizontal length L, and subsequently solving for H. This gives the classical scaling law

H ∼ R
(
ηU

γ

)2/3

, (5)

hence H ∼ U2/3. The same exponent is also observed for the Landau-Levich-Derjaguin problem in dip-coating [9] or
for pulled soap films [10]. On the right hand side one recognises the capillary number Ca ≡ ηU/γ, so we introduce
the more familiar form

H = 1.34RCa2/3, (6)

where we now also provide the prefactor as obtained from the full matched asymptotics solution in [8].
It is important to note that the matching procedure relies on the assumption that the film thickness H is small

with respect to the macroscopic size R, so (6) implies that the analysis is valid for Ca� 1. One further verifies that

L ∼ RCa1/3, so that for small capillary numbers one finds H/L� 1, justifying the lubrication assumption.

B. Elasticity

The exact same strategy can now be followed for the elastic problems of lubricated Hertz contacts and the flexible
scraper. The lubrication equation (2) is the same, but differences appear in (3) and (4), respectively describing the
relation between pressure and deformation and the static interface shapes. Below we adapt these relations and derive
the different scaling laws.



5

1. A flexible scraper: α = 3/4

For the scraper problem of Fig. 2(b) we closely follow Seiwert et al. [23]. They treat the scraper as a thin elastic
plate of length R, and bending modulus B = Et3/12(1 − ν2) where t is the plate thickness. The relation between
pressure and the shape of the plate is p = Bd4h/dx4, which leads to the scaling law

Deformation : P ∼ BH

L4
, (7)

This replaces (3) in the bubble analysis.
The static “outer” shape in the experiment in [23], is imposed by clamping the scraper at one end. The other end

of the scraper is assumed to approach the liquid film with free end conditions. This gives as a boundary condition
that the internal torque of the beam vanishes, and hence the scraper’s curvature d2h/dx2 → 0 as it approaches the
film. Second, we will consider that the tip of the beam is tangent to the coated surface, i.e. dh/dx → 0. Hence the
local shape is of the form h ∼ x3/R2, where the length scale of the outer solution is set by the plate length R. Once
more, expressing the outer shape in terms of the horizontal scale of the inner solution, x ∼ L, we obtain a matching
condition

Matching : H ∼ L3

R2
, (8)

replacing (4) in the bubble analysis.
The final step is to eliminate L and P between (2,7,8), which yields the flowing thickness below the scraper

H = 0.66R

(
ηUR2

B

)3/4

. (9)

Here we again we used the prefactor from the matched asymptotic expansion [24] , as derived by Seiwert et al. [23].
We thus find a different scaling exponent as compared with the Bretherton problem, namely H ∼ U3/4. However, it
is clear that the solution structure is strictly identical.

2. Hertz contacts: α = 3/5

We now consider the elastic slider problem in Fig. 2(c), which is equivalent to the elasto-hydrodynamics of rotating
ball bearings. Firstly, the elastic cylinder of radius R is pressed against a solid wall with a load F (force per unit
length). This is a two-dimensional version of a Hertz contact for which the width of the contact zone Rc, indicated
in Fig. 2(c), can be computed as [13]

Rc = R

(
4F (1− ν2)

πER

)1/2

. (10)

Subsequently, the cylinder set into motion with respect to the wall while lubricated by a thin film.
In this case of a bulk elastic material, the relation between pressure p(x) and the gap thickness h(x) is a bit more

involved, namely

h(x) = c+
x2

2R
− 2(1− ν2)

πE

∫ ∞
−∞

dx′ p(x′) ln |x− x′|. (11)

The first terms on the right-hand side represents the shape of the cylinder in its reference state, i.e. without any
elastic deformation. The integral represents the elastic deformation induced by a pressure distribution p(x) acting
on the elastic substrate. It can be computed as a convolution of the the pressure with the Green’s function of a
line-loading of a semi-infinite elastic half-space. In terms of a scaling analysis, this becomes

Deformation : H ∼ LP

E
, (12)
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where we anticipated that the dominant contribution comes from the integral over the pressure, over the dynamical
horizontal scale L. Note that the size L of this lubrication region will be much smaller than the total size of the
contact Rc.

The outer shape corresponds to that of a static Hertz contact. In principle this can be derived from (11), but here

we simply pose the result, reading h(x) ∼ R1/2
c |x|3/2
R , where |x| is the distance measured from the edge of the contact

point [13]. In terms of scaling, this gives the matching condition

Matching : H ∼ R
1/2
c L3/2

R
. (13)

As before, the final step consists of combining (2,12,13), yielding the scaling law

H5 ∼ (ηU)3R4

E3R2
c

. (14)

Further replacing the width of the contact zone Rc by its value given in (10), we finally obtain

H = 0.45

(
π(3ηUR)3(1− ν2)2

2FE2

)1/5

, (15)

where the prefactor is drawn from the similarity analysis in [16]. Hence, the sought for scaling law becomes H ∼ U3/5.
This completes the discussion of the three examples shown in Fig. 2, for which we have derived the scaling laws by

following three times the same scheme.

III. SOLID CAPILLARITY: ELASTIC INTERFACES WITH SURFACE TENSION

We now turn to elastic interfaces in the limiting case of very low stiffness. Solid interfaces exhibit an excess surface
free energy, just like liquid interfaces. However, only fairly recently it has been appreciated that the resulting surface
tension γs – often denoted surface stress in solid mechanics [21, 22, 25] – has important mechanical consequences:
it implies a jump in normal stress γsκ, where κ is the interface curvature, and this can dramatically change the
mechanics of very soft elastic materials. Here we highlight a few striking consequences of solid surface tension.

A. Solid Laplace pressure

As a first example, we consider the stability of thin cylindrical rods. Mora et al. [17] demonstrated that very soft
cylinders exhibit a Rayleigh-Plateau-like instability driven by the solid’s surface tension, in a way that is similar to
liquid jets. Figure 4(a) from top to bottom shows agar gel cylinders of decreasing stiffness, the softer ones being
unstable. Indeed, surface tension acts in the same manner as for liquids. Axisymmetric perturbations of the radius
along the cylinder, r(z) = R(1 + εeikz), induce a pressure jump

∆Pγ ∼ ε
γs
R

[
1− (kR)2

]
, (16)

where R is the initial radius and k is the wavenumber of the perturbation in the axial direction. For liquid jets the
threshold for instability appears when ∆Pγ = 0, such that all waves with kR < 1 are mechanically unstable. When the
cylinder consists of a solid gel, however, the distortion of the interface induces an opposing elastic stress ∆Pel ∼ εE,
where ε = δr/R now provides the typical strain inside the soft solid gel. Balancing the capillary and elastic stress,
∆Pγ = ∆Pel, gives a marginal condition

1− (kR)2 ∼ ER

γs
, (17)

so that instabilities can develop when the right hand side is sufficiently small. Indeed, the detailed analysis and
experiments in [17] show that the instability appears when γs/(ER) > 2. In other words, the elastic cylinder is
mechanically unstable when the ratio γs/E exceeds the cylinder diameter.
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FIG. 4. Surface tension effects in elastic solids. (a) Thin cylinders of very soft agar gel can develop a Rayleigh-Plateau instability
driven by the solid surface tension. The stiffness is decreased from top (E = 81 Pa) to bottom (E = 36 Pa). Reprinted with
permission from S. Mora et al., Phys. Rev. Lett, 105 214301 (2010). Copyright 2010 by the American Physical Society. (b)
Rounding of sharp edges on a soft gelatine after it is withdrawn from a PDMS mould. Reproduced from D. Paretkar et al.,
Soft Matter 10, 4084 (2014) with permission from the Royal Society of Chemistry.

The ratio γs/E is the so-called elastocapillary length and sets the length scale below which capillary phenomena
can compete with elasticity. This is further highlighted in the example in Fig. 4(b), taken from Paretkar et al. [19].
The figure shows the shape of a gelatine replica (lower image) after it is extracted from a stiff PDMS mould (upper
image). Clearly, the sharp crenellations of the mould are not present in the gelatine: all sharp features below the
elastocapillary length are smoothened by surface tension. Within linear elasticity, one easily shows that sinusoidal
perturbations of wavenumber k are in fact reduced in amplitude by a factor [1 + 3

2
γsk
E ]−1, once more illustrating the

importance of the ratio γs/E.

B. Soft wetting: Static and dynamic contact angles

1. Neumann’s law

The action of solid surface tension becomes even more pronounced when a liquid drop is deposited on a soft gel.
The x-ray image in Fig. 5(a) from Park et al. [26] shows a detailed view of the three-phase contact line at the
edge of a water drop. The solid is “pinched” by the action of the liquid-vapor surface tension γ. Importantly, the
liquid-vapor interfacial forces are localised within a very narrow interfacial zone, that extends over a nanometric
scale a. By consequence, the liquid-vapor interface exerts a very large tensile stress on the solid, that is of the order
γ/a ∼ 108 Pa [27–31]. For stiff materials like glass (with E ∼ 1011 Pa), such a stress does not induce any significant
deformations and the substrate can be considered perfectly rigid; as is normally assumed in the derivation of Young’s
law for the contact angle. However, the stress induced by the liquid-vapor interface exceeds the Young’s modulus of
the gel in Fig. 5(a) by at least four orders of magnitude. How does the gel resist such a large forcing near the contact
line?

The presence of a solid surface tension can resolve this paradox [32–36]: a vectorial balance of the three surface
tensions (solid-liquid, solid-vapor, liquid-vapor) leads to the contact angles that satisfy Neumann’s law. Indeed, the
geometry of the contact line in Fig. 5(a) looks similar to that of liquid lenses, such as oil drops floating on water [11].
These observations are consistent with the discussion of the previous paragraphs, based on which one expects that
surface tension dominates over elasticity at small scales, i.e. at distances smaller than γs/E. Whether or not the
microscopic contact angles resemble “Young” or “Neumann” then depends on whether the elastocapillary length γs/E
is small or large with respect to the microscopic size a [33].

The emergence of Neumann’s law as the relevant boundary condition for wetting on soft media has indeed been con-
firmed from detailed variational analysis, based on minimisation of thermodynamic elastic and capillary energies [37].
However, we emphasise that this thermodynamic derivation crucially relied on the assumption that the surface free
energy of the solid can be treated as a material constant that is independent of the elastic strain. A priori, such an
approximation is not allowed for elastic interfaces, for which the free energy is not expected to remain constant when
the material is strained. The potential consequences of this so-called Shuttleworth-effect [38] are reviewed in [21].



8

FIG. 5. Wetting a soft solid. (a) X-ray image of a three-phase contact line of a water drop on a soft silicon gel. The water
drop induces substantial elastic deformation of the substrate. The scale bar indicates 5µm. Reprinted from S. Park et al., Nat.
Comm. 5, 4369 (2014), Nature Publishing Group, licensed under a Creative Commons Attribution 4.0 International Licence.
(b) Calculated profile of a wetting ridge that moves with a prescribed velocity V . The contact line motion induces a rotation of
the wetting ridge by an angle ϕ. (c) The rotation angle ϕ as a function of contact line velocity V , for water drops spreading on
a silicon gel, comparing experiments (symbols) and theory (red solid line). Panels (b,c) reprinted from Karpitschka et al., Nat.
Comm. 6, 7891 (2015), Nature Publishing Group, licensed under a Creative Commons Attribution 4.0 International Licence.

2. Dynamic contact angle

Classically, the wetting and spreading dynamics of liquids over surfaces is described by a dynamic contact angle
θd [39–41]. As the contact line moves with a velocity V , the dynamic (or apparent) angle of the liquid changes with
respect to the equilibrium angle θeq. This non-equilibrium liquid angle correlates to the dissipation induced by the
fluid motion. In the 1990’s it was observed that the contact line speed is slowed down dramatically, by orders of
magnitude, when the substrate is made exceedingly soft [29, 42, 43]. This led to the hypothesis that dissipation inside
the substrate plays an important role, as also highlighted in recent experiments [44, 45], since very soft materials
typically are highly viscoelastic.

Karpitschka et al. [46] further showed how the dynamic contact angle can indeed be inferred directly from the
viscoelastic dynamics inside the solid. The static wetting ridge was found to rotate by an angle ϕ when the contact
line is set into motion, as was computed numerically in Fig. 5(b). The amount of rotation depends strongly on the
rheology of the solid. Figure 5(c) reports measurements of ϕ = θd − θeq as a function of contact line velocity V . At
low velocity it is found that ϕ ∼ V 0.55, which is very different from any classical wetting law. The origin of this scaling
law can be traced back to the rheological spectrum: it reflects the scaling of the loss modulus of this material, which
behaves as G′′ ∼ ω0.55 at low frequency ω. Indeed, a detailed theory based on the complete rheological spectrum
of the solid leads to the red line shown in Fig. 5(c), capturing the full range of data [46]. Remarkably, since most
of the dissipation occurs inside the substrate, the liquid can be considered at equilibrium during these spreading
experiments.

C. Adhesion of dry solids: Young’s law

We have seen that, on small scales, soft elastic interfaces develop wetting contact angles just like liquid interfaces.
Does this also carry over when a gel is brought into contact with a rigid solid? Does the gel make a contact angle that
satisfies Young’s law? This question is relevant for indentation problems in contact mechanics, where a rigid sphere is
brought into contact with an elastic layer, as shown in Fig. 6. In the presence of adhesion, such an indentation leads
to the classical JKR-law for the width of the contact [47],

` ∼
(
WR2

E

)1/3

, (18)

valid when no external load is applied. Here, W is the work of adhesion and R the radius of the indenter. We note
that the derivation of this law relies on an analogy with fracture mechanics, for which the edge of the contact is
treated as a singular crack [13, 47, 48] – hence, it remained unclear what happens at the contact line.

Recent work showed that it is indeed possible to extend the concept of contact angles to the adhesion of dry solids. A
first indication of this can be seen in the confocal microscopy images in Fig. 6(a) from Style et al. [49]. The softest gel
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FIG. 6. Contact between a rigid indenter and a soft elastic layer. (a) Gels of varying stiffness indented by a rigid sphere, imaged
by confocal microscopy. Reprinted with permission from R.W. Style et al., Nat. Comm. 4,2728 (2013), Nature Publishing
Group. (b) Theoretical profiles of varying stiffness, including the definition of the contact width `. All profiles were computed
with the very same Young’s angle at the three-phase contact line. Image courtesy of S. Karpitschka (see [53] for details).
Stiff layers follow the classical JKR-law (18) for “solid-adhesion” (γs/E � `) while soft layers behave as“wetting liquids”
(γs/E � `). These results suggest that Young’s angle applies also for gels of finite stiffness.

(dark blue data) almost acts like a perfect liquid, in which the rigid sphere sinks until it reaches a desired angle. This
new wetting-like regime is not captured by the JKR-law and emerges for very soft materials, when γs/E � ` [50–52].
In addition, Karpitschka et al. [53] investigated the boundary condition at the contact line by variational analysis. It
was found that Young’s law should in fact be satisfied not only for vanishing stiffness, but also for large E (as long as
γs/E is larger than nanometric). The corresponding theoretical profiles for different stiffness are shown in Fig. 6(b).
These profiles capture the trends observed experimentally, and are in perfect agreement with the classical law (18)
at large stiffness. Though not visible in Fig. 6(b), all profiles exhibit the very same contact angle as a boundary
condition. This series of observations provide a unification between the adhesion of dry solids and the wetting of
liquids: the difference is only in the relative strength of elasticity and capillarity.

IV. DISCUSSION

This paper explored the possible merits of drawing analogies between elastic and capillary interfacial flows. We
first set side by side three apparently distinct lubrication problems, and solved them by applying a single method.
The second part of the paper showed that very soft elastic surfaces in fact behave very similarly to liquid interfaces,
owing to their surface tension. Perhaps the most remarkable feature is that soft solids can be folded into liquid-like
contact angles, when in contact with a liquid or another solid. Based on this, one can appreciate a deep connection
between liquid wetting and the mechanics of adhesive solids: both represent different limiting cases of an adhesion
problem, governed the very same wetting boundary condition.

It is tempting to consider the elastic-capillary analogy between other types of lubrication problems such as the
dimple formation during normal impact shown in Fig. 1. Similarly, the spreading of droplets under elastic membranes
gives rise to interesting dynamics reminiscent of capillary drop spreading [54], and many other examples could be
given. A particularly nice example is found for the Cheerios effect [55], i.e. the interaction of particles at a fluid
interface, for which elastic counterparts were proposed recently. Solid particles were found to attract when deforming
elastic interfaces by their weight [56, 57]. The roles of solid and liquid were even completely reversed in the inverted
Cheerios effect, where liquid drops on soft solids were also found to interact by the induced elastic deformation [58].
Surprisingly, the interaction between droplets could be tuned from attractive to repulsive upon varying the thickness
of the gel layer. Exploiting the elastic-capillary analogy hence continues to be a fruitful approach for a broad variety
of interfacial phenomena.
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