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Soft particles at a fluid interface

Hadi Mehrabian,a Jens Hartingba and Jacco H. Snoeijer*ab

Particles added to a fluid interface can be used as a surface stabilizer in the food, oil and cosmetic

industries. As an alternative to rigid particles, it is promising to consider highly deformable particles that

can adapt their conformation at the interface. In this study we compute the shapes of soft elastic

particles using molecular dynamics simulations of a cross-linked polymer gel, complemented by

continuum calculations based on linear elasticity. It is shown that the particle shape is not only affected

by the Young’s modulus of the particle, but also strongly depends on whether the gel is partially or

completely wetting the fluid interface. We find that the molecular simulations for the partially wetting

case are very accurately described by the continuum theory. By contrast, when the gel is completely

wetting the fluid interface the linear theory breaks down and we reveal that molecular details have a

strong influence on the equilibrium shape.

1 Introduction

An important application of particle stabilized fluid interfaces
goes back to the importance of retaining the dispersivity of
emulsions.1,2 The dispersion process results in a large interfacial
area and hence high interfacial energy. Being energetically
unfavourable, dispersed phases will eventually coarsen and
form phase separated volumes of fluids.3 A traditional way to
stabilise the dispersions with respect to phase separation is to
use surfactants. As an alternative for surfactants, an interface
can also be made kinetically stable by adding solid particles.1,4

Particle-stabilised emulsions, also called Pickering emulsions5,6

are metastable since the particles anchor to the interfaces much
more strongly than the surfactant molecules. For example,
particles as small as a few tens of nanometres have a desorption
energy as high as 103 to 104kBT, while it is around 10kBT for
surfactant molecules.1,7

As an alternative to solid particles, soft particles have
recently attained attention as stabilizers for emulsions.8 The
shape of the particles can adapt to the interface and depends
on the interplay of the molecular interactions between particle
and fluids as well as the elastic properties of the particle itself.
The most important types of relevant particles are cross-linked
polymer networks (microgels)9–12 and ligand or polymer grafted
nanoparticles.13–15 Combinations of both types are so-called
core–shell microgels.16,17 The desorption energy of micron-sized

microgel particles at an interface was found to increase even up
to 106kBT,18 making them very promising as stabilizers.19–23

The presence of a network of interconnected polymer chains
makes these particles deformable under an external forcing.
They can show the properties of both the individual chains
as well as the particles with well-defined boundaries.24 This
highlights the role of the interfacial tension of soft particles in
their deformation at a fluid interface. Understanding the
details of the adsorption of soft particles to fluid interfaces is
highly complex, as it involves e.g. the cross-linking of the polymer
network, temperature and pH value.22 However, obtaining a
fundamental understanding of the conformation of these
objects at a fluid interface in terms of the macroscopic and
microscopic parameters is crucial for exploiting them in many
practical applications.

Most experimental studies on the interaction of soft particles
and fluid interfaces focus on the behaviour of a single microgel
particle at a fluid interface25,26 or bulk properties of microgel
covered interfaces27–31 whose key observation is that the microgel
particles take a core–corona (also called fried-egg) shape at a
fluid interface. There are some challenges when studying the
deformation of a particle at a fluid interface: due to the small
size of microgel particles and their reflective index being very
close to that of the surrounding solvent, imaging is difficult.18

In addition, soft particles are very sensitive to external stimuli
such as pH or temperature change. There are few numerical
simulations of polymer grafted nanoparticles using molecular
dynamics. For example, Schwenke et al.32 have studied the
particle conformation and particle–particle interaction of polymer
coated nanoparticle in different solvents. Udayana et al.33 have
studied the adsorption/desorption energy of polymer coated
nanoparticles to/from an interface. Lane et al.34 have investigated
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the distribution of polymer chains. None of these works has
discussed the shape of the soft particles in terms of their
macroscopic properties.

From a theoretical point of view, it is appealing to investigate
the shape of soft particles using a continuum framework based
on linear elasticity. As the particle becomes increasingly soft,
however, such a theory must also account for interfacial
forces. The interplay of capillarity and elasticity was recently
investigated in great detail in the context of adhesion of
particles35–38 or the wetting of liquid droplets on highly deformable
substrates.39–44 In these studies the governing parameter was
found to be the elasto-capillary length gs/E, comparing the
surface tension of the solid gs to its Young’s modulus E. If the
particle (or droplet) size R is large with respect to gs/E, it can be
considered effectively rigid – except in a small region near the
contact line. In the opposite limit where the particle is small
with respect to the elasto-capillary length, the elasticity is so
weak that the elastic medium can effectively be considered as a
liquid with a surface tension. Extending this point of view to the
adsorption of soft particles at interfaces, one thus expects two
limiting cases:18,45 one is the behaviour of a perfectly rigid
particle at an interface (governed by the Young contact angle),
while the soft extreme of vanishing elasticity corresponds to
a liquid droplet at a fluid–fluid interface (governed by the
Neumann contact angles46). It has remained unclear to what
extent linear elasticity can describe the shape of soft particles at
fluid–fluid interfaces, in particular when the surface tension of
the particle is relatively low.45

In this paper we quantify the equilibrium shapes of soft
particles at fluid–fluid interfaces, by combining molecular
dynamics simulations and exact solutions derived from linear
elasticity. Previously, the molecular dynamics method has been
used to study the interaction between a liquid droplet or a solid
nanoparticle with a fluid interface,47,72 and the interaction
between soft materials made of inter-connected polymer
chains, with liquid or solid surfaces.35,36,48,49 Similarly, our
particles consist of a cross-linked polymeric liquid and are
adsorbed at a fluid–fluid interface. By varying the molecular
interactions and cross-linking density, we can explore a broad
range of Young’s moduli and interfacial energies. Snapshots of
typical simulations are shown in Fig. 1, where the individual
polymer chains can be identified by their color. Apart from an
expected dependence on the Young’s modulus, governed by the
dimensionless parameter gs/(ER), our key finding is that one
needs to distinguish the cases where the polymer is partially or
completely wetting. The left column of Fig. 1 shows simulations
of the polymer liquid (i.e. without cross-linking), respectively
for partial wetting (upper panel) and complete wetting (lower
panel). The right column shows equivalent systems, but now
for soft solid particles that are cross-linked and thus exhibit a
finite elastic modulus. We find that the partially wetting systems
are very accurately described by linear elasticity, as long as the
solid surface tension gs is comparable or larger than that of the
fluid–fluid interface. In the case of complete wetting, by contrast,
the interfacial forces favor a state where the gel covers the
entire interface but this is prohibited by the network elasticity.

Fig. 1 Snapshots from molecular dynamics simulations of soft particles at a fluid–fluid interface. The key parameters of this study are the elastic
modulus and the wettability of the particles. The left panels show the outcome for a liquid drop, consisting of a non-cross-linked polymer, respectively
for partially wetting (top) and complete wetting (bottom). The right panels show the corresponding particle shapes when the polymers are cross-linked
and have a finite elastic modulus. The reason for small asymmetry between left and right hand side of the soft particle in the complete wetting regime is
explained in Section 4.2.
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This leads to an intricate elasto-capillary balance, where the
elastic response is highly nonlinear. In addition, we observe an
important influence of molecular details of the cross-linking,
signalling a breakdown of continuum theory.

The paper is organised as follows: first, we discuss the
analytical continuum theory, which is limited to the regime
of small deformations, in Section 2. Details of the molecular
dynamics simulations are presented in Section 3 and our
simulation results are presented in Section 4. Here we provide
a detailed comparison to the continuum predictions and
explore the regime of complete wetting. The paper closes with
a discussion where we also comment on the implications of our
findings for microgel particles (Section 5).

2 Macroscopic thermodynamic
formulation

In this section we pose the problem of an elastic particle at an
interface from a macroscopic thermodynamic perspective. The
relevant dimensionless parameters are identified and the shape
of the deformed particle is computed in the framework of linear
elasticity. This provides a benchmark for the case of weakly
deformed particles, and outlines the key issues that will later be
explored by molecular dynamics for large particle deformations.
This study is done in a two-dimensional setup. It is expected
that the two-dimensional simulations capture the salient features
of the three-dimensional configuration because the main physics
of the problem happens at the vicinity of the contact lines except
that the global deformation in three-dimensions will be slightly
less than in the two-dimensional case due stress in the azimuthal
direction.

2.1 Dimensionless parameters

We consider a two-dimensional elastic particle (Young’s modulus
E) that is placed at a liquid–liquid interface (surface tension gb), as
sketched in Fig. 1. For simplicity, the study is limited to the cases
where the solid particle has an equal surface tension with the two
liquid phases, simply denoted gs, so that the particle will develop a
symmetric shape.† The reference state of the particle is a circle of
radius R, which is for example achieved by cross linking a liquid
drop that is fully immersed in one of the two liquids. We assume
the particle to be incompressible (Poisson ratio n = 1/2), although
the results are easily generalised to an arbitrary Poisson ratio. In
analogy to the case of liquid drops on deformable substrates,40,41,52

there are two dimensionless parameters that characterise the
problem, namely

S ¼ gs
ER

; and g ¼ gs
gb
: (1)

The first term is called the ‘‘softness’’ of the particle and compares
the elasto-capillary length gs/E (based on the solid surface tension),
to the particle radius. The second term is the ratio of surface
tensions, controlling the wetting conditions. Before turning to a
detailed analysis, it is instructive to discuss the extreme limits of
the softness S. For S = 0, the particle can be considered as
undeformable (large E or R) and one recovers the usual case of a
rigid spherical colloid at an interface. The limit S = N corresponds
to a particle without any rigidity, as is achieved for a polymeric
drop without any cross-linking. Hence, in this limit one expects to
recover the ‘‘liquid lens’’ floating at the interface.46 The shape of
such a lens is governed by the ratio of surface tensions g, and its
contact angle ys follows from the Neumann triangle (Fig. 2). Given
the symmetry of our problem, where the gel has an equal surface
tension with the two liquids, the Neumann balance of surface
tensions reads

gb ¼ 2gs cos ys ) ys ¼ arccos
1

2g

� �
: (2)

Quantifying the maximum drop deformation DR as defined
in Fig. 2, we find that

DRdrop

R
¼ p

2 ys � cos ys sin ysð Þ

� �1=2
sin ys � 1 for S !1: (3)

Note that such a drop exhibits a transition from partial wetting
to complete wetting when the surface tension ratio g - 1/2: at
smaller values of g the Neumann balance (2) cannot be satisfied.
The transition corresponds to ys - 0 for which eqn (3) gives a
divergence of DR/R, signalling the onset of a wetting layer.

2.2 Small deformations: linear elasticity

In the limit of small deformations, one can resolve the particle
shape using linear elasticity theory. The two-dimensional problem

Fig. 2 Schematic shape of the undeformed (grey circle) and deformed
particle (solid line). (r,f) denotes the components of the polar coordinates.
The fluid–fluid interface is located along the x-axis, at f = 0 and p. R,
DR and ys denote the particle’s radius, its maximum deformation and
contact angle.

† In case the surface energy varies with the amount of stretching, one needs to
distinguish between surface free energy and surface stress for the liquid–gel
interface due to the Shuttleworth effect.50 Since here we consider a system with
two identical liquids, this effect does not induce a forcing tangential to the particle
surface51 and our calculation is valid – in the remainder we simply refer to surface
tension, which for the liquid–gel interface must be seen as the surface stress.
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consists of a disk of radius R that is deformed under the influence
of an external stress at the free surface. This stress, or traction, has
two contributions. First, the liquid–liquid surface tension pulls on
the particle at f = 0 and p, where we use polar coordinates as
defined in Fig. 2. This traction is described by a perfectly localised
force per unit length, using a Dirac d distribution. Second, the
deformation changes the curvature of the particle–liquid interface,
and as such induces a capillary pressure that acts as an additional
traction gsk. In this expression gs is the surface stress (here simply
denoted as surface tension), while k is the extra curvature of the
solid–liquid interface due to the deformation, which to linear
order in the radial displacements ur reads

k ¼ 1

R2
ur þ

@2ur
@f2

� �
; (4)

to be evaluated at the disk boundary r = R. The importance of
this solid Laplace pressure has been highlighted in several
recent papers involving very soft gels,53–56 and will also be
apparent in the present work. The total traction boundary
condition thus becomes

srrðr ¼ R;fÞ ¼ gb
R

dðfÞ þ dðf� pÞ½ � þ gsk; (5)

srf(r = R, f) = 0, (6)

where the latter expresses the no-shear stress boundary condi-
tion. Interestingly, the traction depends on the displacement.
As a consequence, the resulting tractions and displacements
have to be determined self-consistently.

This two-dimensional problem can be solved using the Airy
stress function formalism,57 and the complete derivation is
given in the Appendix. The result is obtained using a series
expansion in polar coordinates, based on the classical solutions
by Michell. The resulting shape of the deformed particle is
given by (cf. Appendix)

rpðfÞ
R
¼ 1þ 3S

2gp

X1
k¼1

4k cos 2kf
4k2 � 1ð Þð1þ 3SkÞ; (7)

which indeed depends on both the dimensionless softness S
and the ratio of surface tensions g. A similar expression was
derived for axisymmetric particles in ref. 45. Some examples
of the deformed particles are shown in Fig. 3. Importantly,
the particle exhibits a finite contact angle ys, for all values
of the softness S, as can be seen from the kinks at the
position where the fluid–fluid interface applies its force. In
the theory, the angle y is even independent of the elastic
properties of the particle. This can be inferred from the
large k-asymptotics of (7), which gives a slope discontinuity
in drp/qf of magnitude 1/g. In terms of the contact angle
this gives

ys ¼
p
2
� 1

2g
; (8)

which is the small slope, or large g, equivalent of (2). Hence, the
continuum theory predicts that the contact angle is determined

solely by the surface tensions, satisfying Neumann’s law,
regardless of the stiffness. This is in perfect analogy to results
previously obtained for liquid drops on soft solids. The
Neumann’s angle also appear for axisymmetric soft particles.45

The maximum radius of the particle is attained at f = 0 and p,
for which the series (7) can be summed to the explicit form

DR
R
¼ 3S 2� 2Cð1=3SÞ � 4 lnð2Þ � 2gE � 3S½ �

g 9S2 � 4ð Þp : (9)

Here gE is the Euler–Mascheroni constant and C is the digamma
function. As expected, the deformation DR/R vanishes for a rigid
particle (S = 0) and saturates to a finite value in the very soft
limit (S - N). In the soft limit, we find DR/R - 1/(pg), which
agrees with (3) for large g. It the rigid limit, we obtain [using
C(x) C ln x]:

DR
R
’ 3

2p
S

g
ln

a

S

� �
¼ 3

2p
gb
ER

ln
aER

gs

� �
; for S � 1: (10)

where the numerical constant a ¼ 4

3
egE�1. The deflection thus

increases linearly with softness, involving the fluid–fluid
surface tension gb, with logarithmic corrections that involve
the surface tension of the solid gs. Similar scaling laws for
contact line deflections were obtained for drops on gels.40,44,52

Hence, the surface tension of the solid gs is critical to achieve
a finite elastic deformation in the macroscopic theory:
otherwise, the deformation would be (logarithmically) divergent.
In addition, gs determines the boundary condition for the contact
angle, following Neumann’s law. We will comment later how
this picture must breakdown in the regime of complete wetting,
for which the surface tensions cannot achieve the Neumann
balance.

The results from the molecular dynamics simulations will be
directly compared to the shape (7), the Neumann contact
angle prediction (2), as well as the maximum extension DR.
For the latter, it is convenient to normalise the extension (9)

Fig. 3 Deformation of a 2D particle at an interface, predicted by eqn (7)
for g = 2.0 and S = 200 000, 0.2 and 0.02. The contact angle ys = 75.51 for
all cases, dictated by the Neumann balance.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
1 

N
ov

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
it 

T
w

en
te

 o
n 

17
/1

1/
20

15
 1

8:
57

:5
0.

 
View Article Online

http://dx.doi.org/10.1039/C5SM01971K


This journal is©The Royal Society of Chemistry 2015 Soft Matter

by its limiting value achieved for a liquid droplet at large g i.e.
1/(pg), so the result only depends on the softness S (not on g):

DR
DRdrop

¼ 3S 2� 2Cð1=3SÞ � 4 lnð2Þ � 2gE � 3S½ �
9S2 � 4ð Þ : (11)

2.3 Observations and questions

The macroscopic theory provides quantitative predictions, for
the shape and the contact angle, that will be tested using
molecular dynamics simulations. However, the simulations
are even of more interest when the linear theory breaks down,
and we therefore point out some important limitations of linear
elasticity. First, the analysis only applies for large g, for which
according to (8) the Neumann angle ys is always close to p/2. The
reason for this is that in the linear elasticity calculation we have
evaluated the curvature k to lowest order in qur/qf – keeping
nonlinear terms prevents the solution by Fourier expansion. As
a consequence, the theory cannot capture the wetting transition
at g = 1/2, for which the angles are no longer small. Of particular
interest is the force balance in the vicinity of the contact line.
Contrarily to the linear theory, for the situation of complete
wetting the Neumann balance cannot be satisfied and an elastic
contribution must emerge to balance the localised contact line
force. How does the wetting transition appear in the case of
finite elasticity?

3 Molecular dynamics simulation

We study the particles in a quasi two-dimensional setup,
allowing to simulate a large particle at a less computational
cost as well as a direct comparison to the elasticity theory
described above. The setup is prepared in three main steps.
First a fluid–fluid interface is made. Then a cylindrical particle
is built from polymeric chains and finally the particle is inserted
at the interface and the system is equilibrated. In addition, two
auxiliary setups are needed to measure the Young’s modulus of the
particle and the liquid–particle surface tensions. Below, these steps
will be outlined in detail. We use the molecular dynamics method
implemented in the GROMACS 5.0.258–61 software to do the
numerical simulations. Integration of Newton’s equations is done
using the leap-frog algorithm. Neighbour searching is done using
verlet dynamic lists. Visualization of the results is done using the
VMD package.62

3.1 Interface modelling

To keep the model as simple as possible, we use the modified
shifted and truncated Lennard-Jones potential63 to model the
interaction between each pair of particles,

U ¼ 4e
d

r

� �12

� d

rc

� �12

þa d

rc

� �6

� d

r

� �6
" #" #

if r � rc

0 if r4 rc:

8><
>:

(12)

Here r is the distance between two particles, d is the repulsive
core diameter fixed to 0.34 nm, e is the depth of the potential

minimum set to 3 kJ mol�1, and rc is the cut-off radius equal to

5d. The characteristic time of the system is t ¼
ffiffiffiffiffiffiffiffiffi
md2

e

r
¼ 0:6 ps

and m = 10 amu is the particle mass. Using this set of
parameters, the surface tension of the liquid–liquid interface
would fall in the range between 0 and 73 mN m�1, which are
typical experimental values. In the remainder of the paper, we
will not use SI units, but reside to either plots nondimensionalized
by the particle radius, or use t, d, and e as the reference values for
the time, length, and energy, respectively. The coefficient a is set
to 1 for two identical Lennard-Jones particles and it is smaller
than 1 when two particles are of different species. This naturally
leads to phase separation, where a controls the degree of
miscibility and hence the surface tension. In this study there
are three phases and hence three values for a are required. Since
only symmetric liquid–particle interactions are considered, both
fluids have the same interaction parameter with the gel, which
we call ap. Therefore, only two values of a and ap will be varied to
produce different values for the ratio of surface tensions g.

The liquid–liquid interface is produced under the NPnT
ensemble where Pn denotes the pressure normal to the interface.64

For keeping the temperature and normal pressure constant, Nosé–
Hoover temperature coupling65 and Parrinello–Rahman pressure
coupling66 methods are used, respectively. Periodic boundary
conditions are applied in all three directions. In our simulations,
the produced liquid–liquid interface has approximately two
million Lennard-Jones particles and its dimensions in x, y,
and z directions, as defined in Fig. 1, are 600d, 300d, and
14.7d, respectively.

3.2 Particle modelling

The particle is made from interconnected polymeric chains.
Each chain is constructed using a coarse-grained model of
beads and springs and consists of 32 monomers where two
neighbouring beads interact via the following potential:

UðrÞ ¼ �1
2
ksRmax

2 ln 1� r2

Rmax
2

� �
þ 4e

d

r

� �12

: (13)

The first term on the right hand side is the so-called FENE
(finite extensible nonlinear elastic) potential which controls the
amount of the extension. The second term is the Lennard-Jones
repulsion term that accounts for the reduced volume effect
and prevents the collapse of the beads onto each other. We fix

ks ¼ 25
e
d2

� �
and Rmax = 1.5d. These values are chosen such that

the simulation timesteps can be taken on the order of the pure
Lennard-Jones fluid while making the link breakage energetically
impossible.67 By randomly cross-linking the polymeric chain, one
creates a network of entangled polymers that exhibits elasticity in
the long time limit. By increasing the density of the cross-linking,
the rigidity of the network increases leading to a larger Young’s
modulus. All non-neighbouring beads of the chains interact with
each other and also with the beads of the other chains through the
Lennard-Jones potentials as described in the previous section. It is
assumed that the particle is an isotropic material and the density
of the cross-links is distributed uniformly over the particle volume.
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In addition, the number of cross-links per chain is kept fixed to
distribute the cross-linkings over all chains. The interaction
between the polymeric beads and the liquid particle follows the
modified Lennard-Jones potential with the interaction parameter
called ap.

In order to make a two dimensional setup, we fix the size of
the simulation box in z direction. The minimum depth of
the simulation box is determined by two considerations.
Lennard-Jones particles should not interact with themselves
through the periodic boundaries. This condition is met by
choosing the depth to be twice the cutoff radius. Since the
cutoff radius is 5d, 10d is sufficient to remove the Lennard-Jones
self-interaction of particles. Second, polymeric chains should not
interact with themselves through periodic boundaries. In our
simulations, polymer chains consist of N = 32 monomers which

makes their average radius of gyration equal to Rg ¼
ffiffiffiffiffiffiffiffiffi
Nd2

6

r
¼ 2:3d.

Therefore 2(Rg + rc) = 14.6d removes most of the self-interaction
of the polymer chains. This condition is only important for
polymeric liquids which have a small number of cross-links
since the forces due to FENE cross-links are much stronger than
the Lennard-Jones interactions. Thus the dynamics of the gel is
mainly determined by the FENE-links. In this study, the depth
of the setup is chosen to be 14.7d. In addition, there is a
maximum value for the depth to avoid the capillary instability.
For a radius of R E 75d, capillary instability happens when
depth of the simulation box is approximately 475d which is far
above the considered range for the depth.

In order to create the polymeric particle, first a big chunk of
polymeric chains is made. Then those chains are positioned
inside a bath of solvent, which naturally leads to the formation
of a (cylindrical) polymeric droplet. Based on the desired cross-
linking density, the polymeric droplet is cross-linked using (13)
and then relaxed to reach its final equilibrium size. In our
simulations, the resulting particle has 250 000 beads and its
radius is 75.3d � 0.3d.

3.3 Modelling of interface and particle

After preparation of the equilibrated interface and cross-linked
particle, the particle is inserted at the interface by carving out
some volume of the liquid. It has been observed that a gap
could be produced where the three phases are in contact which
can be removed by increasing the pressure normal to the
interface.47 After the insertion, the system is equilibrated under
the NVT ensemble for 20 000t. The Nosé–Hoover thermostat is
used to keep the temperature constant at 300 K. We use the
time step dt = 0.01t. After the equilibration, the shape of the
particle is measured every 10 000t measurement steps. The
criterion for convergence is that the shape of the particle in
the three consecutive measurement steps is identical.

The main goal of the study is to quantify the shape of the
particles as a function of the various parameters. To obtain
the shape from a molecular dynamics simulation, first the
simulation data is extracted every 20t and the simulation box
is shifted in a way that the center of mass of the particle

remains fixed in all output frames. Then the simulation box
is divided into smaller square boxes with an area of (0.9d)2 in
the x–y plane, as it is depicted by the white grid in Fig. 4. Inside
each box the densities of polymeric chains and two liquid
phases are calculated for each frame. Next, the densities are
averaged over 500 frames. Finally, isodensity contours for each
measurement step are obtained using68

c ¼ rs � r1 þ r2ð Þ
r1 þ ra þ r2

; (14)

where ra and rb denote the density of two liquid phases a and b
and rs denotes the density of the particle. A typical density
contour is shown in Fig. 4. Particles have four symmetric
quadrants which can be used to increase the amount of data
available for the averaging process by a factor of four. To obtain
a macroscopic contact angle from the simulations, a small
region on the order of the interface thickness, here chosen
5d, needs to be excluded. A typical contact angle measurement
is shown in Fig. 4.

3.4 Calibration

In order to compare the results of the simulations with any
macroscopic model, it is required to calculate the Young’s
modulus E of the particle and the surface tensions gs and gb.
This calibration is outlined below.

3.4.1 Elastic modulus measurement. To measure the
Young’s modulus we prepare a cubic box filled with polymers
with the same cross-linking density as the particle. Then,
the pressure of the cross-linked polymer box is equilibrated
independently in x, y and z directions in order to relax stresses
to zero in all directions. Then the box is stretched in one
direction by imposing a very small amount of strain, typically
es r 0.02. The length of the box is kept fixed in the stretched

Fig. 4 Density contours c, as defined in (14). To obtain c contours, the
density is computed inside the square boxes of size 0.9d2 in the x–y plane
as depicted by the white grid. In addition, for the measurement of the
macroscopic contact angle ys, a region of size 5d is excluded from the
contact point to exclude the effect of finite width of the fluid interface
(shown with the line contours).
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condition and the stress ss in that direction is measured. The lateral
stresses are kept equal to zero during the stretching and relaxation
stages, so that one directly probes the Young’s modulus as

EDt ¼
ssDt
es
; (15)

where Dt shows the time interval over which stress is averaged.
Fig. 5 presents the normalized value of the Young’s modulus
for different intervals of averaging. In molecular dynamics,
stress exhibits much larger fluctuations as compared to velocity
and density, since it is directly obtained from integrating rapidly
changing interatomic forces (see e.g. Razavi et al.69). In our simula-
tions, the final value of elasticity is obtained by averaging the values
of elasticities for 50 000t to 100 000t measurement periods, where
we note that the averaging needs to be longer as the stiffness of the
gel decreases.

3.4.2 Surface tension measurement. The surface tension of
the particle–liquid interface is measured using the Kirkwood–
Buff formula for a planar interface.70

This is done by creating a separate setup with a planar
interface between the liquid phase and the cross-linked polymer
chains. Fig. 6 shows how the resulting surface tensions vary with
cross-linking density. At small cross-linking densities (rc r 1),
the surface tension increases weakly with the cross-linking
density and its value is very close to the liquid droplet case
which has no cross-linkings. As rc increases, its effect on the
surface tension becomes more significant.

4 Results
4.1 Partially wetting particles

We first consider simulations in the partially wetting regime,
for which g4 1/2. In addition, we focus on situations where the

contact angle is fairly large (ys Z 701), so that deformations are
small and fall within the linear regime. The key result is shown
in Fig. 7, where we characterise the particle shape by the radius
rp as a function of the polar angle f, for a softness varying from
S = 0.04 (fairly rigid, high cross-linking density) to S = N

(liquid). Theoretical curves are shown as the solid lines and
the results of the molecular dynamics simulations are shown
using symbols. Except for the droplet (S = N) which has a
spherical cap shape, theoretical curves are computed directly
from eqn (7). The agreement between the macroscopic theory
and simulation is excellent, and emphasises the strength of the
continuum approach even for discrete and fluctuating systems
at small scales.

A few observations are of interest. For S = 0.04, the deformation
with respect to an undeformed particle is restricted to a small
region close to the contact line, up to about f B 51. The range of
the deformation increases with S, and extends to the entire droplet
at large S. Also the magnitude of the deformation increases, and as
a consequence of the large deformations one observes some small
deviations from the linear theory (e.g. for the blue squares). In the
limit of very large softness, however, the elasticity drops out of the
problem altogether and one finds again a perfect agreement with
the purely capillary shape of a liquid droplet.

Next we investigate the maximum deflection DR in order
to further quantify the particle deformation. An important
prediction of the macroscopic theory is that the scaled deflection
DR/DRdrop is only a function of the softness S, and not of g. The
prediction (11) is compared directly to the molecular dynamics
simulation in Fig. 8, as solid line and symbols, respectively. Again,
a perfect agreement is found between the continuum theory and
molecular simulations. At low S the deformation radius increases

Fig. 5 Variation of the instantaneous Young’s modulus EDt (normalised by
its time-averaged value E) with the interval of averaging, for two systems of
different E. Error bars show the order of the fluctuations for each interval of
the averaging, and give an indication of the convergence. For smaller
average elasticity, a longer period of averaging is required to measure the
Young’s modulus.

Fig. 6 Variation of the surface tension of the gel–liquid interface, gs, with
the density of the cross-linking for two sets of interaction parameters: blue
symbols are for a = 0.5, and ap = 0.4 and black symbols are for a = 0.8, and
ap = 0.8. The planar interface is prepared inside a 120d � 120d � 120d box.
After 10 000t of equilibration, the surface tension is measured during a
20 000t measurement period.
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BS log(S), as shown by (10), while at large S the deflection
saturates to the value known for a purely liquid drop DRdrop. As
expected, the crossover between the regimes of small and large
deformations arises when S B 1.

Finally, we can verify the prediction of the macroscopic
analysis in Section 2 that the contact angle is determined by
the surface tensions according to the Neumann balance,
regardless of the Young’s modulus of the particle. In Fig. 9,

we plot the contact angle measured in our simulations ys

rescaled by the Neumann angle ydrop. The ratio is indeed very
close to unity, over the entire range of softness – even for the
stiffest particles – meaning that the contact angle of the solid is
governed by the surface tensions. Data in Fig. 9 covers contact
angles from 40 to 82 degrees, meaning that the Neumann balance
is valid even for the contact angles much smaller than 901.

4.2 Completely wetting particles

For the partially wetting regime we have seen that the pulling
force of the fluid interface is resisted by both the surface
tension of the particle and its bulk elasticity: the capillary
balance determines the geometry near the contact line, while
at distances larger than gs/E the bulk elasticity is predominant.
An interesting paradox arises when the surface tension of the
solid is not sufficiently strong to balance that of the fluid–fluid
interface. For the uncross-linked polymers this leads to a
wetting transition, leaving a thin film at the interface, but
this is clearly prohibited when the polymer chains are strongly
cross-linked. As we will argue in Section 5, the situation of the
complete wetting appears to be the generic case for microgel
particles. In Fig. 10, we present two cases with equal Young’s
modulus and ratio of surface tensions, i.e. identical S and g, but
the bath surface tension is so high that both particles are in
the complete wetting regime (g o 1/2). Both particles also have
an identical homogeneous density of cross-links, but the
difference between panel (a) and (b) is the topology of the
cross-linking network: in the upper panel all polymeric chains
are strongly entangled, while in the lower panel there are free
chains in the particle that are not cross-linked. Note that even the
spatial distribution of the links is similar between the two cases.

Fig. 7 Shape of the particle in polar coordinates (r,f). Symbols show
the results of the molecular dynamics simulations. Solid lines are the
theoretical predictions obtained from eqn (7). For S = N, a liquid droplet
at a fluid interface, the line corresponds to a spherical cap shape.

Fig. 8 Maximum radius of an elastic particle DR (normalised by that of a
liquid drop DRdrop), as function of softness S. Symbols correspond to
molecular dynamics simulations, the solid line corresponds to the prediction
given by (11). The far right data point corresponds to a liquid droplet (S = N).
The radial extension increases continuously with S, and saturates at the value
of a liquid droplet.

Fig. 9 Variation of the normalized contact angle ys/ydrop with the soft-
ness. The solid line shows the theoretical value (ys = ydrop) and symbols are
the results from the molecular dynamics simulations for ys between 401
and 821. The simulation results fall within the 4% of the theoretical values.
The scatter in the data is because the contact angle does not correlate
with the softness.
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The snapshot in Fig. 10b shows that free chains get pulled out of
the particle and produce a polymer film at the interface. The
particle without the free chains, by contrast, is very strongly
stretched (Fig. 10a) – yet due to the finite extensibility of the
FENE-polymers, the particle remains at a finite size. In this case,
the excess force near the contact line gb � 2gs is balanced by the
strong nonlinear elasticity of the cross-linked gel. Furthermore,
there is an asymmetry between the left and right hand side of the
particle in Fig. 10a which also could be observed for the soft
particle in complete wetting regime in Fig. 1. This shows that for
particles in the complete wetting regime, minor asymmetry in the
cross-linking can affect the symmetry of the particle, highlighting
the role of microscopic properties on the shape of the particle,
while for particles in the partially wetting regime, surface tension
undermines such effects. This result illustrates that (i) the
completely wetting regime cannot be captured by linear elasticity,
and (ii) contrarily to the partially wetting case, molecular details
become of key importance to describe the equilibrium shape.

Finally, let us investigate the influence of the softness on the
particle shape in the case where no free chains are present. This
is revealed in Fig. 11, where we show the relative extension of
the particle DR/R as a function of S. The snapshots at small S
reveal how a thin region near the contact line is pulled out of
the particle: due to the complete wetting condition, the pulling
force of the bath surface tension cannot be balanced by the
surface tension of the gel, and hence no Neumann triangle can
be formed. As a consequence, the particle elasticity must

provide a highly localised stress at the contact line, which is
achieved here be forming a cusp-like tip. Clearly, this feature is
beyond linear elasticity and the linear theory does not suffice to
capture the complete wetting regime. Our simulations show
that the size of this tip-region increases as the particle gets
softer, and in the range where S B 1 it invades the entire
particle. In all cases, the strongly nonlinear deformation
provides an elastic force that can compete with the surface
tension force near the contact line. This is to be contrasted with
the partially wetting case where elasticity does not play a role at
the contact line.

5 Discussion

We have investigated the shapes of deformable, elastic particles
when adsorbed at a fluid–fluid interface. Apart from the
elasticity of the particle, we have demonstrated that one crucially
needs to consider the surface tension of the particle. In particular,
one needs to distinguish cases of partial wetting and complete
wetting. It was found that partially wetting particles simulated by
molecular dynamics are accurately described by the continuum
elasticity theory, while for the case of complete wetting, molecular
details such the cross-linking topology turn out to be important.
While the present paper has focused on symmetric particles, with
equal affinity to the two liquid phases, it is interesting to consider
more general values for the surface tensions. The case of partial
wetting is reached when the sum of surface tensions of the solid
gs1 and gs2, respectively with fluid ‘‘1’’ and ‘‘2’’, are larger than
that of the bath gb. At the same time, for adsorption to be
energetically favourable with respect to the particle being in
phase ‘‘2’’, one requires gs1 to be lower than gb + gs2. Partially
wetting and adsorption is thus reached when the following
inequality is satisfied:

gb � gs2 o gs1 o gb + gs2. (16)

It is interesting to consider this condition in the context of
microgel particles. These are hydrogels that have a nonzero but
small surface tension with respect to the water phase in which
they are immersed. Denoting the water as phase ‘‘2’’, we
typically find that the gel–water surface tension gs2 is much
smaller than the other surface tensions. In terms of the
inequality (16) this implies that the window for the partial
wetting regime of adsorbed particles is extremely small, and
that one generically expects the particle to be in completely
wetting situations similar to what can be seen in our Fig. 10.
Experimentally, it has remained challenging to explain the
core–corona like shape found for the microgels.18,23,31 As is
shown in Fig. 10, the core–corona shape could happen either
due to the deformation of the entangled polymeric network of
the microgel particles or due to the adsorption of the individual
polymeric chains. For a typical microgel particle, with a Young’s
modulus of 100 kPa,71 a particle–oil surface tension of 50 mN m�1,
and a typical radius of a 0.5 micron, the softness parameter
will be of order unity. Given that experiments are likely to
be in the complete wetting regime, according to Fig. 11,

Fig. 10 Effect of the cross-linking topology on the deformation of a
particle in the complete wetting regime. (a) Snapshot of a particle without
any free chains. The particle stretches until it reaches a final size.
(b) Snapshot of a particle with 30% free chains. Free chains are pulled
out of the particle producing a thin liquid film. Both particles have identical
thermodynamic properties, S = 0.45 and g = 0.37.
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the expected deformation is therefore of the order of the particle
radius consistent with the experiments.26,31 The important
observation from comparing the snapshots of Fig. 11 is that
for a particle without free chains, the size of the corona (cuspy
shape close to the contact line) which is clearly present for small
S (snapshots a to c) vanishes for the particle whose softness is
close to one (snapshot d) which is the typical experimental
value. This shows that for S E 1, the deformation spans over the
entire particle shape instead of producing an elongated cusp
close to the contact line. If we compare this observation to the
experimental observations that the corona size is comparable to
the particle core size,26,31 we can conclude that the details of
adsorption of individual polymer chains play an important role
in producing a core–corona shape for microgels at a fluid
interface. It should be noted that in this study as the first step
to model the behavior of microgel particles at a fluid interface,
particles are considered to be in the dry state which means that
the solvent particles do not penetrate into the microgels and the
effect of particle swelling is ignored. It would be interesting to
extend the present work to incorporate the effect of particle
swelling which is usually present in experiments.

6 Conclusions

The shape of a soft particle at a fluid interface is studied both
numerically and analytically. It is shown that the surface

tension of the particle, expressed in terms of the dimensionless
parameter g plays an important role in characterizing the
particle shape. For g Z 1.4, i.e. particles whose surface tension
is large compared to the fluid surface tension, it is analytically
shown that the contact angle of the particle is equal to the
Neumann contact angle of a liquid droplet with similar g. In
addition, an analytical formula is derived for the particle shape
and it is shown that it scales with the shape of the liquid
droplet with similar g where the scaling coefficient is only a

function of the particle’s softness S ¼ gs
ER

. The derived analytical

equation for the particle shape and contact angle is examined
using the coarse grained molecular dynamics simulations of
particles made out of entangled polymeric chains and it is
shown that the analytical and numerical results are in a perfect
agreement. For 0.5 r g o 1.4, molecular dynamics simulations
show that the analytical formula for the particle shape loses its
accuracy as it is expected but the contact angle of the particle is
still equal to the Neumann angle. For go 0.5, which considers the
particles in the complete wetting regime, it is also shown that the
shape of the particle depends on the microscopic details of the
cross-linking. For example, two particles with similar macroscopic
properties but different number of free chains produce different
final shapes. Using the results of the particle in the complete
wetting regime, it is argued that the core–corona structure which is
observed in the majority of the microgel experiments appears due
to the adsorption of free chains inside the particle to the interface.

Fig. 11 Maximum radius DR (normalised by the initial drop radius R), as a function of S in the case of complete wetting. All polymers are cross-linked so
that the particle reaches an equilibrium with finite deformation. All particles are subjected to the same pulling force and are in the complete wetting
regime. For numerical reasons, the largest value of S was achieved by a slightly smaller particle.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
1 

N
ov

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
it 

T
w

en
te

 o
n 

17
/1

1/
20

15
 1

8:
57

:5
0.

 
View Article Online

http://dx.doi.org/10.1039/C5SM01971K


This journal is©The Royal Society of Chemistry 2015 Soft Matter

Appendix

As we are dealing with a two-dimensional problem, we can
exploit the Airy stress function F and solve the biharmonic
equationr4F = 0.57 The corresponding stress and displacement
fields can be determined as partial derivatives of F. In polar
coordinates, we can proceed by a Fourier expansion using the
classical solution by Michell. The up-down symmetry is such
that we only need to consider Fourier modes of the type cos nf,
where n = 0, 2, 4,. . . The isotropic solution n = 0 comes
with powers r2, r2 ln r, ln r. The n = 2, 4, 6,. . . solutions to
the biharmonic equation come with radial powers of the type
rn, rn+2, r�n, r�n+2. Demanding regularity of stress and strain at
r = 0, we cannot allow for r�n, r�n+2 or the logarithmic
terms, so that:

Fðr;fÞ ¼ Ar2 þ
X1
n¼2

cos nf anr
n þ bnr

nþ2	 

; (17)

The corresponding displacements (taken at the free surface
r = 1) become:57

urð1;fÞ ¼
3S

2g

X1
n¼2

cos nf �nan � nbnð Þ; (18)

ufð1;fÞ ¼
3S

2g

X1
n¼2

sin nf nan þ ðnþ 2Þbnð Þ; (19)

where S is the anticipated dimensionless parameter to characterise
the softness and g is the ratio of the surface tensions. Due to
the incompressibility (n = 1/2) there is no isotropic contribution to
the displacement. Likewise, one expresses the stress at r = 1 from
the expansion (17) as

srrð1;fÞ ¼ 2Aþ
X1
n¼2

cos nf n� n2
	 


an þ nþ 2� n2
	 


bn
� �

;

(20)

srfð1;fÞ ¼
X1
n¼2

n sin nf ðn� 1Þan þ ðnþ 1Þbn½ �: (21)

The final step is to expand the boundary conditions (5) and
(6) in a Fourier series and compare this to the representation
(20) and (21). This will give two equations for the coefficients an,
bn. In particular, the normal stress boundary condition
becomes, using also (18)

srð1;fÞ ¼
c0

2
þ
X1
n¼1

cn cos nf; (22)

with coefficients

c0 ¼
2

p
; cn ¼

2

p
þ 3

2
S n n2 � 1
	 


an þ bnð Þ
� �

n ¼ 2; 4; 6; � � � ; (23)

while cn = 0 for odd n. Solving the coefficients an, bn finally gives

an ¼
1

pð1� nÞ 1þ 3

2
Sn

� �; bn ¼
1

pð1þ nÞ 1þ 3

2
Sn

� �: (24)

The displacement field can be summarized in explicit form:

urðr;fÞ ¼ �
3S

2gp

X1
k¼1

cos 2kf r2k�1
2k

ð1� 2kÞ 1þ 3Skð Þ

� ��

þ r2kþ1 þ 2k

ð1þ 2kÞ 1þ 3Skð Þ

� ��
:

(25)

ufðr;fÞ ¼
3S

2gp

X1
k¼1

sin 2kf r2k�1
2k

ð1� 2kÞ 1þ 3Skð Þ

� ��

þ r2kþ1
2kþ 2

ð1þ 2kÞ 1þ 3Skð Þ

� ��
:

(26)

The shape of the deformed particle is thus given by

rpðfÞ ¼ 1þ urð1;fÞ ¼ 1� 3S

2gp

X1
k¼1

4k cos 2kf
1� 4k2ð Þð1þ 3SkÞ: (27)

Acknowledgements

We are grateful to Martien Cohen-Stuart, Jasper van der Gucht
and Joris Sprakel for many discussions on the adsorption of
microgel particles and Joost Weijs for providing the GROMACS
setup. We acknowledge financial support from NWO through
VIDI Grants No. 11304 (JS) and 10787 (JH), and financial
support from ERC (the European Research Council) through
Consolidator Grant No. 616918 (JS).

References

1 B. Binks and T. Horozov, Colloidal Particles at Liquid Inter-
faces, Cambridge University Press, 2006.

2 L. Sagis, Rev. Mod. Phys., 2011, 83, 1367–1403.
3 P. Taylor, Adv. Colloid Interface Sci., 1998, 75, 107.
4 B. Binks, Curr. Opin. Colloid Interface Sci., 2002, 7, 21.
5 W. Ramsden, Proc. R. Soc. London, 1903, 72, 156.
6 S. Pickering, J. Chem. Soc., Trans., 1907, 91, 2001.
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