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Surface tension regularizes the crack singularity
of adhesion

Stefan Karpitschka,*a Leen van Wijngaardena and Jacco H. Snoeijerab

The elastic and adhesive properties of a solid surface can be quantified by indenting it with a rigid

sphere. Indentation tests are classically described by the JKR-law when the solid is very stiff, while

recent work highlights the importance of surface tension for exceedingly soft materials. Here we show

that surface tension plays a crucial role even in stiff solids: Young’s wetting angle emerges as a boundary

condition and this regularizes the crack-like singularity at the edge of adhesive contacts. We find that

the edge region exhibits a universal, self-similar structure that emerges from the balance of surface

tension and elasticity. The similarity theory is solved analytically and provides a complete description of

adhesive contacts, by which we reconcile global adhesion laws and local contact mechanics.

1 Introduction

The adhesion between two solid bodies in contact is extremely
common in nature and technology.1–4 Adhesive contacts are
described by a classical law derived by Johnson, Kendall and
Roberts (JKR),5 providing the benchmark to characterize elastic
and adhesive material properties.6–8 Despite its success, JKR
theory does not provide a complete description of the physics
inside the contact. Namely, the elastic problem is considered
without explicitly treating adhesive interactions, while further-
more the contact exhibits a crack-like elastic singularity at
the edge. This issue was elegantly resolved in a macroscopic
theory, where, by analogy with fracture mechanics, the elastic
energy released by opening the crack is balanced by the work of
adhesion.9–13

Recent studies on very soft gels and rubbers provided a very
new perspective on adhesive contacts.14–19 Just like fluids, these
soft materials are highly susceptible to a Laplace pressure due
to surface tension.20–24 This insight exposed a profound link
between ‘‘solid adhesion’’ and ‘‘liquid wetting’’:14–19 both are
adhesive contacts, but whether they are solid-like or liquid-like
depends on the contact size (l in Fig. 1) compared to the
elastocapillary length g/m, the ratio of surface tension g to shear
modulus m. Liquid-like contacts were for example found for soft
gels15 and nanoparticles.17

Intriguingly, the extreme case of liquid wetting (m = 0) does
not suffer from the crack singularity: it is governed by a benign

boundary condition in the form of Young’s wetting angle. This
is in stark contrast to adhesion theories at finite m, which rely
on global energy estimates15–17 or on the energy released by
displacing the crack-like elastic singularity.18,19 Hence, despite the
deep connection between wetting and adhesion, the theoretical
description of elastic contacts has remained very different from
that of a wetting liquid. In combination with recent experimental
observations,25 this in particular provokes the question: What
happens at the edge of elastic adhesive contacts?

In this paper we provide a unifying description of adhesive
contacts, including a regularisation of the crack singularity.
Variational analysis provides the key insight: even at a large

Fig. 1 Adhesive contact between an elastic layer and a rigid indenter.
(a) Stiff contact, the elasto-capillary length g/m is much smaller than the
contact size l. (b) Soft contact, g/m is comparable to l. Profiles h(x) are
solutions of our local two-dimensional contact theory (vertical scale
stretched), f (x) the shape of the indenter. The upper case is in the classical
JKR regime, for which we identify a narrow, universal zone that is governed
by a wetting angle y, regularizing the crack singularity (inset).
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elastic modulus, adhesive contacts are governed by a wetting
angle y boundary condition [cf. zoom in Fig. 1(a)], as long as g/m
remains larger than the scale of molecular interactions. In such
a purely macroscopic description, we show how such a wetting
angle in solid mechanics regularizes the crack singularity at a
length scale g/m. Throughout this paper we will assume that the
surface energies do not depend on the state of elastic strain,
so that the surface stress is identical to the surface tension.26

Under these conditions, the boundary condition for the wetting
angle is simply given by Young’s law, even for relatively large
elastic moduli. Another key result is that, remarkably, the contact
exhibits at the edge a self-similar structure that is captured by a
single, universal similarity solution that is solved analytically. The
similarity theory provides a unification of solid adhesion and
liquid wetting, in which global adhesion laws and local contact
mechanics are fully reconciled.

This paper is organized as follows. In Section 2 we present
the variational analysis by which we formulate the adhesion
problem, including the appropriate boundary conditions. This
problem is then worked out explicitly in the context of linear
elasticity for a cylindrical indenter in Section 3. We show
numerical solutions that reveal the full details of the deforma-
tion and stress distribution inside and outside the contact.
Section 4 provides a detailed analysis of the universality of the
edge region, for which we derive a similarity theory. This paper
closes with a discussion in Section 5.

2 Variational analysis: the wetting angle

Instead of analysing the energy released upon opening a
crack,11,13,18,19 we pose the macroscopic free energy of the pro-
blem sketched in Fig. 1, and derive a boundary condition by direct
variational analysis. We assume large deformations compared
to the range of molecular interactions, allowing macroscopic
theory that is based on surface energies.12 Still, one can use linear
elasticity theory since displacements are typically much smaller
than the size of the contact l (Fig. 1). Within this framework, we
show that the boundary condition is given by a wetting angle y,
satisfying Young’s law based on the surface tensions. This wetting
angle replaces the crack singularity, and provides a natural link
between adhesion of solids and liquids.

2.1 The free energy functional

We pose the problem for a two-dimensional indenter on an
infinite half space under plane strain conditions, which is
generalized to the axisymmetric case in Appendix A. As soft
materials are nearly incompressible, the no-slip boundary con-
dition between the indenter and the elastic medium does not
induce shear stress;27 hence, even for frictional contacts it
suffices to consider only the normal displacement h(x) of the
elastic layer.19 We remark that on the two-dimensional half
space, the displacement is defined only up to a constant of
integration. The analysis below does not depend on the choice
of the reference point, so one can use h(x) as the elastic degree
of freedom.

The free energy of the problem then consists of an elastic
contribution, the functional Fel[h] that is given explicitly in
Appendix B, and capillary contributions due to the surface
energies g, gSV, and gSE [cf. Fig. 1(a)]. The work of adhesion
W = g + gSV � gSE represents the reduction in the surface energy
when brought into contact. Minimization of Fel[h] is con-
strained, since the elastic surface must comply with the shape
of the indenter f (x). This gives the constraint h(x) = f (x) + D over
the range �l r x r l, where �D is the distance by which the
solid is indented defined with respect to some arbitrary reference
point. Taking also into account the work done by the external
load f2D, the relevant functional is,

F½hðxÞ; ‘;D� ¼ Fel½hðxÞ� þ
ð1
‘

dx g 1þ h02
� �1=2

þ
ð1
‘

dx gSV 1þ f 02
� �1=2 þ ð‘

0

dx gSE 1þ f 02
� �1=2

þ
ð‘
0

dx pðxÞ hðxÞ � f ðxÞ þ D½ �f g

þ l hþð‘Þ � f ð‘Þ þ D½ �f g þ 1

2
f2DD;

(1)

where we used the symmetry x - �x, so that F is half the total
energy. The integrals in the upper line give the surface areas
multiplied by their interfacial energies. Importantly, we implicitly
assumed here that the surface energies do not depend on the elastic
strain, so we do not distinguish between surface energy and surface
stress.26,28–30 Releasing this condition would require more elastic
degrees of freedom than only h(x). Compliance in the contact zone
is imposed by the continuous Lagrange multiplier p(x). Without
imposing the slope outside the contact, we require h(x) to be
continuous at x = l, here enforced by the Lagrange multiplier
l [h+(l) = limx-l+h(x)]. We remark that the resulting variational
problem resembles that of a liquid drop on an elastic layer.31

2.2 Equilibrium conditions by variation

The degrees of freedom of the problem are h(x), l, D, which
should minimize the functional (1). The variation of D is given
by a simple partial derivative

@F

@D
¼ 0 ¼ 1

2
f2D � l�

ð‘
0

dx pðxÞ: (2)

Next we perform the variation dh(x),

dF ¼ 0 ¼ l� gh0

1þ h02ð Þ1=2

" #
‘þ

dh ‘þð Þ þ
ð‘
0

dx dhðxÞ sðxÞ þ pðxÞ½ �

þ
ð1
‘

dx dhðxÞ sðxÞ � gh00

1þ h02ð Þ3=2

" #
; (3)

where the second boundary term appears through the usual
integration by parts. We also used s � dFel/dh as the elastic
normal stress,32 see also Appendix B. At x = l+ this implies

l ¼ g
h0

1þ h02ð Þ1=2

" #
‘þ

¼ �g sinb; (4)
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where b is the (downward) angle with respect to the horizontal –
see the inset of Fig. 1a. Using this equation to eliminate l
combined with (2) gives

f2D ¼ �2g sinb�
ð‘
�‘
dx sðxÞ; (5)

where we used that p(x) = �s(x) inside the contact. The integrals
in (3) separate into the domains inside the contact, where indeed
s(x) = �p(x), while outside

s ¼ gh00

1þ h02ð Þ3=2
; jxj4 ‘; (6)

In line with ref. 20–24, the latter equilibrium condition expresses
that the elastic stress outside the contact does not vanish, but is
given by the solid Laplace pressure.

Finally, we perform the variation of l:

@F

@‘
¼ 0 ¼ �g 1þ h02þ

� �1=2þ gSE � gSVð Þ 1þ f 02
� �1=2þlhþ0 � lf 0;

(7)

where derivatives h0 are to be evaluated at x = l+. Substituting l
from (4) gives

g
1

1þ h02þð Þ1=2
1

1þ f 02ð Þ1=2
þ hþ

0

1þ h02þð Þ1=2
f 0

1þ f 02ð Þ1=2

" #
¼ gSE � gSV:

(8)

Introducing now the angle of the solid with respect to the
horizontal a (inset of Fig. 1a), one recognizes

g[cos a cosb � sin a sin b] = g cos(a + b) = �g cos y = gSE � gSV.
(9)

This is the solid analogue of Young’s law, which serves as a
boundary condition at x = l.

2.3 Summary: the adhesion problem

Let us briefly summarize the adhesion problem that emerges
from the variational analysis:

h(x) = f (x) + D, |x| o l, (10)

sðxÞ ¼ gh00

1þ h02ð Þ3=2
; jxj4 ‘; (11)

g cos y = gSV � gSE, x = �l, (12)

The first equation reflects the compliance inside the contact. The
second equation holds outside the contact and expresses
the balance of elastic stress and the Laplace pressure due to the
surface tension of the solid. The three-dimensional axisymmetric
variational analysis gives similar equilibrium conditions, except
that eqn (11) contains an extra azimuthal curvature contribution.
The third equation is simply Young’s law, familiar for wetting
problems but here derived for an elastic layer. Finally, the total
force reads

f2D ¼ �2g sinb�
ð‘
�‘
dx sðxÞ; (13)

with the equivalent expression for the axisymmetric case

f3D ¼ �2p‘g sin b�
ð‘
0

dr2prsðrÞ: (14)

The crux of the analysis is the appearance of Young’s wetting
angle y, defined in Fig. 1: it serves as the boundary condition
emerging from the variation of l (also for axisymmetric contacts,
cf. Appendix). Like in elastic wetting,21,23,31 surface tension thus
dominates over elasticity at the contact line and replaces the
crack by a ‘‘wedge’’ geometry. In the context of solid adhesion,
this is the first time that Young’s angle has been derived as
a boundary condition in the presence of elasticity. Previous
theories derived a wetting boundary condition only in the
liquid-wetting limit of vanishing elasticity.15–17 A wetting-like
boundary condition at finite elasticity was also hypothesized
by Jensen et al.,25 who experimentally found that a gel layer
approaches the indenter at a well-defined angle that is inde-
pendent of the global geometry. Apart from a first-principles
explanation of this observation, the key contribution of the
present analysis is that it shows that the boundary condi-
tion encodes all adhesive properties: (12) can be expressed as
W = g(1 + cos y), and the boundary condition completes the
contact mechanics problem.

3 Cylindrical indenter

The system of equations eqn (10)–(13) does not require any
additional minimisation step involving the energy release-rate.
It forms a fully local contact mechanics problem, which in
principle allows for the determination of stress over the entire
contact – including the edge region. In this section we formu-
late the adhesion problem explicitly for a two-dimensional
cylindrical indenter using linear elasticity. It is shown that
the introduction of the work of adhesion through Young’s
contact angle indeed provides a complete description of the
adhesive contact: we recover previous results in the literature,
and for the first time reveal the distribution of stress inside the
contact.

3.1 Formulation within linear elasticity

Within linear elasticity, the stress and displacement of the free
surface of an incompressible thick layer relate as,27

sðxÞ ¼ �2m
p

ð1
�1

dt
h0ðtÞ
t� x

; (15)

with details given in the Appendix. We now focus on a

cylindrical indenter of radius R, with f ðxÞ ¼ x2

2R
. The strict

validity of linear elasticity requires small strains, i.e. h02 { 1,
and thus y is close to p. This simplifies the boundary condition
to h�0 � h+

0 = (2W/g)1/2, showing that W enters in the form a
slope discontinuity.

It is advantageous to introduce dimensionless variables:

X ¼ x=‘; H ¼ hR
�
‘2; F2D ¼

f2DR

pm‘2
; (16)
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where the external load was scaled by the result for nonadhesive
(Hertz) contacts. The dimensionless parameters are

S ¼ pg
2m‘

; A ¼ 2WR2

g‘2

� �1=2

: (17)

S represents the influence of surface tension, comparing the
elasto-capillary length g/m to the width l of the contact. A repre-
sents the work of adhesion, dictating the wetting angle. Following
ref. 19 we note that outside the contact s(x) = gh00(x), and one can
further reduce (15) by integrating over the central part of the
contact where the shape is known, h0 = x/R. In dimensionless units
this gives

SH 00ðXÞ ¼ �
ð1
1

dT
2TH 0ðTÞ
T2 � X2

� 2þ X ln
X � 1

X þ 1

����
����

� 	
; (18)

valid for X 4 1, outside the contact. Here we also used the
symmetry X - �X to express the integral from �N� � ��1 in
terms of the integral from 1� � �N. The slope discontinuity due
to adhesion now appears as a boundary condition

H0(1) = 1 � A. (19)

The integral eqn (18) with (19) completely defines the adhesive
contact problem. Surface tension appears through S, while adhe-
sion is contained in A. The examples in Fig. 1 are actual numerical
profiles with S a 0, which are for the first time derived in a
continuum framework.

Importantly, the boundary condition cannot be imposed
without surface tension: for S = 0, the analysis reduces to the
(two-dimensional) JKR-problem, for which we recover the crack
singularity that displays a diverging slope at the edge,

H0
0(X) C X � K(X � 1)�1/2. (20)

Here K is essentially the (scaled) stress intensity factor,
which reads K = (1 � F2D)/23/2 for the cylinder.27 The inability
to satisfy the boundary condition for S = 0 makes it a singular
limit of the adhesion problem. Indeed, removing the term
SH00(X) in (18) changes the order of the integral equation, which
comes at the expense of sacrificing a boundary condition.
As is generic in such a situation, we expect the limit S { 1 to
give rise to a thin boundary layer where the solution is funda-
mentally different from the S = 0 solution. Indeed, at small
distances from the edge, the effect of surface tension will
turn out to give a dramatic departure from the crack singu-
larity of (20).

3.2 Numerical results for vanishing load

To illustrate that our local theory provides a complete descrip-
tion, we present numerical solutions to (18) with boundary
condition H0(1) = 1 � A. Here we focus on the case of vanishing
load, f2D = 0. Without the resultant external load, the two-
dimensional problem does not suffer from the problem of the
reference point: the solution h(�N) - 0, so that both h(x) and
D are properly defined.

3.2.1 Geometry of the adhesive contact. Fig. 2 shows how
the width l varies with surface tension g [both scaled according

to A and S, cf. (17)]. For small S we perfectly recover the result
for ‘‘solid adhesion’’,11,13 which in the present notation reads

‘ ¼ 8R2W

pm

� �1=3

) AS1=2 ¼ 2�3=2p: (21)

This is the two-dimensional equivalent of the JKR law, and is
shown as the solid line in Fig. 2. The fact that this classical
result is recovered, without considering the energy release
rate, confirms that Young’s contact angle provides the correct
boundary condition at the edge of the contact. It is inter-
esting to also consider the regime of large surface tension
(or vanishing m), for which the contact width becomes inde-
pendent of S. The numerical results in Fig. 2 saturate to the
value expected for ‘‘liquid wetting’’. This agrees with previous
analysis and experiment,15,17,19 but for the first time derived
from an analysis of the entire contact – including the crack
region.

The inset of Fig. 2 shows the numerical profiles of the elastic
layer. For clarity we shifted the elastic layer rather than the rigid
indenter. Clearly, the indentation D = h(0) � h(N) increases
as the layer gets softer. This is further quantified in Fig. 3,
showing the indentation depth |D| (scaled by the vertical scale
l2/R) as a function of g/ml. One again distinguishes two regimes
with a crossover around S B 1, quantifying the importance of
surface tension. As seen in the inset of Fig. 2, the large S limit
corresponds to the case where the substrate acts like a wetting
liquid, with a flat interface. In this case, the height at the
edge of the contact h(l) = 0, which according to (10) requires
D = �f (l) = �1

2l
2/R. In the opposite limit of small S, the

indentation can be computed from the S = 0 solution,19,27

which amounts to D = �1
4l

2/R.
3.2.2 Stress state of the adhesive contact. The present

theory has the additional merit that it reveals the stresses
near the contact edge, previously unknown due to the crack
singularity. The inset of Fig. 4 shows a stress profile on the

Fig. 2 Numerical solutions to the local contact mechanics eqn (18) with-
out an external load (f2D = 0). The contact width l (made dimensionless
using the scaling of A) is shown as a function of the surface tension g (made
dimensionless using the scaling of S). For small g/ml, we recover the JKR
scaling [solid line, (21)], while for large g/ml the width saturates. The inset
shows the corresponding profiles h(x) for S = 10�1, 1, 10, 103 (grey circles in
the main plot).
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scale of the contact (S = 1, black line). The stress extends both
inside and outside the contact and exhibits a weak, logarithmic
singularity. As is generic for elastic free surfaces with a slope-
discontinuity,33 the stress diverges as s B m log|X � 1|, with a
strength proportional to that of the discontinuity.† This is very
different from the JKR theory (S = 0), which has the square root
singularity at the inside and vanishing stress outside the
contact (inset, grey line). The main panel in Fig. 4 shows details
of the stress when approaching x - l from the outside of the
contact. Different curves correspond to different S values. One
observes the appearance of a �3/2 power law for the stress at a
large distance from the contact, which is logarithmically
smoothened at small distances where surface tension becomes
dominant.

As anticipated, the smoothening range near the edge acts
like a boundary layer to the large scale profile, necessary to
accommodate the wetting angle y. The cross-over observed in
Fig. 2, reporting global features of the contact, can thus be
explained from the physics inside the contact: the transition
from ‘‘adhesion’’ to ‘‘wetting’’ appears when the influence of
surface tension, the smoothing zone, becomes comparable to
the size of the contact, i.e. g/m B l.

4 Universality of the edge region

We now turn our attention to the edge of the contact, focussing
on the case of small surface tension S { 1. In this section
we analyse the edge of the contact by a boundary layer analysis.
We expose the self-similar nature of the edge region, derive
an analytical solution to the boundary layer, and show how
the classical JKR law emerges from a matched asymptotic
expansion.

4.1 Similarity solution

Since the extent of surface tension is bound to a thin region
that scales with S, we propose the similarity form,

H 0ðXÞ ¼ X þ AH0ðzÞ; z ¼ X � 1

S
; (22)

valid for S { 1. Here H(z) is a universal function that inside
the boundary layer replaces, and as such regularizes, the crack
singularity in (20). One verifies that the boundary condition
H0(1) = 1 � A reads H0(0) = �1 in terms of the similarity
function.

It is possible to obtain a closed equation for H(z). However,
one cannot directly insert (22) into (18), since the similarity
Ansatz is only valid inside the boundary layer. Outside the
boundary layer we expect to recover the solutions for S = 0,
denoted as H0(X), which are superpositions of the usual (2D)
Hertz and punch solutions.5,27 We therefore treat (18) by spliting
the domain of integration into two parts:

SH 00ðXÞ ¼ �
ð1þS1=2

1

dT
2TH 0ðTÞ
T2 � X2

�
ð1
1þS1=2

dT
2TH 0ðTÞ
T2 � X2

� 2þ X ln
X � 1

X þ 1

����
����

� 	
; X4 1:

(23)

The scale S1/2 is intended as an intermediate length scale between
the boundary layer thickness S and the scale of the contact: for
small S, it gives the hierarchy of scales S { S1/2 { 1. This implies
that the first integral in (23) is a full integral over the boundary
layer, while the second integral is strictly outside the boundary
layer where H(T) C H0

0(T). Since H0
0(T) satisfies (18) with S = 0,

we infer for asymptotically small S,

�
ð1
1þS1=2

dT
2TH 0ðTÞ
T2 � X2

� 2þ X ln
X � 1

X þ 1

����
����

� 	
’ 0: (24)

Hence, (23) reduces to

SH 00ðXÞ ¼ �
ð1þS1=2

1

dT
2TH 0ðTÞ
T2 � X2

; X4 1: (25)

Fig. 3 The same solutions as in Fig. 2, now showing the indentation depth
|D| (scaled by l2/R) as a function of the dimensionless surface tension g/ml.
The asymptotes for small and large surface tensions, respectively, are
|D|R/l2 = 1/4 and 1/2 (see the text).

Fig. 4 Stress profiles s outside the contact with f2D = 0, for S = 10�4, 10�3,
10�2, 10�1, 1. The stress exhibits a�3/2 scaling (dashed line), regularized by
a logarithmic zone as x - l. Inset: Stress profile on the scale of the
contact. The grey line is the JKR profile (S = 0) and the black line is the
typical profile with surface tension (S = 1).

† The logarithmic stress divergence due to a small discontinuity in h0 lies within
the realm of linear elasticity.33 The scaling (27) confirms that s B m only within
an asymptotically small region near the contact, X � 1oS exp �

ffiffiffiffiffiffiffiffiffiffi
g=W

p� �
, where

we note that the present analysis assumes (W/g)1/2 { 1.
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The final step is to insert the similarity form (22), introduce
X = 1 + Sz and T = 1 + Sz0, and evaluate the terms in orders of S.
The leading order BS0, and gives

H00ðzÞ ¼ �
ð1
0

dz0
H0ðz0Þ
z0 � z

: (26)

Complemented by the boundary condition H0(0) = �1, this
fully determines the similarity function.

The numerical solution to (26) is represented in Fig. 5,
showing H00(z) as the red dashed line. Owing to the capillary
stress relation, s = gh00 = gAH00/RS (valid for small slopes),
the similarity Ansatz in fact predicts a collapse of all stress
profiles:

sðxÞ ¼ 23=2m
p

W

g

� �1=2

H00ðzÞ: (27)

Fig. 5 shows that the scaled stress profiles of Fig. 4 perfectly
collapse on the predicted dashed line, illustrating the validity of
the similarity theory. In particular, it confirms the emergence of
a weak logarithmic singularity of the stress at the edge of the
contact.

4.2 Analytical solution for H0(f)

In this paragraph we derive the analytical solution to (26). In
terms of the Laplace transform of H0(z), the solution reads

LfH0ðzÞgðsÞ ¼ �1
s1=2 s2 þ p2ð Þ1=4

exp �
ð1
s

dt
lnðt=pÞ
t2 þ p2

� �
: (28)

Based on this, we infer the asymptotics for z { 1,

H0 C �1 � z ln z, (29)

which indeed satisfies the boundary condition H0(0) = �1. For
z c 1 it is found that,

H0 ’ � 1

pz1=2
: (30)

This result is critical to analytically derive the JKR-law. Both
asymptotes are indicated in Fig. 5 where we represent H00(z).

The solution (28) was derived by following Varley and Walker,34

VW henceforth. VW considered singular integral equations of
the form

uðxÞ ¼ 1

p

ð1
0

dx0
vðx0Þ
x0 � x

; (31)

where u and v are not arbitrary functions, but restricted to

u(x) = a1F0(x) + a0F(x), v(x) = b1F0(x) + b0F(x). (32)

Indeed, (26) is of the type (31). This is seen by introducing
x = pz, H0(z) = pF(x), which brings (26) to the form

F 0ðxÞ ¼ �1
p

ð1
0

dx0
Fðx0Þ
x0 � x

; with Fð0Þ ¼ �1
p
: (33)

This corresponds to (31) with a0 = 0, a1 = 1, b0 = �1, and b1 = 0.
Following VW, we define the Laplace transform of F(x) by

KðpÞ ¼LfFðxÞgðpÞ ¼
ð1
0

dxFðxÞe�px: (34)

Taking the Laplace transform of (33) reduces the integro-
differential equation to the integral equation

ppKðpÞ þ 1�
ð1
0

dq
KðqÞ
q� p

¼ 0: (35)

With the help of complex function theory, VW solved the
corresponding equation for the general case (31), which for
the present values of a0, a1, b0, and b1 reduces to

KðpÞ ¼ �1
p

1

p1=2 p2 þ 1ð Þ1=4
exp �1

p

ð1
p

dt
ln t

1þ t2

� �
: (36)

The solution (28) is obtained as K
s

p

� �
, after returning from x to z.

The asymptotes (29) and (30) are, respectively, derived by
considering the small and large p behaviour of K(p). For large p,ð1

p

dt
ln t

1þ t2
’
ð1
p

dt
ln t

t2
¼ ln p

p
þ 1

p
; (37)

such that

KðpÞ ’ � 1

pp
þ ln p

ðppÞ2: (38)

Upon inversion, and using K
s

p

� �
, this gives (29). The large

z asymptote corresponds to small p, which is governed by the
branch point of K(p) in p = 0. This reads

KðpÞ ’ � 1

pp1=2
: (39)

which leads to (30).

4.3 Adhesion laws: matched asymptotics

4.3.1 Cylindrical indenter. To complete the analysis, we
demonstrate how the adhesion laws are recovered. In eqn (30)
we demonstrated that for large z, H0 reads H0 C �1/(pz1/2).
This is of prime importance as it can be matched to the square
root divergence of (20), which is the singular crack solution for
the case S = 0.

Fig. 5 The similarity function H00(z) describing the crack region (red, dashed).
Superimposed are the stress profiles of Fig. 4, scaled according to (27),
confirming the self-similarity.
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The matching is illustrated in Fig. 6: when the effect of surface
tension is small, S { 1, one observes an overlap between the
inner solution (H0, red dashed) and the outer solution (H0

0, gray
dashed). Equating the prefactors of the asymptotes gives,

K ¼ p�1AS1=2 ) 1� f2DR

pm‘2
¼ 8WR2

pm‘3

� �1=2

; (40)

where in the second step we used the dimensionless stress
intensity factor K = (1 � F2D)/23/2.

The matching condition (40) coincides with the adhesion
law for the cylindrical indenter.11,13 For the case f2D = 0 it
reduces to (21), while without adhesion it gives the Hertz law
between the size of the contact l and the applied load. The
similarity theory gives a physical description of this result: the
adhesion imposes a wetting angle at the edge of the contact,
which by means of a surface tension-dominated boundary layer is
connected to the elastic displacements on the much larger scale
of the contact. This is further highlighted by the full numerical
solution (Fig. 6, solid line), confirming that surface tension
regularizes the �1/2 singularity.

4.3.2 Spherical indenter. Analogously, the same matching
gives the JKR-law for the spherical indenter. The boundary layer
is asymptotically thin compared to the contact radius, so the
physics at the edge is quasi-one-dimensional (see also ref. 35).
The spherical contact is therefore governed by a boundary layer
of the same universal form H(z) and again requires a matching
to the singular H0 (Fig. 6, blue dotted). Evaluating K for the
spherical indenter recovers the JKR-law:5

K ¼ p�1AS1=2 ) 1� 3f3DR

16m‘3
¼ 9pWR2

8m‘3

� �1=2

; (41)

confirming the validity of the approach. For completeness,
we illustrate this famous relation between l and the load
f3D in the inset of Fig. 6. The outer solutions shown in the

main panel actually correspond to the minimum (negative)
load, which is the critical point where the indenter is pulled off
from the elastic.

5 Discussion

The present analysis provides a unification of solid adhesion and
liquid wetting, for the first time captured in a theory that contains
the full details of the contact mechanics. The main assumptions
underlying the theory are essentially equivalent to those in the
classical JKR theory: reversibility of the adhesion process (e.g. no
plasticity), and elastic deformations need to be larger than the
range of molecular forces, yet small enough to allow for linear
elasticity. In addition, we have assumed that the surface tension
of the gel has no explicit strain-dependence. Within this context it
is demonstrated that the adhesion properties are fully encoded by
Young’s law for the wetting angle, even at finite elasticity. This
newly identified boundary condition for elastic adhesive contacts
necessitates a thin boundary layer at the edge of the contact,
which regularizes the JKR-crack singularity. Here we analytically
resolve the boundary layer in the form of a similarity solution. The
analysis is backed up by numerical solutions, by which we also
recover the crossover from JKR to the surface tension dominated
regime for exceedingly soft contacts.18,19

The emergence of a contact angle boundary condition will
be a robust feature that applies beyond most of the restrictions
quoted above. For example, the solution given here is restricted
to linear elasticity, (W/g)1/2 { 1, but the boundary condition (12)
equally applies nonlinearly – as also suggested by recent experi-
ments.25 This paves the way to analyse adhesion involving large
deformations. In this context, an important aspect for future
studies is a systematic derivation of the boundary condition when-
ever the surface energy depends on the strain.15,26,28–30 Also the
concept of hysteresis, i.e. the difference in the work of adhesion
during loading and unloading,36,37 might have a counterpart in
terms of contact angles: in liquid wetting this is described by
contact angle hysteresis. It would be interesting to see if adhesion
can also be captured by an advancing and receding contact angle.
Another noteworthy aspect is that at very small contact angles
(close to complete wetting), the solvent can be separated from the
gel in the vicinity of the edge,25 also observed in simulations of
microgel particles.38 We do note that the concept of ‘‘wetting
angles’’ must break down for contacts that are sufficiently stiff
such that elastic deformations fall within the range of molecular
interactions,12 i.e. when approaching the DMT regime.

In a broader context, we hypothesize that the self-similarity
derived here for adhesive contacts could be a generic feature of
instabilities and fracture in the presence of surface tension,39–41

as is the case for fracture of viscous liquids.42,43

A Variational analysis of the spherical
indenter

The variational formulation of the adhesive contact problem
can be straightforwardly extended to axisymmetric indenters of

Fig. 6 Matching the asymptotes of the similarity solution H0 (red, dashed),
to the singular outer solutions H0

0/A for the cylinder (gray dashed) or sphere
(blue dotted). The solid black line shows the 2D numerics: it follows H0

0 on
large scales, switching to H0 on small scales. The matching was done for
S = 10�4, while the external load was set to the critical value for pull-off (inset,
circle). Inset: l versus f3D given by eqn (41), scaled by the critical values fc, lc.
For a given load, the upper (lower) branch is stable (unstable).33
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shape f (r). The free energy is similar as in 2D, but contains
extra factors 2pr since the integrals now represent axisymmetric
areas:

F½hðrÞ; ‘;D� ¼ Fel½hðrÞ� þ
ð1
‘

dr2prg 1þ h02
� �1=2

þ
ð1
‘

dr2prgSV 1þ f 02
� �1=2

þ
ð‘
0

dr2prgSE 1þ f 02
� �1=2

þ
ð‘
0

dr2prpðrÞ hðrÞ � f ðrÞ þ D½ �f g

þ l h ‘þð Þ � f ð‘Þ þ D½ �f g þ f3DD:

(42)

For convenience (and without the loss of generality), we defined
the continuous Lagrange multiplier to be 2prp(r). This has the
merit that, as in the 2D case, p(r) can be interpreted as the
contact pressure.

The degrees of freedom of the problem are h(r), l, D. The
variation of D gives

@F

@D
¼ 0 ¼ f3D � l�

ð‘
0

dr2prpðrÞ: (43)

Next we perform the variation dh(r),

dF ¼ 0¼ l�2pr gh0

1þh02ð Þ1=2

" #
‘þ

dh ‘þð Þþ
ð‘
0

dr2prdhðrÞ½sðrÞþpðrÞ�

þ
ð
‘

1dr2prdhðrÞ sðrÞ�g h00

1þh02ð Þ3=2
þ h0

r 1þh02ð Þ1=2

 !" #
:

With respect to the 2D analysis, this gives a modified l, containing
a factor 2pl:

l ¼ 2p‘g
h0

1þ h02ð Þ1=2

" #
‘þ

¼ �2p‘g sinb; (44)

Another difference appears in the elastic stress outside the
contact, which now becomes

sðrÞ ¼ gh00

1þ h02ð Þ3=2
þ gh0

r 1þ h02ð Þ1=2
; jrj4 ‘; (45)

and contains the usual extra curvature term due to the axi-
symmetry. Again, we close by varying l:

@F

@‘
¼ 0 ¼ �2p‘g 1þ hþ

0 2
� �1=2

þ2p‘ gSE � gSVð Þ 1þ f 02
� �1=2

þ lhþ
0 � lf 0:

Noting that l differs from the 2D case by a factor 2pl, the
equation reduces that of the cylindrical indenter (7): also for
axisymmetric indenters, Young’s law emerges as the boundary
condition.

B The elastic energy functional

The change in elastic free energy dFel can be related to the
work done by the tractions acting on the boundary. In the case of
a purely normal displacement dh(x) of a two-dimensional half-
space, this becomes:32

dFel ¼
ð1
�1

dxsðxÞdhðxÞ; (46)

where s(x) is the normal stress. By definition of a functional
derivative, eqn (46) expresses that s � dFel/dh. Making use of
linearity s B h, (46) can be integrated to

Fel ¼
1

2

ð1
�1

dx sðxÞhðxÞ: (47)

It is important to note that a change in the reference value for
the height, i.e. h(x) - h(x) + a, gives a finite, but constant change
in the elastic free energy. This constant vanishes when the
resultant loading is zero, but even at finite loading the reference
value of the energy does not enter the variational analysis.

An explicit expression for the elastic energy functional is
obtained using (15), so that

Fel½h� ¼
m
p

ð1
�1

ð1
�1

dx dt
hðxÞh0ðtÞ
x� t

; (48)

which can be symmetrized by integration by parts:

Fel½h� ¼ �
m
p

ð1
�1

ð1
�1

dxdt ln jx� tjh0ðxÞh0ðtÞ: (49)
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