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It has been observed that the amount of effective slip for transverse flow over a bubble
mattress is maximum for bubbles that protrude somewhat in the channel flow. In this paper
we provide an explanation for this characteristic feature by analyzing the spatial distribution
of viscous dissipation for bubbles of varying protrusion angles. Bubbles protruding in the
channel act as obstacles and reduce the effective channel height, thereby increasing the
viscous dissipation in the bulk flow. At small scales, however, our numerical analysis reveals
that increasing the bubble protrusion angle reduces the dissipation near the contact points of
the no-slip channel wall and the no-shear bubble surface. We obtain an analytical expression
to quantify this effect based on classical corner flow solutions. The two antagonistic effects,
decreased dissipation near the bubble corners and increased dissipation on larger scale,
explain why the effective slip length is maximum for a bubble mattress that is slightly
bumpy.

DOI: 10.1103/PhysRevFluids.1.054101

I. INTRODUCTION

Superhydrophobic surfaces are commonly used to optimize transport in microfluidic and
nanofluidic systems [1–3]. The gas present in the microstructures of the slippery and water-repellent
surfaces reduces the overall friction between a flowing liquid and the wall, compared to flat
nonslippery surfaces. The menisci of the gas bubbles are often assumed to be shear-free. This
leads to small but finite effective slip velocities at the interface, which can enhance interfacial
transport. The amount of wall slip is commonly expressed by the slip length b, as expressed by
Navier’s law [4]. At the surface, u − b∂nu = 0. Here u is the liquid velocity and ∂n is the derivative
normal to the surface. When considering slip over superhydrophobic surfaces, b denotes the effective
slip length experienced by the flow on scales larger than the bubbles.

For flat hybrid gas-solid surfaces, the effective slip length is always positive. This may not
be true for superhydrophobic surfaces containing curved gas-liquid interfaces. For transverse flow
over a bubble mattress as shown in Fig. 1, which is a two-dimensional superhydrophobic surface
consisting of an array of no-shear gas bubbles with no-slip walls in between, the amount of slip
strongly depends on the curvature of the bubble interface (defined by the protrusion angle ϑ , shown
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FIG. 1. Geometry of a viscous flow over a bubble mattress. A no-shear bubble with a protrusion angle ϑ is
sticking out into the channel flow at the lower boundary. The boundary conditions in the horizontal direction
are periodic. In the left figure, the color map represents the velocity magnitude |ũ|, while in the right figure the
color map shows the local viscous dissipation rate �̃. The white lines are streamlines of the velocity field ũ. The
relevant dimensions are the channel height H , the width of periodicity L, and the bubble size Lg . Throughout
the paper, all length scales are nondimensionalized by the channel height H .

in Fig. 1). This dependence shows two characteristic features: Slip is maximum for a small but finite
nonzero protrusion angle ϑ , but when the angle exceeds a critical value, the slip length becomes
negative.

The first to demonstrate the existence of a critical protrusion angle for negative slip were
Steinberger et al. [5]. They found that the slip length decreases when the protrusion angle ϑ

increases. For strongly protruding bubbles, negative slip lengths were computed, implying that the
flow is retarded by the superhydrophobic surface. Similarly, Legendre and Colin [6] showed that,
compared to a nonslippery surface, wall drag always increases for linear shear flow over stationary,
shear-free hemispherical bubbles.

The strong dependence of the effective slip length on the bubble protrusion angle ϑ was confirmed
numerically by Hyväluoma and Harting [7]. They also found, considering infinitely long cylindrical
bubbles, that the slip length strongly depends on the flow direction. When the flow is parallel to the
bubble slots, the slip length b is always positive [8–10]. The streamlines are straight and no roughness
is encountered by the flow. In the case of transverse flow, however, the slip length is negative when
the protrusion angle exceeds a critical value. The surface is rough due to the protruding bubbles,
giving rise to negative slip lengths.

Davis and Lauga [11] derived an analytical expression for the effective slip length for transverse
shear flow over a bubble mattress in the dilute limit, i.e., for a surface porosity ε � 1. Their
two-dimensional model showed good qualitative agreement with previous numerical results [5,7].
However, the theory by Davis and Lauga revealed a curious feature: The slip length is maximum
for a small but nonzero optimum protrusion angle of ϑ = 14◦. For larger protrusion angles, the
slip length decreases and becomes negative when ϑ exceeds the critical angle of ϑ = 65◦. Later
studies confirmed the general validity of the model, even for a three-dimensional surface containing
spherical bubbles [12–15].

Teo and Khoo [15] showed that the optimum and critical protrusion angles depend on the channel
confinement, which is the ratio of channel height to projected bubble diameter. When increasing the
confinement, the values of the optimal and critical protrusion angle decrease as the bubbles more
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readily obstruct the flow in shallow channels. The confinement effect becomes stronger for high
surface porosities. They also showed some characteristics of the flow field along the channel wall
and the bubble surface to explain the phenomenon of negative slip. Their numerical results indicated
that with increasing protrusion angle, the wall shear stress near the contacts points of wall and bubble
decreases, while the static pressure difference between the front and rear halves of the bubble interface
increases. This latter effect dominates beyond the critical protrusion angle, resulting in negative slip
lengths. However, even though the existence of an optimal protrusion angle is very robust and
consistently observed in theory and simulations, it remains an open question why for transverse flow
over a bubble mattress the amount of slip is maximum for a finite nonzero protrusion angle.

In this paper we will provide an explanation why the effective slip length over a bubble mattress
exhibits a maximum for a certain angle. To formulate an answer, we establish an explicit connection
between effective slip and viscous dissipation and consider the spatial distribution of viscous
dissipation. As the numerical and analytical results reveal, there are two opposing effects acting
at different scales that result in an optimal angle for which the overall dissipation is minimum or the
effective slip is maximum.

II. MATHEMATICAL FORMULATION

A. Governing equations

Figure 1 depicts the geometry of the system considered in this study. The periodic model with
length L is two dimensional and the undeformable spherical bubbles are considered to be infinitely
long. The top wall is nonslippery, while the bottom wall is a no-slip surface containing a no-shear
bubble of width Lg and having a radius of curvature of R = Lg/2 sin ϑ . The protrusion angle ϑ of
the bubble was varied. The ratio of channel height to domain length was set to a = H/L = 2. The
porosity was fixed at ε = Lg/L = 1/2. Parametric studies on the relationship between geometry and
effective slip have been published before [11,14,15]. Here we aim to identify the physical mechanism
that leads to the existence of an optimal protrusion angle for which slip is maximum.

Assuming that the Reynolds number Re = uavρD/μ is very small and that the flow is
incompressible, momentum transport is described by the continuity and Stokes equations

∇̃ · ũ = 0, (1)

0 = −∇̃p̃ + ∇̃2ũ. (2)

Here ∇̃ = (∂x,∂y), ũ = (ũx,ũy) is the velocity vector, and p̃ is the pressure. The equations were
made dimensionless using the height-averaged velocity uav, the channel height H , and the dynamic
viscosity μ. The scaled variables thus read x̃ = x/H , ũ = u/uav, and p̃ = pH/μuav.

The no-slip boundary condition is applied to the solid walls at the top and the bottom,

ũ = 0. (3)

The bubble surface is nonpenetrable and shear-free, which is described by

ũ · ñ = 0,

{−p̃I + [∇ũ + (∇ũ)T]} · ñ = 0. (4)

The domain is periodic in the x̃ direction, i.e.,

ũ(0,ỹ) = ũ(1/a,ỹ),

p̃(0,ỹ) = p̃(1/a,ỹ). (5)

The equations were solved numerically using COMSOL MULTIPHYSICS 5.0. The standard relative
tolerance was 1 × 10−3. Here P 2 + P 1 discretization (second-order elements for velocity and
first-order elements for pressure) was used to solve the Stokes equations. The mesh was refined
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near the walls by using a smaller mesh size and by using boundary layers, until the effective slip
length became mesh independent. The complete mesh consists of approximately 15 500 domain
elements and about 550 boundary elements. The numerical solution is obtained by imposing a
pressure gradient. Owing to the linearity of the Stokes flow, the solution is subsequently scaled to
achieve the desired average velocity of ũav = 1.

B. Relating the effective slip length to viscous dissipation

The reduction in flow resistance for a superhydrophobic wall is commonly quantified by an
effective slip length. The effective slip length for a heterogeneously slippery surface is defined as
the equivalent slip length required to achieve the same average velocity and pressure gradient past
a homogeneous slip wall. Here we will briefly repeat the relevant definitions and establish a formal
link between the slip length and the total viscous dissipation in the fluid domain. The latter will be
used to explain the nonmonotonic dependence of the slip length on ϑ .

1. Effective slip length

For a plane channel with a one-sided homogeneous slip wall, the pressure-driven velocity field
reads

ũx = 1

2

∂p̃

∂x̃

[
(ỹ2 − ỹ) − b̃

1 + b̃
(1 − ỹ)

]
, (6)

where b̃ = b/H is the scaled slip length. One verifies the no-slip condition ũx = 0 at the upper
boundary ỹ = 1, while at the lower boundary ỹ = 0 the solution satisfies Navier’s slip condition
ũx = b̃∂yũx . The corresponding average liquid velocity is

ũav = − 1

12

∂p̃

∂x̃

(
1 + 4b̃

1 + b̃

)
. (7)

This can be rewritten as an explicit expression for the effective slip length b̃,

b̃ =
(

−ũav − 1

12

∂p̃

∂x̃

)/(
ũav + 1

3

∂p̃

∂x̃

)
, (8)

which was used to compute the slip lengths in our simulations of flow over a bubble mattress. For
clarity we keep explicitly ũav in the various formulas, even though our dimensionalization implies
ũav = 1. Commonly in the literature, the slip length is nondimensionalized based on Lg , the width
of the bubble. In the present notation this reads

2b

Lg

= 2a

ε
b̃. (9)

2. Viscous dissipation

To explain why slip is optimal for an angle larger than 0◦, it is useful to express slip in terms of
the total viscous dissipation. The dimensionless viscous dissipation rate (per unit volume), in the
case of incompressible flow, is given by [16,17]

�̃ = 2

[(
∂ũx

∂x̃

)2

+
(

∂ũy

∂ỹ

)2]
+

(
∂ũy

∂x̃
+ ∂ũx

∂ỹ

)2

, (10)

where �̃ = �H 2/μu2
av. The total dissipation in the two-dimensional domain is obtained by

integrating �̃ over the domain area A,

�̃A =
∫∫

A

�̃ dA, (11)
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FIG. 2. (a) Dimensionless slip length b̃ and total dissipation �̃A plotted as a function of the bubble protrusion
angle ϑ for a = 2 and ε = 1/2. The effective slip length and the total dissipation are related to each other by
Eq. (13). When ϑ = 9◦, b̃ is maximum and �̃A is minimum. (b) Dependence of the optimal protrusion angle
ϑo on the confinement factor a = H/L for ε = 1/2.

where we use the convention that the subscript A implies an area integral of �̃. Similarly, the
dissipation in a streamtube �̃A,str is obtained by integrating �̃ over the area between two streamlines
Astr. Using Gauss’s theorem [16], one can derive that∫∫

A

�̃ dA = −ũx�p̃

∫ 1

0
dỹ = − ũav

a

∂p̃

∂x̃
. (12)

By combination of Eqs. (11) and (12) and subsequent elimination of the pressure gradient using
Eq. (7), the total dissipation in the domain can be expressed as

�̃A = 12ũ2
av

a

(
1 + b̃

1 + 4b̃

)
. (13)

Importantly, this equation gives a direct monotonic relation between the effective slip length b̃ and
the total viscous dissipation �̃A. As expected, a smaller dissipation implies a larger effective slip.
Explaining why there exists a maximum in wall slip for a nonzero protrusion angle ϑ is therefore
equivalent to understanding why there is a minimum in viscous dissipation at the same angle.

III. RESULTS AND DISCUSSION

We now show the results of our numerical simulations, based on which we propose an explanation
for the existence of an optimal protrusion angle. Figure 2(a) displays the dimensionless slip length
b̃ (blue circles), which is equivalent to (ε/2a)(2b/Lg) according to Eq. (9), as a function of the
protrusion angle ϑ . It reveals that slip is maximum for a finite positive protrusion angle of ϑ = 9◦
in this case. The same figure shows the corresponding total dissipation �̃A (red squares) by the
flow, which is related to the effective slip length according to Eq. (13). Maximum wall slip can
indeed be expressed as minimum dissipation, since for the optimal protrusion angle ϑo of 9◦ the
total dissipation is minimum.

The protrusion angle for which the effective slip length is maximum, or the overall dissipation
is minimum, depends on the confinement of the channel and the coverage density of the surface
by bubbles. Figure 2(b) illustrates that when the relative channel height is large, i.e., a � 1, the
optimum protrusion angle converges to a value of 14◦ for ε = 1/2. This is similar to the optimum
angle found by Davis and Lauga [11], although their expression is derived for shear flow over a
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(b)

(a)

(c)

FIG. 3. The color map in (a) shows the distribution of the dissipation rate �̃ for four different protrusion
angles for 0 � ỹ � 0.5: from left to right, ϑ = 1◦,9◦,33◦,65◦. The streamlines of the velocity field ũ are shown
in white. The black lines are contour lines of the dissipation rate �̃. In (b) and (c) the viscous dissipation �̃A,str

in a streamtube of width �ỹ = 0.01 is plotted against the midpoint of the streamtube ỹ0 at x̃ = 0. In (b) a = 2
and ε = 1/2 and (c) is a magnification of (b).

bubble mattress in the dilute limit (ε � 1). The existence of an optimum protrusion angle is therefore
very robust, although the precise value depends on the geometry of the system.

To explain why the slip length is maximum for slightly protruding bubbles, we now consider
the distribution of the viscous dissipation rate �̃ in the fluid domain. These distributions are shown
in Fig. 3(a) for several protrusion angles. The figures clearly show a gradual change of the spatial
distribution of the viscous dissipation rate when increasing ϑ . For small angles the dissipation rate
is strongest near the bubble corners, where the boundary condition changes discontinuously from no
slip at the solid wall to no shear at the bubble surface. The fluid flow close to the surface is significant
for small angles, giving rise to large velocity gradients and hence high dissipation rates near the
discontinuities. When the protrusion angle increases, we observe that the location of maximum �̃

gradually shifts upward along the bubble surface. Similar trends were observed by Theo and Khoo
[15], who considered the shear stress and static pressure at the lower wall.

In order to compare the dissipation distribution for different protrusion angles more quantitatively,
we consider the dissipation in a streamtube �̃A,str versus the midpoint ỹ0 of the streamtube at x̃ = 0.
This is shown in Fig. 3(b), with a more detailed zoom given in Fig. 3(c). The dissipation profiles
depend nonmonotonically on the height ỹ, with a suppressed dissipation in the first few streamtubes
(ỹ0 < 0.05), which are passing close to the corners of the bubble. The dissipation near the corner
decreases considerably with increasing protrusion angle. This indicates that the fluid between the
bubbles becomes nearly stagnant, supporting the notion by Steinberger et al. [5] of an immobilized
liquid layer close to the wall for large protrusion angles.
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On the other hand, farther away from the solid wall (ỹ0 > 0.05) the dissipation increases with
ϑ . The location of maximum dissipation shifts from the contact points towards the front and rear
edge of the bubble surface. First, the pressure difference over the bubble surface becomes larger
when the protrusion angle increases [15]. Second, bubbles protruding in the channel increasingly
form obstacles to the flow, acting as roughness elements [7]. These elements causing bending of the
streamlines, which necessarily means that viscous dissipation increases. We also observe that for
ϑ > 33◦ the dissipation increases near the upper wall. The strongly protruding bubbles reduce the
effective channel height, leading to increased shear and higher dissipation rates in the bulk channel
flow.

Figure 3 is key to understanding why there exists an optimum protrusion angle for which effective
slip is maximum or viscous dissipation is minimum. Since �̃A = ∫

�̃A,str dỹ, this figure reveals that
there are two opposing trends. Near the surface, in the corners between bubble and wall, the
dissipation decreases with increasing ϑ , while globally the dissipation becomes larger with ϑ . These
two competing effects lead to a minimum in total dissipation, and therefore maximum slip, at an
optimum protrusion angle of, in this case, ϑo = 9◦.

We now explain in detail why viscous dissipation is suppressed near the bubble corner when the
protrusion angle increases. This analysis is based on the analytical corner flow solutions by Moffatt
[18], who solved the flow field of a viscous fluid near a sharp corner between a rigid boundary and
a free surface. It turns out that viscous corner flows exhibit a universal self-similar structure that
depends only on the boundary conditions (which are no slip and no shear in the present case) and on
the corner angle. This allows us to compute the dissipation in the vicinity of the corner as a function
of the protrusion angle ϑ . In terms of the stream function ψ , the Moffatt corner flow solutions in
polar coordinates (r̃ ,φ) are of the form [18]

ψ(r̃ ,φ) = Af (φ)r̃λ. (14)

For given angle ϑ , the function f (φ) has a prescribed functional form (see Appendix A). Likewise,
the exponent λ, which does not depend on φ, can be determined from an eigenvalue problem that
amounts to solving

sin 2α(λ − 1) = (λ − 1) sin 2α, (15)

where α = π − ϑ . The values of λ (solid line) are plotted as a function of ϑ in Fig. 4(a), showing
that λ increases monotonically with the protrusion angle ϑ . The amplitude A in Eq. (14) cannot be
determined from a local analysis of the corner flow, but depends on how the flow is driven far away
from the corner.

We can now use the Moffatt solution to compute the dissipation rate near the corner. From
Eq. (14), one can derive that

�̃ = A2g(φ)r̃2λ−4, (16)

which gives the distribution of the dissipation rate. Appendix A can be referred to for the full
derivation. The resulting dissipation field is again self-similar. An example of the dissipation field
is given in Fig. 4(d) for the case where ϑ = 12◦. While g(φ) and λ are readily calculated and we
therefore precisely know how they change with the protrusion angle ϑ , this is not the case for A: The
amplitude of the corner flow depends on the large-scale characteristics of the flow, which requires
a fully resolved flow field. For this purpose we numerically determined the amplitude A from the
explicit form of the stream function by Davis and Lauga [11] for shear flow over a bubble mattress in
the dilute limit (which is given in Appendix B for completeness). Obviously, the solution by Davis
and Lauga should implicitly contain the universal flow structure expressed by Eq. (14) at small
distances from the corner. This has been verified by fitting the Moffatt solution to the solution of
Davis and Lauga, giving us λ(ϑ). The resulting values (circles) are superimposed on the analytical
values (solid line) in Fig. 4(a). Subsequently, the product Af (φ) is plotted in Fig. 4(b) for various
protrusion angles. Most importantly, it reveals that changes in the function f (φ) with ϑ are only
minor and that the amplitude A is approximately constant for the range of ϑ considered.
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FIG. 4. To prove that the viscous dissipation in the vicinity of the bubble corners decreases with increasing
protrusion angle ϑ , the flow near the corner is analyzed using the Moffatt corner flow solution ψ = Af (φ)rλ

[18]. (a) Exponent λ plotted as a function of ϑ , obtained from fitting the Moffatt solution to the analytical
solution of Davis and Lauga [11] (circles) and by solving Eq. (15) (solid line). (b) Plot of Af (φ) for various
ϑ . Both the amplitude A and the function f (φ) are approximately constant. (c) Maximum dissipation rate
�̃max(ϑ), determined at r̃ = 10−5 and normalized by �̃max(0). Based on a theoretical analysis, it is predicted
that near the corner �̃(ϑ)/�̃(0) ∼ r̃2λ−3 [Eq. (17)]. (d) Dissipation rate �̃ for a protrusion angle of ϑ = 12◦,
with some streamlines of ũ plotted in white. The bubble surface is located at (r̃ ,168◦).

From the above considerations we infer that the dominant dependence of the dissipation rate
�̃ on the protrusion angle is encoded in λ(ϑ) and in particular in the dependence �̃ ∝ r̃2λ−4. To
compare the viscous dissipation rate �̃ at different protrusion angles ϑ , it is convenient to normalize
�̃ by the value of �̃ for ϑ = 0◦. Since λ = 3/2 when ϑ = 0◦, we obtain

�̃(ϑ)/�̃(0) ∼ r̃2λ−3, (17)

which provides an analytical estimate of how the rate of dissipation depends on ϑ . The result is
plotted as a solid line in Fig. 4(c) for r̃ = 10−5. The selected value of r̃ is arbitrary: As long as
r̃ � 1 the flow field is self-similar and graphs of Eq. (17) will exhibit the same trend. Figure 4(c)
confirms that, as expected, in the direct vicinity of the corner the dissipation rate �̃ strongly
decreases with increasing protrusion angle. The numerically determined normalized dissipation
rates (circles), obtained from the computed flow and dissipation fields utilizing the Moffatt solution
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FIG. 5. For four different protrusion angles ϑ , the difference in dissipation rate ��̃ = �̃ − �̃HP is plotted.
Each contour level corresponds to ��̃ = 25. Here ��̃ < 0 for the blue contour levels and ��̃ > 0 for the green
and red contour levels. When ϑ is larger than the critical protrusion angle of, in this case, 61◦, in the channel
mainly ��̃ > 0, indicating increased friction with respect to Hagen-Poseuille flow through a nonslippery
channel.

using the previously determined values of A(ϑ), are also plotted in Fig. 4(c). It shows that indeed the
numerical values are well approximated by Eq. (17). The small differences between the calculated
values and the analytical estimation can be attributed to the minor changes in the product A2g(φ)
[and in particular to g(φ), since A is nearly constant] with protrusion angle ϑ . The corner analysis
therefore explains that the suppressed dissipation near the bubble corners with increasing protrusion
angle is mainly due to the increase of the exponent λ with the protrusion angle.

Finally, the dissipation distribution is not only valuable in explaining the existence of an optimal
protrusion angle, it can also be used to predict the critical protrusion angle ϑc for which the slip length
becomes negative. A negative slip length indicates that the friction for flow over a slippery surface is
larger than for Hagen-Poiseuille flow through a smooth nonslippery channel. For Hagen-Poiseuille
flow we find that �̃HP = 36(4ỹ2 − 4ỹ + 1). This gives for a confinement factor of a = 2 an overall
dissipation of �̃A = 6. This matches with Fig. 2, as b̃ = 0 when �̃A = 6 for ϑ = 61◦.

To identify the critical protrusion angle, we consider the difference in local dissipation rate
��̃ = �̃ − �̃HP. Figure 5 shows ��̃ for four different protrusion angles. These plots again illustrate
the fact that with increasing protrusion angle, the dissipation decreases near the corners of the bubbles
and increases in the bulk channel flow. When increasing ϑ , for an increasing fraction of the channel
��̃ is positive (and therefore changes color from blue to green). Since for large protrusion angles
the dissipation in the bulk flow is dominant over the dissipation near the bubble corners, the slip
length should become negative when the dissipation in the main channel becomes larger than for
Hagen-Poiseuille flow. Thus, when ϑ � ϑc = 61◦ we expect that in the main channel ��̃ > 0.
Figure 5 confirms this expectation, as in the channel ��̃ is mainly negative (colored blue) when
ϑ = 57◦ < 61◦ and predominantly positive (colored green) when ϑ � 61◦.

IV. CONCLUSION

The effective slip length for transverse flow over a bubble mattress is largest for bubbles that
slightly protrude in the channel flow and not for completely flat bubbles. To explain the existence
of this optimal protrusion angle, we established an explicit connection between the slip length and
the viscous dissipation rate and subsequently analyzed the spatial dissipation distribution. The total
dissipation in the domain can be directly related to the effective slip length.
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The numerical results reveal that near the contact points of the no-slip wall and the no-shear bubble
surface, the viscous dissipation rate is maximum when the bubbles are flat. The different boundary
conditions of the wall and bubble give rise to large velocity gradients, leading to high dissipation rates.
When increasing the bubble protrusion angle, the dissipation close to these discontinuities decreases.
An analytical treatment of the dissipation rate in the corner utilizing a classical corner flow solution
provides proof of this observation. On the other hand, bubbles sticking out into the channel flow act
as obstacles and reduce the effective channel height, thereby increasing the dissipation in the bulk
flow.

We conclude that increasing the protrusion angle of a bubble has two opposing effects: It reduces
dissipation in the vicinity of the bubble corners, while it increases viscous dissipation in the bulk of
the channel. This explains the existence of an optimum protrusion angle larger than 0◦ for which the
total dissipation in the channel is minimum or the amount of effective slip is maximum.
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APPENDIX A: DISSIPATION RATE FUNCTION

The Moffatt solution [18] for flow of a viscous fluid near a sharp corner is written as

ψ = Af (φ)r̃λ, (A1)

with A being a certain prefactor and f (φ) being a function of the form

f (φ) = P cos λφ + Q sin λφ + R cos (λ − 2)φ + S sin (λ − 2)φ, (A2)

where P , Q, R, and S are arbitrary constants, determined by the boundary conditions. Using this
solution, we can derive a function for the dissipation rate near the corner. In polar coordinates, the
dissipation rate �̃ is given by

�̃ = 2

[(
∂ũr

∂r̃

)2

+
(

1

r̃

∂ũφ

∂φ
+ ũr

r̃

)2]
+

[
r̃

∂

∂r̃

(
ũφ

r̃

)
+ 1

r̃

∂ũr

∂φ

]2

. (A3)

Since ψ = Af (φ)r̃λ,

ũr = 1

r̃

∂ψ

∂φ
= Af ′r̃λ−1,

ũφ = −∂ψ

∂r̃
= −Af λr̃λ−1. (A4)

This ultimately results in the following expression for �̃:

�̃ = A2{2f ′2(λ − 1)2 + 2f ′2(1 − λ)2 + [f ′′ − f λ(λ − 2)]2}r̃2λ−4 = A2g(φ)r̃2λ−4. (A5)

APPENDIX B: STREAM FUNCTION FOR SHEAR FLOW OVER A BUBBLE MATTRESS

For shear flow over a bubble mattress in the dilute limit, i.e., ε � 1, Davis and Lauga [11] solved
the velocity profile. The stream function ψ(ξ,η) is derived in a bipolar coordinate system with

x = c sinh ξ

cosh ξ + cos η
, y = c sin η

cosh ξ + cos η
. (B1)
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Here c = Lg/2. The stream function ψ , which far away from the surface equals ψ = 1
2γy2, is

written as

ψ = γ c2

[
1/2 sin2 η

(cosh ξ + cos η)2 −
∫ ∞

0 f (s,η) cos sξ ds

cosh ξ + cos η

]
, (B2)

f = −A(s) sin η
sinh s(π − η)

s
+ B(s)

[
cos η

sinh s(π − η)

s
+ sin η cosh s(π − η)

]
, (B3)

γ being the shear rate. Here

A(s) = s

sinh 2s(π − ϑ) + s sin 2ϑ

[
cos 2ϑ + s sin 2ϑ cosh sπ + sinh s(π − 2ϑ)

sinh sπ

]
(B4)

and

B(s) = s sin 2ϑ

sinh 2s(π − ϑ) + s sin 2ϑ
. (B5)

Besides the integration variable s, both A and B only depend on the bubble protrusion angle ϑ . The
effective slip length of the bubble mattress is expressed as

2b

Lg

(ϑ) = επ

∫ ∞

0
A(s)ds. (B6)
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