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A free falling, absorbing liquid drop hit by a nanosecond laser pulse experiences a
strong recoil pressure kick. As a consequence, the drop propels forward and deforms
into a thin sheet which eventually fragments. We study how the drop deformation
depends on the pulse shape and drop properties. We first derive the velocity field
inside the drop on the time scale of the pressure pulse, when the drop is still spherical.
This yields the kinetic energy partition inside the drop, which precisely measures the
deformation rate with respect to the propulsion rate, before surface tension comes
into play. On the time scale where surface tension is important, the drop has evolved
into a thin sheet. Its expansion dynamics is described with a slender-slope model,
which uses the impulsive energy partition as an initial condition. Completed with
boundary integral simulations, this two-stage model explains the entire drop dynamics
and its dependence on the pulse shape: for a given propulsion, a tightly focused
pulse results in a thin curved sheet which maximizes the lateral expansion, while a
uniform illumination yields a smaller expansion but a flat symmetric sheet, in good
agreement with experimental observations.
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1. Introduction
A laser pulse interacting with an absorbing liquid body can deposit a finite amount

of energy, concentrated both in time and space, which eventually triggers a dramatic
hydrodynamic response. Focused nanosecond pulses have for instance been used
to induce cavitation in liquids confined in capillary tubes (Vogel, Busch & Parlitz
1996; Sun et al. 2009; Tagawa et al. 2012), and jetting and spraying in sessile drops
(Thoroddsen et al. 2009). These situations involving a liquid close to a wall result in
localized flows. By contrast, we consider here the situation of a mobile liquid body:
the impact of a nanosecond laser pulse onto an absorbing unconfined liquid drop,
which, as first described by Klein et al. (2015), has a global hydrodynamic response
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FIGURE 1. Response of a free-falling dyed water drop of initial radius R0 = 0.9 mm to
a 10-ns laser pulse (λ = 532 nm) impacting from the left. (a) t = 5 µs (t/τc = 0.0016,
with τc the capillary time) after the pulse, a shock wave has propagated in the air and
a mist cloud has developed at the drop surface, but the drop itself has not yet moved.
(b–d) t= 1.2 ms (t/τc= 0.39) after the pulse, the drop has propelled and deformed into a
thin sheet (same magnification as in (a)), whose shape and lateral expansion R(t) depend
not only on the energy E absorbed by the drop, but also on the width of the laser beam
on the drop surface ∼σR0 (see § 3): (b) uniform illumination of the drop (σ ' 0.75,
E = 29 mJ, acquired Weber number We ' 32 ± 6), (c) slightly focused laser (σ ' 0.48,
E=20 mJ, We'28±8) and (d) tightly focused laser (σ '0.29, E=20 mJ, We'72±29).

to the pulse: the drop propels forward at a speed of several metres per second,
strongly deforms and eventually fragments (see figure 1). This dynamics is similar
to that following a mechanical impact such as on a solid substrate or a pillar, which
has been studied thoroughly (see e.g. Clanet et al. 2004; Yarin 2006; Villermaux &
Bossa 2011; Kolinski et al. 2012; Riboux & Gordillo 2014; Josserand & Thoroddsen
2016), including a few studies on the fragmentation of the drop (Villermaux 2007; Xu,
Barcos & Nagel 2007; Villermaux & Bossa 2009, 2011; Riboux & Gordillo 2015).
A laser proves to be an adequate tool to vary the extension of the impact without
affecting the initial drop geometry. However, how a drop deforms and fragments as
a result of a laser impact are still largely open questions.

An important application of drop deformation by laser-pulse impact is found in
laser-produced plasma light sources for extreme ultraviolet (EUV) nanolithography. In
these sources, a nanosecond laser pulse preshapes a falling liquid tin drop into a thin
sheet, which is subsequently ionized by a second laser pulse (Mizoguchi et al. 2010;
Banine, Koshelev & Swinkels 2011). To maximize the conversion of liquid tin to
plasma, a precise control of the drop shape and stability that result from the first laser
impact is crucial. That is, the dynamic response of a liquid drop to the impact of a
laser pulse has to be resolved.

In a previous study (Klein et al. 2015) we focussed on the question of how the laser
transfers momentum to the liquid body. We showed that the key driving mechanism
for the drop propulsion and deformation observed in experiments is the local and
asymmetric boiling of the liquid induced by the absorption of the laser energy on the
illuminated side of the drop. In a dyed (and hence absorbing) drop, this absorption
occurs in a thin, superficial layer of liquid, whose thickness δ ∼ 10 µm is set by
the penetration depth of the laser. As a result this layer boils and a shock wave is
emitted into the surrounding air, followed by the directional emission of vapour and
mist (see figure 1a). This expelled mass is only a tiny fraction of the total mass of the
drop, δ/R0∼ 10−2, with R0 the initial drop radius. The resulting vapour recoil pressure
on the drop surface both deforms the drop and propels it forward (figure 1b–d) at a
velocity

U ∼ E− Eth

ρR3
01H

u. (1.1)
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FIGURE 2. (Colour online) Illustration of the time scale separation in the problem. The
laser interacts with the drop on time τ`, the drop reaches its centre-of-mass velocity U on
the vapour expulsion time τe. The drop subsequently deforms on the inertial time τi into
a thin sheet with time-dependent thickness h(t), which undergoes a surface-tension limited
expansion on the capillary time τc. (a) τ`= 10−8 s; (b) τe∼ 10−5 s; (c) τi=R0/U∼ 10−4 s;
(d) τc = (ρR3

0/γ )
1/2 ∼ 10−3 s.

This propulsion velocity scales linearly with the absorbed laser energy E beyond the
threshold energy Eth needed to heat the liquid layer to the boiling point, where ρ is
the liquid density, 1H the latent heat of vaporisation and u is the thermal speed of
the expelled vapour. The drop propulsion is accompanied by a lateral expansion that
scales as

Rmax − R0

R0
∼We1/2, (1.2)

where the Weber number is defined as We = ρR0U2/γ and γ is the liquid surface
tension. Hence, both the propulsion speed and the maximal radius of expansion are
proportional to the laser-pulse energy (beyond the threshold). However, not only
the energy of the laser pulse, but also the pulse shape and focus have a strong
influence on the drop deformation and propulsion, as figure 1(b–d) shows. Although
the absorbed laser energy is similar in the three cases shown, the resulting drop
shapes differ completely: an unfocussed laser beam deforms the drop into an almost
flat sheet, whereas a focussed beam gives rise to a strongly curved, bag-like drop
shape.

Before seeking an understanding of these differences, it is worth remembering the
clear separation of the time scales involved in the problem (Klein et al. 2015), which
we illustrate in figure 2. The impact of a few milli-Joule laser pulse with a duration
τ` ∼ 10−8 s onto a liquid drop results in the directional ejection of vapour and mist
by the drop on a time scale τe∼ 10−5 s. The vapour recoil then gives rise to the drop
propulsion and deformation. Therefore, the laser–drop interaction can successfully be
modelled as a recoil pressure pulse exerted on the drop surface for a duration τe
(Klein et al. 2015). It is clear from figure 1(a), that on this time scale the drop does
not deform: both the laser pulse duration τ` and the vapour recoil duration τe are
much shorter than the inertial and capillary time scales, respectively τi = R0/U ∼
10−4 s and τc=

√
ρR3

0/γ ∼ 10−3 s, on which the drop propels, deforms and fragments
(figure 1b–d). To estimate the inertial time scale we used a characteristic velocity of
U ∼ 1 m s−1, based on our experimental observations.

The present work aims to elucidate how the laser-pulse shape and focus affect
the drop deformation and propulsion. To this end, we employ both analytical
and numerical modelling and make use of the separation of the time scales
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τ`� τe� τi < τc. In §§ 2 and 3 we follow a pressure impulse approach as described
by Batchelor (1967, § 6.10), Cooker & Peregrine (1995) and Antkowiak et al. (2007)
to obtain, for an arbitrary pulse shape, the velocity field in the drop and the kinetic
energy partition between the deformation and the translation of the drop on the time
scale τe, i.e. the initial lateral expansion rate of the drop relative to its propulsion
speed. Surprisingly, we find that the maximum expansion rate is achieved when one
focusses the laser pulse into a tight spot, whereas a flat (symmetric) expanding drop
is obtained only with a uniform laser-beam profile. On the intermediate time scale τi
the drop deforms significantly and a purely ballistic approach is no longer applicable.
We use in § 3 a numerical boundary integral (BI) method (Oguz & Prosperetti 1990,
1993; Power & Wrobel 1995; Bergmann et al. 2009; Gekle et al. 2010; Hicks &
Purvis 2010; Bouwhuis et al. 2012) to confirm the main features of the deformation
and the precise detail of the flow. For an unfocussed laser pulse (figure 1b) the drop
evolves into a flat, thin sheet. In § 4 we use the kinetic energy partition obtained
from the early time analytical model and follow the method of Villermaux & Bossa
(2009) to describe the surface-tension limited expansion of this sheet on the late time
scale τc.

2. Problem formulation and methods
We consider the response of a liquid drop to a pressure pulse, i.e. a pressure field

with magnitude pe applied at the interface on one side of the drop for a duration
τe. The absolute impulse scale peτe sets the propulsion velocity of the drop through
momentum conservation (see (2.2) below). As we discussed above, this velocity is in
turn directly related to the laser-pulse energy through (1.1). The problem thus amounts
to determining the shape and the rate of deformation of the drop. In § 2.1 we introduce
an analytical model for the early time dynamics of the drop (t∼ τe). To complement
the analytical model and describe the dynamics at later times (t ∼ τi, τc) we use the
BI model that is discussed in § 2.2.

2.1. Early time dynamics: analytical model
We characterise the ratio between the inertial time scale on which the drop deforms
and the vapour expulsion time on which the drop acquires it centre-of-mass speed by
the impact number

I = τi

τe
= R0

Uτe
. (2.1)

Note that since I � 1, the drop does not deform on the time scale of the pressure
pulse, as is shown in figure 1(a). To find the post-impact velocity field we therefore
naturally consider the impulsive response of a spherical drop. Figure 3 shows a
sketch of the problem geometry and indicates both the spherical (r, θ, φ) and
Cartesian coordinates (x, y, z). Both the initial configuration and the pressure pulse
are symmetric about the laser axis (z-axis), and we therefore seek a velocity field that
is also symmetric. The pressure pulse applied on the drop surface sets the fluid in
motion inside the entire drop. The axial propulsion speed U of the drop (see figure 3),
i.e. its centre-of-mass velocity, follows from the global momentum conservation∫ τe

0

∫
A

peez · dA dt= 4
3
πρR3

0U, (2.2)

with A the surface of the drop.
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FIGURE 3. Sketch of the problem. The axisymmetric pressure pulse pe(θ) applied on the
surface of a drop of radius R0. The spherical (r, θ, φ) and Cartesian (x, y, z) coordinates
systems are indicated.

To describe the flow field inside the drop we follow the same approach as Batchelor
(1967, § 6.10), Cooker & Peregrine (1995) and Antkowiak et al. (2007). The pressure
field establishes on the sonic time scale R0/c∼ 10−6 s, with c the speed of sound in
the liquid, which is much shorter than the pressure pulse duration τe∼ 10−5 s. Hence,
on time τe, the pressure field is well established. As the Reynolds number in these
experiments is typically large (Re ∼ 103) the flow is inviscid. Since moreover I� 1
(i.e. ∂u/∂t� (u ·∇)u), the impulsive acceleration of the drop during the pulse follows

∂u
∂t
≈− 1

ρ
∇p, (2.3)

with u(r, θ, φ) the velocity and p the pressure inside the drop relative to the ambient
pressure. Incompressibility (U� c) implies, upon taking the divergence of (2.3), that
the pressure field is harmonic:

1p= 0. (2.4)

The velocity field just after the pressure pulse is then obtained by integration of (2.3)
over time

u≈− 1
ρ
∇

∫ τe

0
p(τ ) dτ =−τe

ρ
∇p, τe 6 t� τi, (2.5)

where p now refers to the time-averaged pressure inside the drop during the pulse and
is therefore only a function of space. From momentum conservation (2.2) it follows
that the drop speed U scales as

U ∼ peτe

ρR0
. (2.6)

From now on, we use the scaled time t/τe, radial coordinate r/R0, pressure p/pe and
velocity ρR0u/peτe. The pressure scale pe can be obtained from the laser-pulse energy
by combining (2.6) and (1.1).

The shape of the pressure pulse f (θ) arises as the boundary condition on the drop
surface

p(r= 1, θ)= f (θ), (2.7)
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which we normalize such that the axial momentum is equal to one, i.e.

4
3
πU =

∫
A

f (θ)ez · dA= 2π

∫ π

0
f (θ) cos θ sin θ dθ = 1. (2.8)

This choice sets the (dimensionless) centre-of-mass velocity of the drop U = 3/(4π)
and the associated translation kinetic energy

Ek,cm = 2
3
πU2 = 3

8π
, (2.9)

independently of the choice of f (θ).
To solve the Laplace equation (2.4) in spherical coordinates we decompose the

pressure field into Legendre polynomials P`

p(r, θ)=
∞∑
`=0

A`r`P`(cos θ), (2.10)

which coefficients

A` = 2`+ 1
2

∫ π

0
f (θ)P`(cos θ) sin θ dθ, (2.11)

are obtained by the projection of the boundary condition (2.7). From (2.8) one
observes that A1 =U.

The solution (2.10) and (2.11) can now be used to describe the drop response to any
pressure-pulse and hence any laser-beam profile. The corresponding velocity field is
computed from (2.5). While by convention Ek,cm does not depend on the pressure-pulse
shape, the total amount of kinetic energy that has to be put into the drop to acquire
this propulsion does. It is given by

Ek = 1
2

∫
V

u2 dV =π

∫ 1

0

∫ π

0
(u2

r + u2
θ)r

2 sin θ dθ dr, (2.12)

with V the drop volume. As we will see in § 3.1, it is convenient to define the partition

Ek,d

Ek
= 1− Ek,cm

Ek
(2.13)

between the deformation kinetic energy of the drop Ek,d (i.e. the kinetic energy
remaining in the comoving frame) and the total kinetic energy (2.12).

2.2. Boundary integral simulations
The analysis above applies when the drop shape does not deviate too much from a
sphere (t∼ τe� τi). To obtain the details of the subsequent drop-shape evolution, one
needs to solve the axisymmetric potential flow problem in the deforming shape. To
this end, we employ the BI method described by Bergmann et al. (2009), Gekle et al.
(2010), which has already been successfully used to study drop deformation during
mechanical impact (Bouwhuis et al. 2012), as well as that due to a laser impact (Klein
et al. 2015). BI is a powerful method to study the drop dynamics at later times t∼ τi,
when the drop shape changes significantly.
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3. Results
We will now use the analytical model and BI simulations to explore the role of

the laser-pulse shape, i.e. of the pressure-pulse shape, on the deformation of the drop.
Indeed, the pressure boundary condition (2.7) introduced above is the actual pressure
on the drop surface, which is typically proportional to the local laser fluence weighted
by the cosine of the incident angle of the incoming rays on the drop surface. Typical
laser-beam profiles used in experiments have a Gaussian or flat-top (uniform) shape.
We consider a Gaussian pulse with a finite arbitrary width in § 3.1, the limit of a
perfectly focussed beam in § 3.2 and that of a uniform laser-beam profile, i.e. a cosine
pressure pulse applied on one side of the drop, in § 3.3.

3.1. Gaussian laser-beam profile
For simplicity, we first consider a pressure pulse that applies over the entire drop
surface. The effect of restricting the interaction to the side that is actually illuminated
by the laser will be discussed in § 3.3. Since our aim is to understand the influence of
the laser focus on the drop-shape evolution, we also neglect the angular dependence
cos θ of the pressure profile. The Gaussian-shaped pressure boundary condition (2.7)
then reads

f (θ)= c exp[−θ 2/(2σ 2)], (3.1)

where σ is a measure for the width of the pulse and the prefactor

c= 2
√

2

σπ3/2 exp[−2σ 2]
(

2Erfi[√2σ ] − Erfi
[

iπ+ 2σ 2

√
2σ

]
− Erfi

[−iπ+ 2σ 2

√
2σ

]) (3.2)

ensures the normalization (2.8). The resulting coefficients (2.11) are calculated by
numerical integration. The convergence of series (2.10) depends on the value of σ ,
but in general 20 terms are sufficient to obtain accurate results (except in the limit
σ→ 0, which has to be treated separately and will be discussed in § 3.2).

3.1.1. Global features
We explore the effect of the focussing of the laser beam on the drop deformation

by varying the pulse width σ , thereby mimicking the situation shown in figure 1(b–d).
In figure 4 we show a plot of the resulting pressure and velocity fields inside the
drop for a uniform pressure pulse (σ = π/4) and a more focussed one (σ = π/8).
In these (and the following) plots, the series solution (2.10) is cut after 20 terms.
The velocity fields shown in figure 4 are in the comoving frame: we subtracted the
centre-of-mass velocity of the drop to clearly illustrate the deformation of the drop
during its translational motion. The analytical solution (2.5) and (2.10) is strictly
valid only as long as the domain is spherical. However, we can obtain a first-order
approximation of the deformed drop shape shortly after the pressure kick by advecting
the material points on the drop surface. The drop surface at time t is then given by
rd(θ, t) = er + [ur(1, θ)er + uθ(1, θ)eθ ]I−1t, with I given by (2.1); see figure 4(c,g)
(blue dashed lines). This mere extrapolation must of course only be considered
for qualitative and illustrative purposes. For a quantitative prediction, one needs to
consider hydrodynamic interaction and solve for the pressure (2.4) in the deformed
drop, which is done in the BI simulations. In the first stages (during which the drop
is close to spherical) the BI simulations are in perfect agreement with the analytics.
At later times, naturally, stronger deviations are observed and the simulation results are
required to gain insight into the drop-shape evolution. A few drop contours obtained
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FIGURE 4. (Colour online) Reponse of a drop to Gaussian pressure pulses with σ =π/4
(a–d) and σ = π/8 (e–h). (a,e) Isopressure lines inside the drop at early times (t 6 τe).
(b, f ) Streamlines of the early time velocity field (t/τc�We−1/2) in the comoving frame
(drop centre-of-mass velocity subtracted). (c,d) and (g,h) Drop contours at t/τc= 0.021 (c),
0.064 (d), 0.0021 (g) and 0.013 (h) illustrating the evolution of the deformation in the
analytical model (blue dashed lines) obtained by advecting the material points on the drop
surface (see text) and in the BI simulations (red solid lines drawn on the same scale as
in (a,b), We = 790). Note that the expansion is much faster for σ = π/8 (g,h) than for
σ =π/4 (c,d), the contours being represented earlier in the latter case.

from BI at these later times for a Weber number of 790 are shown in figure 4(d,h)
(red solid lines). Note that the Weber number used in the simulation does not affect
the drop shape at early times (t � τc), but only sets the absolute propulsion speed
and expansion rate of the drop. As we will explain below, the relative partitioning
between propulsion speed and expansion rate also remains unaffected.

From figure 4 we observe that an unfocussed pulse leads to a velocity field that
is almost symmetric around the vertical mid-plane (figure 4b). As a consequence, the
eventual drop shape that will result from this pressure pulse is almost symmetric and
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FIGURE 5. (Colour online) Kinetic energy partition (2.13) as a function of the pulse
width σ . For a tightly focused beam (small σ ) almost all the energy goes into deforming
the drop without translating it. For an unfocussed pulse, the drop only translates and
hardly deforms. The black dots are experimental data obtained, by the method described
in appendix B, from the three events shown in figure 1(b–d) and from the experiments
in Klein et al. (2015) (four realisations of σ =π/6' 0.52). The red squares are obtained
from BI simulations using the same method to estimate the energy partition as in the
experiments (see appendix B).

flat, as is indeed observed in the BI results in figure 4(c) and (to some extent) in
our experimental results in figure 1(b). By contrast, a focussed pulse naturally leads
to more curved isopressure lines and the eventual drop will also be more curved
(figure 4g,h), which agrees with our experimental observations in figure 1(c–d). The
BI results show that at later times (t> τi and hence t/τc >We−1/2), the drop deforms
into a thin sheet bordered by a rim. For the unfocussed pulse (σ =π/4, figure 4d) this
sheet is relatively flat and has an approximately uniform thickness, except for the rim
itself. For the focussed pulse (σ = π/8, figure 4h) the resulting sheet has a stronger
curvature with a clearly non-uniform thickness, and the expansion is much faster than
for the focussed pulse (note the difference in time scales between figure 4c,d and g,h).

In the BI simulations, the recession of the sheet edge eventually leads to the
formation of undamped surface waves and a Bernoulli suction that results in the
successive detachments of liquid rings from the edge. This pinch off is an artefact of
the simulation caused by the lack of viscous damping and the assumption of axial
symmetry, as discussed by Peters, van der Meer & Gordillo (2013), and is clearly
irrelevant to the physical fragmentation processes that actually occur. This artefact
however has a negligible influence on the early time expansion and evolution of the
sheet thickness away from the rim. We therefore use the simulations until the first
pinch-off event occurs.

3.1.2. Kinetic energy partition: deformation versus translation
We now use the analytical results (2.5), (2.10) to quantify the effect of focussing

the laser on the expansion rate of the drop relative to its propulsion velocity. Figure 5
shows the kinetic energy partition (deformation to total kinetic energy ratio) (2.13)
as a function of the pulse width σ . We also plot estimates for the energy partition
obtained from the three experimental cases shown in figure 1(b–d) and from the data
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FIGURE 6. (Colour online) (a) Maximal expansion velocity Ux,max (in the x-direction)
along the drop surface as a function of σ for t/τc�We−1/2. The more focussed the pulse,
the faster the drop expands. The inset shows the velocity field in the comoving frame for
σ = π/8, and sketches Ux,max and its angular location θmax. (b) θmax as a function of σ .
For a focussed pulse the maximal expansion velocity is observed around θ = 0, i.e. on
the pulse axis of symmetry. No data is shown for σ → 0 and σ → π/2 since in these
limits the series (2.10) does not converge or the deformation velocity becomes negligible,
respectively.

of Klein et al. (2015) (black circles). In appendix B we explain in detail the (non-
trivial) steps that are taken to obtain these estimates from the experimental data. For
comparison, we applied the same method to the BI simulations (red squares), which
confirms the validity of our method (see appendix B for further discussion). Given the
uncertainties in the experimental estimates, in particular for the focussed laser pulse,
as discussed in appendix B (and which also apply to the estimated Weber numbers in
figure 1b–d), we cannot expect a quantitative agreement with theory. However, figure 5
shows that the experimental data points qualitatively confirm the theoretical prediction:
the more focussed the laser pulse, the more energy is used to deform the drop rather
than to translate it.

Figure 5 shows that for a tightly focussed beam (small σ ) almost all the energy
goes into deforming the drop and hardly any into translating it: the energy ratio
Ek,d/Ek→ 1 as σ→ 0. Indeed, the total kinetic energy required to maintain a constant
centre-of-mass speed diverges as the pressure pulse becomes more localized. We will
discuss the limiting case when the pressure pulse comes down to a Dirac delta pulse
in more detail in § 3.2. By contrast, when the pulse is very broad (large σ ) the drop
experiences a pressure from all sides, such that it does not deform but only translates
and Ek,d/Ek→ 0. Note again that σ � 1 does not represent a large directional laser
beam applying only on one side of the drop, which will be considered below, but
rather an isotropic illumination of the drop. In fact, the Gaussian pressure pulse that
is the most relevant to a uniform laser-beam profile (see § 3.3) has σ ' 0.73, which
is fairly unidirectional and close to the f (θ)∝ cos θ profile due to the local incidence
of the laser on the curved drop surface.

Figure 5 shows that a focussed pressure pulse leads to a stronger drop deformation.
This does not necessarily mean that the drop will also experience a larger lateral
expansion since the energy could be used to deform the drop into a strongly curved
shape only (i.e. to pierce the drop). To gain a feeling for how much the actual
expansion rate of the drop depends on the laser focus, we plot the maximum lateral
expansion velocity Ux,max (see the inset for an illustration) at the drop surface as a
function of σ in figure 6(a). One sees that a more focussed pulse not only leads to
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a larger deformation but also to a larger lateral expansion: the smaller σ , the larger
Ux,max. In figure 6(b) we show at which position along the drop surface (in terms of
azimuthal coordinate θ ) this maximum expansion velocity is observed. For a focussed
pulse it is observed closer to the laser axis (θ = 0), whereas for an unfocussed pulse
it is closer to the poles of the drop (θ =±π/2).

The faster initial expansion rate for a focussed pressure pulse is confirmed by the
simulations. Figure 7 shows drop contours from the BI simulations for four different
pulse widths, from which we derive the (projected) sheet radius R and thickness h
(measured at the geometric centre of the drop, see inset figure 8b). Indeed, in figure 8
we observe that a smaller σ , i.e. a more focussed pulse, corresponds to a faster lateral
expansion and a faster decrease in the sheet thickness. We therefore conclude that in
order to get a maximally expanded sheet with a minimal thickness, one needs to focus
the laser pulse into a tight spot (spot size �R0), with again the consequence that this
maximally expanded sheet is strongly curved and has a non-uniform thickness (bottom
panel figure 7).

3.2. A perfectly focussed laser pulse: the limit σ→ 0
In the limit when the size of the laser pulse becomes negligibly small with respect to
the drop size (σ→ 0) the pressure pulse on the drop surface approaches

f (θ)→ δ(θ), (3.3)

where δ stands for the Dirac delta distribution and the series (2.10) diverges. The exact
solution to (2.4), (3.3) can however be obtained from a different approach. For σ � 1
the curvature of the drop surface is no longer relevant and one recovers the response
of an infinite half-space to a Dirac delta pulse. To model this situation we adopt a
cylindrical coordinate system (r, z), with the positive z-coordinate pointing into the
liquid and z= 0 corresponding to the liquid–air interface, see figure 9.

The boundary conditions for the Laplace equation (2.4) in a half-space now read

p(r, z)→ 0 for r, z→∞, (3.4)

p(r, 0)= δ(r)
2πr

. (3.5)

Hence, the pressure diverges at the origin but the total force applied to the drop
remains finite and equal to unity. The solution to the Laplace equation (2.4) with
boundary conditions (3.4), (3.5) is obtained by taking the Hankel transform of (2.4)
in r (Prosperetti 2011, § 6.7), from which we find using (3.5),

p(r, z)=
∫ ∞

0
sp(s, 0) ds

∫ ∞
0

kJ0(kr)J0(ks)e−kz dk= 1
2πz2(1+ (r/z)2)3/2 . (3.6)

The velocity field is then obtained from (2.5):

ur(r, z)= 3rz
2π(r2 + z2)5/2

, (3.7)

uz(r, z)=− r2 − 2z2

2π(r2 + z2)5/2
, (3.8)
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FIGURE 7. (Colour online) Sequences of drop contours obtained from the BI simulations
illustrating the drop-shape evolution for We= 790 and four different pulse widths σ =π/3
(a–d), π/4 (e–h), π/6 (i–l) and π/8 (m–p). Clearly, a more focussed laser beam (smaller
σ ) leads to a larger expansion rate, a thinner sheet with a less uniform thickness and a
more curved drop shape. Each sequence is sampled at different times to accommodate
the different expansion rates. ((a,e,i,m) t/τc = 0, (b) 0.052, (c) 0.11, (d) 0.21, ( f ) 0.010,
(g) 0.021, (h) 0.064, ( j) 0.0053, (k) 0.011, (l) 0.022, (n) 0.0021, (o) 0.0064, (p) 0.013).
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FIGURE 8. (Colour online) Sheet radius R(t) (a) and thickness in the centre h(t) (b)
extracted from the BI simulations shown in figure 7 (We= 790 and σ = π/8, π/6, π/4
and π/3).

r

z

FIGURE 9. Situation for a tightly focussed laser beam. The drop surface curvature
becomes irrelevant and the pressure pulse pe comes down to a Dirac delta distribution
(3.3) applied at the surface of an infinite half-space with cylindrical coordinates r, z.

and diverges as ε−3 for ε = r, z→ 0. As a consequence, the total kinetic energy
contained in the half-space is non-integrable. We therefore calculate the kinetic energy
excluding a region of size ε around the origin

Ek = lim
ε→0

π

∫ ∞
0

∫ ∞
ε

(u2
r + u2

z )r dr dz= lim
ε→0

3
128ε3

. (3.9)

Hence, the total kinetic energy diverges as ε−3 for ε → 0 and is contained in a
tiny volume of size ε3, which is small compared to the drop size. In practice, for a
Gaussian of finite width (3.1), one can interpret ε = σ in the limit σ→ 0, and hence
the drop kinetic energy diverges as σ−3. We verified that the total kinetic energy
obtained from the series solution (2.10) indeed exhibits the same divergence. Since
the translation kinetic energy of the drop is constant Ek,d/Ek→ 1 as σ → 0, as was
already observed in figure 5.

The same conclusion can be reached from a simple scaling argument. We apply
a finite force F = ∫ p dA to the drop. In the limit σ → 0 the characteristic area on
which this force acts scales as σ 2 such that the local pressure p∼F/σ 2 diverges. From
momentum conservation, the velocity field inside the drop scales as u∼Fτ/ρσ 3, such
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that the kinetic energy, which is used to deform a volume of size σ 3, scales as

Ek ∼ ρu2σ 3 = F2τ 2/ρσ 3, (3.10)

and hence diverges as σ−3 for σ → 0, while the ratio Ek,d/Ek remains finite and
approaches one.

3.3. A one-sided uniform laser pulse yields a flat drop
A flat, symmetric drop shape can obviously be obtained by impacting the drop
symmetrically with two laser beams. We will however see now that a flat shape can
also be obtained with a uniform (or flat top) laser-beam profile impacting the drop
from one side only.

As discussed above, a uniform laser-beam profile results in a cosine-shaped pressure
profile on the drop surface

f (θ)= 3
2π

cos θH(π/2− θ), (3.11)

where the Heaviside function H restricts the interaction to the illuminated side of the
drop. The coefficients (2.11) can be obtained exactly and read

A`= 3(2`+ 1)
4π

∫ π/2

0
P`(cos θ) cos θ sin θ dθ = 3(1+ 2`)

16
√

πΓ (3/2− `/2)Γ (2+ `/2) , (3.12)

from which we find

p(r, θ)=Ur cos θ + 3
16
√

π

∞∑
n=0

1+ 4n
Γ (3/2− n)Γ (2+ n)

r2nP2n(cos θ), (3.13)

which involves only the even Legendre polynomials. The series (3.13) converges.
However, despite the fact that the pressure field itself is continuous, its first derivative
with respect to θ , and hence the velocity uθ , exhibits a discontinuity in θ = π/2
caused by the restriction of the pressure boundary condition (3.11) to the front of
the drop. In reality, this discontinuity would be smoothed by viscosity. The resulting
pressure (3.13) and velocity (2.5) fields are shown in figure 10. We use the velocity
field to obtain the energy ratio

Ek,d

Ek
≈ 0.35. (3.14)

Notice that this energy ratio can also be obtained with a Gaussian pressure pulse with
σ ≈ 0.73 (see figure 5).

The velocity field in the comoving frame shown in figure 10(b) displays a striking
feature: it is symmetric not only around the horizontal axis (owing to the axisymmetry
of the pressure pulse), but also around the vertical axis. This means that the drop
eventually deforms into a perfectly flat, symmetric shape even though the laser impact
is only one sided, as the BI results in figure 10(c) confirm. One can understand this
symmetry in the velocity field by inspecting the expression for the radial velocity after
subtraction of the centre-of-mass velocity U

ur(r, θ)=− 3
16
√

π

∞∑
n=1

2n(1+ 4n)
8Γ (3/2− n)Γ (2+ n)

r2n−1P2n(cos θ). (3.15)
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(a) (b)

(c)

(d)

FIGURE 10. (Colour online) Symmetric deformation obtained for a uniform laser profile
(cosine-shaped pressure pulse (3.11)). (a) Isopressure lines t/τc 6 τe/τc. (b) Streamlines of
the velocity field in the comoving frame t/τc�We−1/2. (c,d) Sequence of drop contours
from the BI simulations for We= 790, t/τc = 0.021 (c); t/τc = 0.064 (d) (same scale as
in (a,b)). Note that the discontinuity in uθ cannot be fully resolved by both the analytics
and the numerics due to the finite number of terms used in the series (3.13) and the finite
grid size, respectively.

Realizing that P2n(x)= P2n(−x), one sees that this velocity field is indeed symmetric.
More heuristically one may note that a cosine pressure pulse accommodates the drop
shape: both the pressure and the local thickness of the drop are proportional to cos θ
from which each slice of the drop acquires the same axial velocity. It can actually
be proven that a cosine pressure pulse is the only one-sided profile that results in a
symmetric (flat) drop, as we demonstrate in appendix A.

4. Late time dynamics: the thin-sheet limit

Up to now we have been concerned with the early time t∼ τe of the dynamics, when
the drop is still spherical and the influence of surface tension is negligible. The BI
simulations allowed us to extend the description to later times, close to the maximal
extension of the drop. We now consider the late time regime t ∼ τc when the drop
expands into a thin sheet and subsequently recedes.
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r

z

FIGURE 11. (Colour online) Sketch of an axisymmetric, flat thin sheet with time-
dependent thickness h(t) and radius R(t). The surface tension generates a typical Laplace
pressure difference 2γ /h between the edge and the centre of the sheet, which drives the
recession. The cylindrical coordinate system (r, z) is indicated.

4.1. Problem formulation and solution
We follow the same approach as Villermaux & Bossa (2009) have used to describe
the surface-tension limited expansion of a rain drop due to aerodynamic effects. We
thus describe the dynamics of a flat, thin sheet in a frame comoving with the centre-
of-mass velocity, see figure 11. The sheet has a time dependent, uniform thickness
h(t) � R(t) (with R(t) the time-dependent drop radius) and a given initial kinetic
energy, which is precisely that determined in the early time model. This follows from
the inviscid flow considered here: the kinetic energy is conserved as long as surface
tension does not influence the drop deformation. Since we are typically interested in
large Weber numbers, surface-tension effects are negligible during the early stage of
expansion (t ∼ τi� τc). Furthermore, when the drop deforms into an essentially flat
sheet, such as that shown in figure 4(a), all the kinetic energy of deformation is used
to expand the drop laterally. One can therefore use the kinetic energy obtained from
the early time model as an initial condition for the thin-sheet model.

We adopt a cylindrical coordinate system (r, z), with r the lateral direction (in which
the sheet expands) and z the direction normal to the sheet surface (see figure 11). The
sheet dynamics is prescribed by the axisymmetric Euler equation. In the thin-sheet
approximation (h� R) the lateral flow u(r, t) in the sheet is governed by

∂u
∂t
+ ur

∂ur

∂r
=−∂p

∂r
, (4.1)

r
∂h
∂t
+ ∂

∂r
(ruh)= 0, (4.2)

where all lengths are non-dimensionalised by R0, all times by τc and the pressure by
γ /R0. It follows from global mass conservation that h = 4/3R−2 so that using (4.2)
we find

u(r, t)= r
Ṙ
R
. (4.3)
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Integration of (4.1) between r= 0 and r= R(t) gives (Villermaux & Bossa 2009)

RR̈=−2[p(R)− p(0)]. (4.4)

For r � R(t) the interface curvature is close to zero, whereas for r = R it is
approximately 2/h(t), such that (4.4) reduces to

RR̈=−4
h
=−3R2. (4.5)

The solution reads R(t) = a cos
√

3t + b sin
√

3t, with constants a and b to be
determined from the initial conditions. The initial radius R(0) = 1 sets a = 1. To
derive the initial rate of expansion

√
3b we use the fact that at t= 0 the deformation

kinetic energy of the sheet

Es
k,d =

1
2

∫ R(t)

0
2πu2hr dr= 1

3
πṘ2 (4.6)

has to match the deformation kinetic energy of the drop obtained from the early time
model. In terms of the early time kinetic energy partition Ek,d/Ek,cm we obtain

Es
k,d(t= 0)=πb2 = 2

3
π

(
Ek,d

Ek,cm

)
We. (4.7)

Eliminating b from (4.7) we find the solution

R(t)= cos
√

3t+
(

2
3

)1/2 ( Ek,d

Ek,cm

)1/2

We1/2 sin
√

3t. (4.8)

This square-root dependence of the sheet radius on the Weber number is well known
for drop impact on solids in absence of friction (Richard & Quéré 2000; Rozhkov,
Prunet-Foch & Vignes-Adler 2004; Villermaux & Bossa 2011; Vernay, Ramos &
Ligoure 2015). As Klein et al. (2015) already showed, it is also in good agreement
with experimental observations for a drop impacted by a laser.

It is important to realize that the expanding thin sheet described here is actually
subjected to hydrodynamic instabilities that may eventually cause the sheet to
fragment, as figure 1(b–d) clearly show. First, the rapid acceleration of the drop
on τe may trigger a destabilization in the sense of Rayleigh–Taylor, which could
puncture the sheet, similar to what has been observed by Bremond & Villermaux
(2005) for sheets subjected to shock waves. Second, the rim formed at the edge of the
receding sheet may develop both Rayleigh–Taylor and Rayleigh–Plateau instabilities,
as is observed for a drop impacting a pillar (Villermaux & Bossa 2009). A description
of these instabilities is however beyond the scope of the present paper and is left for
future work.

4.2. Comparison to BI and experiments
To compare the thin-sheet model (4.8) to the experimental and BI results presented
by Klein et al. (2015) we first determine, using the early time model, the energy
partition that sets the initial condition (4.7). To this end, we need a description of
the experimental laser-beam profile, from which we deduce the pressure boundary
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FIGURE 12. (Colour online) Time evolution of the sheet radius R for We = 60 (black),
We = 16 (blue), We = 6 (red) and We = 1 (green). The dashed lines represent the BI
simulations for σ = π/6 and the dots are the experimental data, both reproduced from
Klein et al. (2015). The solid lines shows the theoretical prediction based on the thin-sheet
model (4.8) with no adjustable parameter: the initial radius is set to unity and the initial
kinetic energy partition is taken from the inertial model for a pulse width σ = π/6 that
matches the experimental beam profile. Experimental and BI data are shown until the
fragmentation starts to influence the sheet radius or the sheet becomes locally too thin
to be resolved accurately in the numerics, respectively.

condition for the early time model. Klein et al. (2015) showed that the experimental
beam profile is well described by a Gaussian curve (3.1) of width σ = π/6. In
the same study, this Gaussian pressure profile was already successfully used in BI
simulations to calculate the lateral drop expansion, which suggests that irregularities
in the beam profile have a negligible influence on the drop expansion. Here we use
the same pressure profile in the early time model to determine the kinetic energy
partition

Ek,d

Ek,cm
= 1.8, (4.9)

or, in terms of the energy ratio depicted in figure 5, Ek,d/Ek = 0.64. This energy
partition is then used in (4.7) to obtain the initial condition for the thin-sheet model.

Figure 12 compares the thin-sheet model (4.8) with experimental and BI results. The
thin-sheet model assumes a flat drop, whereas in the experiments and BI simulations
the drop is curved (for a pulse width σ = π/6, see figure 7). For comparison we
therefore use the projected radius as defined in the inset in figure 8(b). The thin-sheet
model provides an accurate prediction of the expansion speed and temporal evolution
of the sheet for all Weber numbers without any adjustable parameter. For We = 60,
the BI and theoretical model almost completely overlap and are very close to the
experimental data. Not surprisingly, at short times (t/τc < 0.1) or at smaller Weber
numbers, when the drop has not expanded into a thin sheet with h�R, the analytical
model and BI simulations deviate from each other. For We∼1, the drop only oscillates
around its spherical shape (see figure 1 in Klein et al. 2015), and even though the
differences between model and experiments for these small deformations are also
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small, the thin-sheet approximation is obviously no longer applicable. Moreover, in
the thin-sheet model we assume that all deformation kinetic energy is used for radial
expansion and the deforming sheet remains flat, whereas in experiment and BI it is
slightly curved (see figure 7), which implies that some of the deformation energy
is not used for radial expansion. Despite all of this, the analytical model and BI
simulations quantitatively describe the experimental data.

The good agreement between the thin-sheet model and the experiments and BI
simulations suggests that, although the initial expansion rate is very sensitive to the
beam width (see figures 5 and 6), moderate curvatures and thickness variations in
the sheet have little influence on the actual global expansion of the drop. One should
however bear in mind that these moderate non-uniformities might have important
consequences for the eventual sheet puncture and fragmentation.

5. Conclusion
The interaction of a laser pulse with an absorbing liquid drop can successfully

be modelled by applying a recoil pressure pulse to the drop surface. The relation
between the total impulse of this recoil pressure and the laser-pulse energy is found
from scaling arguments, whereas the profile of the pressure pulse can be considered,
as a first approximation, to follow that of the drop surface illumination (i.e. that of
the laser-beam profile weighted by its local incidence on the drop surface). Once
this relation is known, the hydrodynamic response of the drop to the laser impact
(propulsion, expansion and recession, possibly leading to fragmentation) is entirely
captured from the drop response to the corresponding pressure pulse. This approach
allows to study the response of the drop to laser pulses of different shapes and foci.

An analytical model for the impulsive acceleration when the drop is still spherical
provides the early time drop dynamics as a function of the laser-pulse shape: the
kinetic energy partition inside the drop is obtained, from which we derive the amount
of deformation versus translation of the drop. This yields a first-order estimate of
the drop shape evolution at later times by advecting the material points on the drop
surface. We find that, for a given propulsion of the drop, a maximal expansion is
obtained when the laser pulse is focussed into a tight spot, which results in a strongly
curved sheet, while a flat symmetric sheet can only be obtained with a uniform laser-
beam profile.

On the inertial and capillary time scales, boundary integral simulations reveal the
details of the sheet thickness and curvature dependence on the pulse focus, until close
to the maximal expansion (where the simulation breaks down). Assuming a flat drop,
we derive an analytical thin-sheet model initialized with the expansion rate obtained
from the early time model. The thin-sheet model predicts the entire evolution of
the sheet radius (expansion and recession) and shows a good agreement with both
experimental and BI data, in particular for large Weber numbers.

The drop deformation dynamics described by the models discussed here forms
the starting point to study the subsequent drop fragmentation which is observed
experimentally for high-energy laser pulses (i.e. drop expansion at large Weber
number), see figure 1(b–d) in the present paper and also figure 1 in Klein et al.
(2015). Understanding the mechanisms behind this fragmentation will be the subject
of future work.
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Appendix A. Only a uniform laser-beam profile results in a flat drop

In § 3.3 we found that a one-sided impact with a uniform laser beam (and hence a
cosine-shaped pressure pulse) results in a flat symmetric drop. We demonstrate here
that the uniform beam profile is in fact the only profile that gives rise to a flat drop.

A requirement for symmetry is that after subtraction of the centre-of-mass speed, the
velocity field satisfies the property ur(r, θ)=ur(r,π− θ). Inspecting e.g. (3.15), we see
that this requires the odd coefficients in (2.11) to be equal to zero, except for A1=U
to ensure the centre-of-mass speed. Since the velocity field (2.5) is obtained from the
pressure field by taking the gradient, the symmetry of the velocity field implies that
the odd coefficients in the pressure field (2.10) should also be equal to zero (again
except for A1). Hence, the pressure pulse f (2.7) needs to satisfy

A1 = 3
2

∫ 1

−1
f (x)x dx=U,

A2n+1 = 4n+ 3
2

∫ 1

−1
f (x)P2n+1(x) dx= 0 for n> 0.

 (A 1)

When the drop is hit by a laser pulse, the recoil pressure is only exerted from one
side:

f (x)= g(x)H(1− x). (A 2)

Hence, we need to find the functional form of g such that f satisfies (A 1). To this
end, we express g in Legendre series

g(x)=
∞∑

m=0

dmPm(x). (A 3)

Substituting (A 2), (A 3) into (A 1) and evaluating the coefficients An we obtain

A2n+1 = 4n+ 3
2

∞∑
m=0

dm

∫ 1

0
Pm(x)P2n+1(x) dx, for n= 0, 1, 2, . . . , (A 4)

where the integral now runs from zero to one. Using the property that

∫ 1

0
Pm(x)Pn(x) dx=



1
2m+ 1

if m= n,

0 if m 6= n,m, n both even or odd,
hm,n if m even, n odd,
hn,m if m odd, n even,

(A 5)

with

hm,n = (−1)(m+n+1)/2m!n!
2m+n−1(m− n)(m+ n+ 1)

[(
1
2 m
)!]2 {[ 1

2(n− 1)
]!}2 (A 6)
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(Byerly 1893, p. 173) we find that

A2n+1 = 4n+ 3
2

(
1

4n+ 3
d2n+1 +

∞∑
m=0

d2mh2m,2n+1

)
, for n= 0, 1, 2, . . . . (A 7)

In order to satisfy (A 1) we need A2n+1 = 0 ∀n> 0. From (A 7) we observe that this
requirement is satisfied for all n simultaneously only when dm = 0 for m 6= 1, i.e.

g(x)= d1P1(x)= d1 cos(x). (A 8)

This implies that the only way to form a flat, symmetric drop with a one-sided
impact is to illuminate the drop uniformly, i.e. with a uniform or strongly defocussed
Gaussian laser-beam profile.

Appendix B. Method to determine the kinetic energy partition in experiments
In figure 5 we showed the analytically obtained kinetic energy partition in the drop

as a function of the pulse width σ . For comparison, we also plotted the data points
corresponding to the experiments shown in figure 1. Below, we outline how these
experimental estimates were obtained.

In case the drop expands into a flat, thin sheet, all deformation kinetic energy is
used for lateral expansion and we find, using (4.6), the kinetic energy partition

Es
k,d

Ek,cm
= 1

2
Ṙ2

U2
(B 1)

and hence
Es

k,d

Ek
= Ṙ2

Ṙ2 + 2U2
. (B 2)

The above expression is exact in the case that the drop expands into a flat sheet, hence
for a uniform laser-beam profile. However, for the experimental data points shown
in figure 5 we also used (B 2) to estimate the energy partition for more focussed
beam profiles. To obtain this estimate we had to extract the lateral expansion rate and
the centre-of-mass speed of the drop for the different cases shown in figure 1 from
simultaneous high-speed front- and side-view recordings of the drop-shape evolution
(for details of the experimental set-up, the reader is referred to Klein et al. 2015).

We determined the initial expansion rate Ṙ based on the first three images available
in the front-view recordings by fitting ellipses to the drop shape at each instant, as
explained in figure 13. The selected frame rate of 10 000 frames per second ensures
a sufficiently rapid sampling of the expansion such that the first three data points are
well described by a linear fit (figure 13b). Difficulties in the determination of the
actual equivalent drop radius R arise when ligaments formed by the fragmentation
of the drop corrupt the view (see e.g. figure 1b). In our analysis, we excluded these
ligaments from the ellipse fitting.

To determine the propulsion speed U of the drop we used the side-view images
(see figure 14). We assumed an axisymmetric drop shape and determined the centre-
of-mass position zcm for each frame of the high-speed recordings. After the initial
acceleration of the drop on the time scale τe the propulsion speed is constant and can
hence be determined by a linear fit to the centre-of-mass position. Since the side-view
images are two-dimensional projections of the actual drop shape, they do not resolve
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FIGURE 13. (a) Stacked front-view images (taken from the laser-beam axis) of the
expanding drop shown in figure 1(c). The dashed lines are the ellipses best fitting the
contours, from which the equivalent radii R are determined. (b) Relative expansion of
the drop obtained from the views shown in (a) (u) and from later times (E). The linear
fit (solid line) to the first points yields a dimensional expansion speed Ṙ= 14.6 R0/τc =
4.2 m s−1.
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FIGURE 14. Two side views (taken perpendicularly to the laser-beam direction) of the
event shown in figure 1(d) at (a,c) t/τc = 0 and (b,d) t/τc = 1. The top frames show the
actual shadowgraphs and the bottom ones show an axisymmetric profile that was obtained
by summing up pixel values in x direction (i.e. collapsing all pixel values to the axis).
The dashed line indicates the centre-of-mass axial position zcm =

∫
zR2 dz/

∫
R2 dz, which

assumes axisymmetry of the profile.

the concavity of the drop. This introduces an uncertainty in the determination of the
centre-of-mass position, in particular for the more focussed laser-beam profiles, where
the drop evolves into a concave shape. We estimate the total error in Ṙ/U due to all
the effects described above to be of the order of 20 %.

Finally, for each experiment the corresponding laser-pulse width σ was determined
by fitting our experimental laser-beam profiles with a Gaussian curve; see Klein et al.
(2015) for details. Errors may arise from deviations of the beam profile from a perfect
Gaussian, shot-to-shot variations in the laser-beam profile and uncertainty in the drop
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position within the laser beam, in particular for the unfocussed beams where the drop
is still hit by the laser even if it is positioned slightly off centre. For the experiments
shown in figure 1 we estimate the uncertainty in σ to vary from ∼15 % for the
unfocussed case to ∼5 % for the most focussed case.

To investigate the validity of our estimate for the energy partition (B 2) we use the
results from the BI simulations shown in figures 7 and 8. In BI the centre-of-mass
speed is known (and constant for each value of σ ) and the pressure profile is exactly
Gaussian with a known σ . Hence, in BI the uncertainties that appear in experiment
are absent and the only approximation that remains is the use of (B 2) as a measure
for the energy partition. To find Ṙ in BI we determined the initial slopes of the curves
in figure 8(a), similar to what has been done for the experimental data. The resulting
estimate for the energy partition is in good quantitative agreement with its theoretical
prediction; see the red squares in figure 5. Small deviations (<15 %) are observed
for the most focussed pulses (σ = π/6 and π/8), where the sheet is strongly curved
and hence the approximation breaks down. Nevertheless, the quantitative agreement
between theory and BI confirms that (B 2) is indeed a reasonable estimate of the
energy partition in the range of pulse widths studied here.
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