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A train of high-speed microdrops impacting on a liquid pool can create a very deep
and narrow cavity, reaching depths more than 1000 times the size of the individual
drops. The impact of such a droplet train is studied numerically using boundary
integral simulations. In these simulations, we solve the potential flow in the pool and
in the impacting drops, taking into account the influence of liquid inertia, gravity
and surface tension. We show that for microdrops the cavity shape and maximum
depth primarily depend on the balance of inertia and surface tension and discuss how
these are influenced by the spacing between the drops in the train. Finally, we derive
simple scaling laws for the cavity depth and width.
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1. Introduction
1.1. Background and motivation

The impact of millimetre-sized objects on surfaces has been investigated in great detail.
Examples are the study of single drop impact onto a liquid pool (Pumphrey & Elmore
1990; Prosperetti & Oguz 1993; Thoroddsen et al. 2012; Tran et al. 2013; Wang,
Kuan & Tsai 2013; Chen & Guo 2014; Hendrix et al. 2016) (focusing on typical
terminal velocities of order 1 m s−1), multiple drop impact on a pool (Bick et al.
2010) or the impact of a solid object onto a pool (Bergmann et al. 2006; Gekle
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et al. 2008; Bergmann et al. 2009; Gekle et al. 2009, 2010). Another example is
the impact of a continuous water mass, thus a liquid column or a jet, onto a pool
(Kolaini et al. 1993; Oguz, Prosperetti & Kolaini 1995; Clanet & Lasheras 1997; Storr
& Behnia 1999; Kersten, Ohl & Prosperetti 2003; Szymczak, Means & Rogers 2004;
Qu et al. 2011). These studies focused on the bubbles resulting from the hydrostatic
collapse of the generated cavity. Only recently has the focus shifted to the impact of
much smaller drops, with a radius of a few tens of micrometres, corresponding to
the typical size of drops coming from, e.g., an inkjet nozzle (Basaran, Gao & Bhat
2013; Driessen et al. 2013). Microdrop impact is highly relevant for many rapidly
developing applications, such as immersion lithography (Keij et al. 2013), extreme
ultraviolet (EUV) lithography (Klein et al. 2015) and 3D printing (Gibson, Rosen
& Stucker 2010; Pohl et al. 2015), spray painting and spray coating. Very recently
it has been found that the phenomena for microdrops impacting on a solid surface
are similar to those of larger (millimetre-sized) impacting drops (Visser et al. 2015).
In contrast, for impact on a pool on these small length scales, capillary effects are
expected to be much more significant when compared to the impact of millimetre-
sized drops, or even dominating over gravity (Aristoff & Bush 2009). Capillary effects
on the small air bubbles resulting from the air-film rupture have been investigated
(Bouwhuis et al. 2012; Lee et al. 2012; Bouwhuis et al. 2015; Hendrix et al. 2016),
but air bubbles due to the collision of surface waves within the cavity (called ‘regular
bubble entrapment’, as described in Pumphrey & Elmore (1990), Prosperetti & Oguz
(1993), Wang et al. (2013), Chen & Guo (2014) for millimetre-sized drops) for single
impacting microdrops is still ongoing research. Impacting microjets and microdrop
trains on liquid pools have not yet been studied in detail.

In this paper, we will look at the impact of a high-speed train of uniformly
distributed microdrops on a deep liquid pool. In general, the high-energy impact onto
a pool creates a deep cavity (figure 1a). We will focus on the shape and collapse
of the cavities as a function of the relevant impact parameters (drop size, velocity,
frequency). By performing boundary integral (BI) simulations, where we treat the
liquid within the pool and within the impacting drop as potential flow (Gekle et al.
2010; Bouwhuis et al. 2012), the independent modification of these parameters is
much more easy than in the experiments (see § 1.2). We subsequently connect the
numerical results to simple theoretical analysis from which we deduce scaling laws,
revealing the key features of the cavity dynamics. Our work thus forms a major step
towards understanding multiple drop impact, which plays a role in all the industrial
applications mentioned above.

1.2. Experiments: the creation and impact of a high-velocity microdrop train
Here we briefly describe the experiments reported in figure 1. More details of the
set-up can be found in Lindblad & Schneider (1965), Brenn (2000), Kim, Park &
Min (2003), Frommhold et al. (2014) and Visser et al. (2015). A monodisperse train
of droplets is generated at the exit of 20 µm diameter nozzle brought into mild
vibrations with a piezoceramic transducer. The nozzle is fed from a reservoir filled
with deionized water and pressurized at 5–20 bar using a nitrogen bottle. Applying
about 70 V at 100–400 kHz to the transducer perturbs the thin jet exiting the nozzle
and leads to its regular break up due to a Rayleigh–Plateau instability. Figure 1(a)
shows an experimental result for a frequency of 290 kHz, which gives a temporal
droplet spacing of ∼3.5 µs, a velocity of ∼30 m s−1 and a diameter of ∼40 µm.
The length of the train (number of drops) can be controlled by two electric fields.
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(a) (b)

FIGURE 1. (a) Experimental snapshots of a cavity created by a train of ∼40 µm diameter
water drops, which impact with ∼30 m s−1 on a deep pool of water. The scale bar is
200 µm, and the interframe time is 40 µs. The cavity reaches a depth of the order of
1000 times the size of a single drop. (b) Sketch of the impacting train of microdrops.

Briefly, the droplet train first passes through a metallic aperture. By applying a short
burst of 800 V, individual and multiple droplets can be charged. Then the droplets
pass through a pair of deflection plates, which is held at a constant electric field of
∼1.5 MV m−1. The undeflected/uncharged droplets are collected, while the deflected
droplets pass and impact onto the pool.

In the experimental time sequence of figure 1(a), one recognizes the typical deep
and narrow cavity shape, on top of which one can discern a wavy pattern at the
lower end of the cavity, caused by the subsequent impact of the individual drops, as
indicated in the sketch of the phenomenon provided in figure 1(b). The downward
growth speed of the cavity is approximately constant during the impact of the drop
train. The collapse of the cavity typically occurs at the top, near the pool surface.

1.3. Objectives
This paper will focus on several key questions: What is the shape of the cavity and
does there exist a similarity profile? What is the dominant collapse mechanism and
what is the depth of the cavity at the time of its collapse? Finally, we will demonstrate
the role played by the drop frequency and spacing in the answers to these questions.

The paper is structured as follows. In § 2, we will introduce the problem, the
assumptions we make in the simulations and in our theoretical modeling, as well
as some details of the numerical method. In § 3, we discuss the results of our
simulations, and develop a scaling theory to account for these results. Finally, in § 4,
we conclude, discuss the limitations of our predictions and give suggestions for future
work.

2. Problem statement and numerical method
In this section, we formulate the problem and conduct a parameter analysis for the

typical orders of magnitude in the experiments described in the introduction (§ 2.1)
and show the numerical method (§ 2.2).
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FIGURE 2. Definition sketch of the parameters. The drop train that consists of drops with
radius R0 and downward velocity U0 impacts vertically on a pool surface (z = 0). The
drop frequency is f and the distance between the drops is U0/f . The resulting cavity has
a width R(z, t) and a depth H(t), where t is the time from the first impact. We assume
axisymmetry. Inset: numerical recombination; at the instant at which the minimum gap
height between the pool and the drop surface becomes a distance d, we recombine the
drop surface and the pool surface by connecting the pool curve and the drop curve on a
radial distance s.

2.1. Parameters and assumptions

The geometry of the problem is sketched in figure 2. We assume cylindrical
coordinates (r, z), with the unit vector ez pointing upwards and z = 0 located at the
undisturbed surface. In the numerical simulations and in our theoretical analysis we
will assume a monodisperse axisymmetric drop train which consists of drops falling
down at a frequency f . The drops have radius R0 and velocity U0, and impact on an
initially quiescent pool surface. The liquid of both the pool and the drops is water,
with density ρ = 998.1 kg m−3 and air–liquid surface tension γ = 72.8 mN m−1.
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The multiple drop impact on the pool results into a cavity with a time-dependent
central depth H(t), where t is the time from the first impact (H(0)= 0). The depth-
and time-dependent radius of the cavity is R(z, t).

We can express the control parameters in dimensionless form as the Weber number
We=ρR0U2

0/γ and the ratio f̃ between the drop diameter 2R0 and the centre-to-centre
spacing U0/f in between successive drops, i.e. f̃ = 2fR0/U0. The limit f̃ → 0 is the
limit of ‘successive’ single-drop impacts: in this limit, the cavity will fully collapse
and the pool surface will re-equilibrate and become flat again, before the next drop
impacts. The other limit is f̃ → 1, which is the theoretical maximum frequency (if
f̃ >1, the drops would overlap). In the limit f̃ =1, the supply of downward momentum
onto the pool is continuous, which is reminiscent of an impacting jet. One could also
call f̃ a Strouhal number, comparing the time needed for the drop to move over its
own diameter and the time between two subsequent impacts. In the experiments, f̃ is
of course smaller than 1, but still typically of order 1; the spacing between the drops
is approximately equal to the drop size.

Further important dimensionless parameters of the system are the Reynolds number
of the liquid, Re= ρR0U0/η (where η is the dynamic viscosity of the liquid), which
is of order 1000 and the Bond number Bo = ρgR2

0/γ (where g is the acceleration
by gravity), which is of order 10−3. This implies, respectively, that the viscosity of
the liquid can be neglected, and that the effect of surface tension dominates over
the effect of gravity. The latter should be contrasted to the plunging disks studied
in Bergmann et al. (2006), Gekle et al. (2008, 2009, 2010), Bergmann et al. (2009)
and the impacting water masses studied in Oguz et al. (1995), where the collapse of
the cavity was mainly determined by the hydrostatic pressure. One can also express
the effect of gravity in terms of the Froude number Fr=U2

0/(gR0). Typically we have
Fr ∼ 105, such that we can neglect the effect of gravity during the trajectory of the
drops. Since the Reynolds number, the Froude number and the Weber number are all
much larger than 1, we conclude that the behaviour of the cavity is mainly determined
by inertial effects: the cavity collapse occurs at large times. The cavities created by
microdrop train impact can thus indeed grow enormously deep, relative to the size of
the drops.

Although the Bond number of a single impacting drop may be small, the Bond
number based on the length scale of a deep cavity, Bo′ = ρgR0H/γ , will be much
larger, such that the hydrostatic pressure becomes non-negligible at the latter stages
of the cavity development (Aristoff & Bush 2009). A hydrostatic collapse is a ‘deep
collapse’, in the sense that the cavity walls touch the symmetry-axis far below the
surface of the pool: a mechanism completely different from a surface-tension-driven
cavity collapse. In our analysis, we will at first instance neglect the effect of
hydrostatics, because the collapse of the cavity will be initiated by surface tension,
as concluded from the above dimensional analysis, which determines the time scales
of the collapse. Note that in the BI simulations, we can easily switch on and off the
effect of hydrostatics, which is how we confirmed these statements.

We do not simulate the airflow inside the cavity resulting from the movement
of both the drop train and the cavity walls. This implies, first, that we neglect any
small bubble entrapment caused by the increased gas pressure between the pool and
the lowest drop, which is a valid assumption, as the length scale of the air bubble
entrapment is much smaller than the drop size (Bouwhuis et al. 2012, 2015; Hendrix
et al. 2016) and will not influence the flow dynamics on the length scale of the cavity.
Second, the neglect of the airflow implies that the spherical drops within the train all
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fall down undecelerated and undeformed (as depicted in figure 2). It appeared from
the experiments that this is a reasonable assumption to implement, except for at the
beginning and the end of the drop train. We will come back to these effects at § 3.1.

2.2. Numerical method
2.2.1. BI simulations

The liquid within the pool is treated as incompressible, irrotational and inviscid.
The Laplace equation, ∇2φ = 0, for the flow potential φ, is solved along the liquid
interface, using the axisymmetric BI method (Oguz & Prosperetti 1993; Oguz et al.
1995; Pozrikidis 1997; Bergmann et al. 2009; Gekle et al. 2010; Bouwhuis et al.
2012, 2013, 2015; Hendrix et al. 2016). The dynamic boundary condition at the
interface is the unsteady Bernoulli equation, which includes both hydrostatic pressure
and surface tension. Gravity can easily be switched off; the effect of surface tension
can also be switched off, in principle, but in that case one needs a strong artificial
smoothing (regridding) procedure, because local strong curvatures and movements
will be undamped (Oguz & Prosperetti 1993). The node distribution and time steps
vary during the simulation as a function of the instantaneous local curvatures and
velocities. The total number of nodes along the pool and cavity surface varies between
∼50 for a flat pool and ∼600 for a deep cavity. The simulation is stopped at the
time when the cavity walls touch the axis of symmetry, i.e. we do not simulate the
collapse of the cavity and the oscillations of the enormous bubble.

In practice, we only need to simulate the lowest drop of the train as it coalesces
with the pool. As soon as the drop and the pool touch, we recombine the
corresponding drop and the pool, and add the next drop, above the just reconnected
drop, on a distance U0/f (see figure 2).

2.2.2. The coalescence
One subtlety remains in the recombination, namely the successive coalescence

events between the lowest drop of the train and the pool. Simulating the coalescence
stage is a fundamental numerical problem if one assumes potential flow liquids and
treats the air as a void (Eggers, Lister & Stone 1999; Davidson 2002; Duchemin,
Eggers & Josserand 2003; Billingham & King 2005). More specifically, the inertial
coalescence dynamics lead to successive bubble entrapment, and from the instant that
the interface above the gap and the interface below the gap touch each other after
reconnection, numerical instabilities can not be excluded and further results depend
on the local node spacing. However, since we focus on the behaviour on the length
scale of the cavity, we can choose a recombination threshold distance d; as soon
as the minimum gap height becomes smaller than d, we connect the instantaneous
pool and lowest drop curve. We also choose a radial cutoff distance s; smaller radial
distances will be defined to belong to the liquid phase after the reconnection (see
the inset of figure 2 for a clarification of both d and s). At the time of reconnection,
two interfaces which were initially disjoint are merged, which implies that we have
to subtract the difference in potentials between the most inner node on the former
pool surface and the most inner node on the former drop bottom surface. Further,
the large local curvatures which might result from the reconnection are immediately
smoothed by the local effect of surface tension, such that the interface shape of the
reconnected pool and drop indeed looks as what is suggested by the inset of figure 2.

We have confirmed convergence of the results as a function of both d and s, and
as long as d� R0 and s & R0/2, we found that our results are independent of these
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parameters on the length scale of the drops. In our simulations, we choose d=R0/10.
Note that if we choose d much smaller, this decreases the minimal numerical time step
to a value less than d/U0, during the final stages before the defined touchdown, which
strongly increases the simulation runtime without adding any valuable information.

Note that, independently of the convergence for varying recombination threshold d
and radial cutoff distance s (within reasonable limitations), f̃ → 1 always remains a
special limit, because in the case f̃ = 1, the drops touch each other. Numerically, it
implies that at every single iteration a drop will merge with a next drop. This is why
we will not include simulations for f̃ larger than about 0.7, for which we will show to
already recover the results reminiscent from a continuously impacting jet (Oguz et al.
1995).

3. Results
We will now present our BI simulation results and reveal the key features of

the cavity dynamics. Section 3.1 contains a quantitative comparison between our
numerical results and the experimental results; in § 3.2 we turn to the shape of the
cavity and § 3.3 describes the cavity dynamics and will provide an answer to the
question of how deep the cavity can become. Our numerical results are complemented
by scaling arguments.

3.1. Comparison with experiments
To quantitatively compare the experimental and numerical cavity contours, figure 3
shows a time sequence of snapshots during the formation and collapse of the cavity,
for the parameters R0= 20 µm, U0= 26.75 m s−1 and f = 290 kHz. This comparison
has been applied for a finite drop train which contains about 85 drops. To do a good
comparison for the deep cavities also, the influence of hydrostatics is also involved
in the simulations (which only makes a difference in the latter stages, see § 2.1).
The thick red lines represent the experimental results. Since we needed to visualize
different length scales of the cavity (including the final cavity with its large final
depth), we have to take into account an experimental uncertainty, based on pixel
resolution, which is reflected in the thickness of the lines. The superimposed blue
lines show the results of the BI simulation. The agreement between the experiment
and the simulations is very good up to about 0.275 ms. After that, we observe
substantial differences, though the downward growth speed of the cavity and the
depth of the cavity at the time of its collapse continue to match very well. This is
further illustrated in figure 4, where we plot the cavity height versus time.

However, there are also significant differences between the experimental and
numerical results. First of all, the red dots in figure 3 reveal that the drop train
in the experiments was not as uniformly aligned as implemented in the numerical
simulations. In particular, in the beginning (lowest part) of the train, drops were
bunched up and were slowed down with respect to the ‘average’ velocity of the train,
whereas at the top of the train, the spacing in between the drops was found to be
increased. These effects are caused by the drag induced by the air which surrounds
the falling drops. This is why the last part of the train in experiments does not have
a significant influence on the formed cavity, and we account for this by a decreased
number of drops in the simulated drop train (70 instead of ∼85). For the same reason,
we are only able to fairly compare experiments and simulations for rather long drop
trains, such that the mentioned effects are the least pronounced.
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FIGURE 3. (Colour online) Direct comparison between experimental and numerical (BI)
results of the cavity contours, for drop radius R0 = 20 µm, impact velocity U0 =
26.75 m s−1 and frequency f = 290 kHz: (a) 0.008 ms; (b) 0.138 ms; (c) 0.275 ms;
(d) 0.508 ms; (e) 0.808 ms; ( f ) 2.988 ms. The downward growth speed of the cavity Uc
and the final depth Hm match very well (also see figure 4), but there are also differences
between the experiments and the simulations. The most obvious difference is that after
t≈ 0.275 ms the width of the cavity in the experiments is smaller than the cavity width
resulting from simulations and, related to this, the collapse of the cavity occurs much
faster in the experiments than in the numerical simulations. We attribute this to the
influence of the streaming air.

Second, it can be observed that the width of the cavity in the experiments is
significantly smaller than the cavity width in the simulations, particularly at later
times. This effect also leads to an earlier collapse of the cavity in the experiments
compared with the simulations, and the slow decrease of H over time after the end of
the drop train (t≈ 0.5 ms) for the experimental result shown in figure 4. We mainly
attribute these effects to the influence of the streaming air within the cavity. Here it
is good to note that for the case of a disk plunging onto a pool, where the influence
of air was included in the BI simulations, the effect of the airflow was only visible
for the very final stages of the cavity collapse (Gekle et al. 2008, 2009, 2010).
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FIGURE 4. (Colour online) Direct comparison between experimental and numerical (BI)
results of the cavity depth versus time, for drop radius R0 = 20 µm, impact velocity
U0 = 26.75 m s−1 and frequency f = 290 kHz (also see figure 3). The downward growth
speed of the cavity Uc and the depth at the instant of the collapse, H(t= 0.5 ms) match
very well.

It is however plausible that the small length scale of our problem, together with
the presence of the high-speed falling drops within the cavity, significantly increase
the influence of the air. Namely, if we assume that the air flows with the speed
of the falling drops, 26.75 m s−1, this results in a Reynolds number of the gas
Reg = ρgR0U0/ηg of order 10–100. Here, ρg and ηg are the density and viscosity of
air, respectively, 1.204 kg m−3, and 1.82 × 10−5 Pa s. Thus, neglecting the effects
of the air viscosity, the dynamic pressure drop with respect to the pressure at the
cavity walls is of the order of ρgU2

0 ∼ 1000 Pa. This pressure drop sucks in the liquid
with ρgU2

0 ∼ ρU2
l , where Ul is the induced inward speed of the liquid cavity walls,

which gives an estimation for the liquid velocity of order 1 m s−1. Since the process
of cavity formation takes ∼1 ms, the deviation of the cavity shape is expected to
be of the order of 1 mm, which is indeed consistent with the difference between
experiment and simulation. Also consistent with this reasoning is that the width of
the experimental cavity and that resulting from the simulations deviate the most at
the top of the cavity, where the suction of the flowing air has had its influence for
the largest time interval. Note, once again, that this deviation is particularly visible
in the latter stages, after t ≈ 0.275 ms. In the beginning of the cavity development,
experiment and simulation agree. Also the maximum width of the cavity is predicted
correctly by the simulations, as will be shown more explicitly later on in this paper.

3.2. Cavity shape
The robustness of the slender shape of the cavity is evidenced by figure 5, which
contains two more time sequences resulting from the BI simulations, now for two
different Weber numbers. Here we used R0=100 µm, U0=8.5 m s−1 and 85.4 m s−1

and f = 30 kHz, corresponding to We = 100 and 10 000, and f̃ = 0.70 and 0.07,
respectively.

Figure 6(a) is a doubly logarithmic plot of the resulting cavity shapes for three
different simulations with We = 100, 1000 and 10 000 (including those of figure 5).
Figure 6(a) shows that for large enough Weber number, the cavity profile is parabolic:
R ∼ (z + H)1/2, where we corrected for the instantaneous depth of the cavity and
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FIGURE 5. (Colour online) Time sequences from BI simulations for two different Weber
numbers: (a–c) We=ρR0U2

0/γ = 100, f̃ = 0.7 (for U0= 8.5 m s−1); and (d–f ) We= 10 000,
f̃ = 0.07 (for U0 = 85 m s−1) (in both cases R0 = 100 µm and f = 30 kHz). The profiles
are shown at times t = 0.6, 1.8 and 3 ms. Obviously, the higher-velocity drops create a
cavity with larger depth and width.

(z + H) is the vertical coordinate measured from the bottom at z = −H(t). This
parabolic similarity profile is valid between the lower part of the cavity, where there
are traveling surface waves resulting from the separate drop-pool collisions, and the
top part of the cavity, where the surface tension driven collapse takes place (as we
will discuss in § 3.3). The larger the Weber number, the more clearly the parabolic
shape can be recognized: for the smallest Weber number plotted, the asymptotic stage
is not reached, because surface tension makes the collapse behaviour at the top of
the cavity too dominant. Figure 6(b) shows the profiles for We = 10 000 at three
different times. Together, the panels of figure 6 show that the parabolic profile can
be observed for large enough Weber number and at sufficiently long time after the
first impact.

We can understand the parabolic shape of the cavity as follows. Since the cavity
has a slender geometry, the fluid flow is predominantly oriented in horizontal slices.
Hence, we can apply the two-dimensional Rayleigh equation in cylindrical coordinates.
Neglecting the influence of hydrostatics, one obtains (Prosperetti 1977; Lohse et al.
2004; Bergmann et al. 2006)(

R
d2R
dt2
+
(

dR
dt

)2
)

log
(

R
R∞

)
+ 1

2

(
dR
dt

)2

=−γ κ
ρ
≈ γ

ρR
, (3.1)
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FIGURE 6. (Colour online) Cavity shapes for three different Weber numbers We =
ρR0U2

0/γ (a), and at three different times after the first impact at t = 0 (b), shown on
doubly logarithmic scale: (a) U0 = 8.5 m s−1, 27.0 m s−1, and 85.4 m s−1 at t= 6.1 ms
(tU0/R0= 520), 3.2 ms (tU0/R0= 870) and 3.0 ms (tU0/R0= 2560), respectively; (b) We=
10 000 at three different times. For both panels R0=100 µm and f =30 kHz. We find that
for large Weber number and long times after the first impact, the cavity shape approaches
a parabola, i.e. (z(r)+ H)∼ r2. For smaller Weber numbers this asymptotic stage is not
reached, because surface tension makes the collapse behaviour at the top of the cavity too
dominant.

where R∞ is an external length scale of the problem that has a weak (logarithmic)
influence on the analysis below (Lohse et al. 2004; Bergmann et al. 2006; Eggers
et al. 2007; Gekle et al. 2009). In the last approximation we neglected the axial
contribution to the curvature; the axial curvature is much smaller than the radial
curvature due to the slenderness of the cavity. At large We, we may neglect
the right-hand side during the first instances of the cavity formation, i.e. at
small distance z + H. Hence, since R∞ � R, the dynamics are determined by
R(d2R/dt2)+ (dR/dt)2 ≈ 0, which has the solution R(t)∼ (t − t0)

1/2, where t = H/Uc
is the time after the first impact on the initially flat pool (t= 0) at which the cavity
reaches depth H, t0 = −z/Uc (recall that z is negative below the pool surface) and
Uc = dH/dt is the (constant) downward growth speed of the cavity. This implies

R(z, t)∼
√

R0(z+H)=
√

R0(z+Uct). (3.2)

This is the similarity profile, to which the curves of figure 6 converge, for large Weber
number, sufficiently long after the first impact, and away from the bottom and top
of the cavity. The dashed line represents the prediction (3.2), with a fitted prefactor
of 1.5.

3.3. Cavity dynamics
Two important questions arise from the preceding analysis: what is the downward
expansion speed of the cavity Uc as a function of the impact parameters, and when
does surface tension start to act against the expansion of the cavity?

Figure 7 shows Uc/U0 as a function of the ratio f̃ = 2fR0/U0. We superimposed
experimental results for varying f̃ and We (by varying the drop frequency in the
experiments, also the drop sizes and velocities are modified), which shows reasonable
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FIGURE 7. (Colour online) The downward cavity growth velocity Uc divided by the drop
impact speed U0 plotted against the ratio f̃ = 2fR0/U0 for several values of the Weber
number We and the drop frequency f . Simulation results for R0 = 100 µm. As long as
f � 1/ts, with ts =

√
ρR3

0/γ the typical capillary oscillation time scale of the drops, we
find that Uc/U0 universally depends on f̃ , i.e. Uc/U0 is independent of We, and converges
to 1/2 for f̃→ 1, where the droplet train turns into a continuous jet. Experimental results
for varying f̃ and We are superimposed, showing reasonable agreement. The error estimate
in the experiments is particularly based on the limited pixel resolution.

agreement with the numerical results. The large error estimates are particularly due
to the limited pixel resolution, as explained in § 3.1. The five different numerical
datasets show the results for five drop frequencies f = 10–30 kHz, for varying impact
velocities U0 = 7–13 m s−1. Thus, the Weber number strongly varies over the data
points shown in the figure; every data point belongs to a different set of (We, f̃ ),
which is why we choose to mention the dimensional frequency in the legend, while
we show dimensionless plots. As explained in § 2.2.2, close to the limit f̃ → 1,
the number of reconnections per time unit, and thus the relative importance of the
corresponding numerical artifacts, is large, which is why we do not show our results
for f̃ > 0.7. Interestingly, Uc/U0 converges to 1/2 for f̃ → 1. Here f̃ = 1 would be
the situation of a drop train with zero spacing, which corresponds to the special
case in which momentum is continuously applied to the pool/cavity bottom. This is
reminiscent of the continuously impacting jet onto a pool, as described in Oguz et al.
(1995). One of the results for the continuously impacting jet scenario described in
this work is that the downward expansion speed of the cavity is exactly one half
of the impact speed of the jet, Uc/U0 = 1/2. This ratio 1/2 is indeed approached
in our simulations. At smaller frequencies, the net momentum transfer per time unit
decreases, and the downward expansion speed of the cavity will thus be smaller,
giving a qualitative explanation of our findings in figure 7.
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The Weber number strongly varies over the data in figure 7, but the relation
between Uc/U0 and f̃ appears to be universal, in the sense that it is independent
of We. However, this universality will only hold if the collapse time of the small
cavity created by the single drop impact is much larger than the time it takes until
the next drop impacts, which is generally true for our impact parameters. Otherwise,
obviously, since the surface tension influences the local cavity collapse, the relation
between Uc/U0 and f̃ will have a Weber dependence.

With this result of Uc as a function of the frequency f̃ , we basically know all of
the dynamic details of the downward translating parabolic cavity, and we are able
to predict its collapse. The time at which surface tension will start to pull back the
cavity walls can be predicted by solving (3.1) without neglecting the influence of the
surface tension. This can be done analytically, as shown in the appendix A, but can
also be appreciated from a dimensional argument that will be provided below. For this
one must introduce a velocity scale, for which we choose the downward speed of the
cavity Uc instead of U0. This defines a ‘modified’ Weber number Wem as

Wem = ρR0U2
c

γ
=We

(
Uc

U0

)2

, (3.3)

and in the remainder of this section we will plot our results as a function of Wem.
We will show how the collapse of the cavity depends on Uc and the other

parameters. For this, we need to separate two cases, which are basically short
and long drop trains. More specifically, we distinguish trains for which the collapse
of the cavity occurs after the full drop train has impacted, as in our experimental
comparison (figures 3 and 4), and trains for which the collapse of the cavity occurs
before the end of the drop train impact. In the first case, the cavity depth at the
moment of its collapse, Hcoll, is determined by the number of drops N in the train,
Hc=Hcoll∼NUc/f ; in the second case, this depth is determined by the time at which
the cavity walls touch the symmetry axis (or the drops). Note that in the second case,
Hc is in general larger than Hcoll; experiments show that after the cavity walls hit the
symmetry axis, the drops within the entrained bubble will still continue impacting
on the bubble bottom, an effect that could further increase the depth of the bubble.
In that case, to predict Hc, one needs to take into account the bubble deformation
dynamics, which we leave for the moment. Thus, we focus on the prediction of Hcoll.
The time at which surface tension is able to influence the cavity walls, tcoll, can be
predicted by comparing the dynamic pressure of the radially expanding cavity (which
decreases in time, and is the smallest at the top of the cavity, where the parabola that
describes it is the widest) and the Young–Laplace pressure based on the azimuthal
curvature of the cavity:

ρ

(
dRz=0

dt

)2

∼ γ

Rz=0
, (3.4)

where Rz=0 is the cavity radius at the pool surface, z = 0. Substituting the dynamic
profile for the cavity found in § 3.2, Rz=0(t) ∼

√
R0H(t) = √R0Uct, from which

dRz=0/dt ∼ √R0Uc/t, gives a prediction of the time at which Rz=0 reaches the
maximum expansion radius of the cavity, which we call tcoll:

tcoll ∼ ρ
2R3

0U3
c

γ 2
= tsWe3/2

m , (3.5)
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where ts=
√
ρR3

0/γ is the typical capillary time scale at which a drop with radius R0
oscillates (Lamb 1957). When we insert tcoll in the similarity profile we can calculate
the maximum radius Rc of the cavity:

Rc ∼
√

R0Uctcoll ∼ R0Wem. (3.6)

Combining (3.5) and (3.6), we find that the typical time at which the cavity starts
to collapse is the capillary time based on the maximum radius of the cavity (tcoll ∼√
ρR3

c/γ ), as previously found by Aristoff & Bush (2009) for the collapse of a cavity
generated by the impact of a solid sphere. The depth of the cavity at the time of
its collapse, Hcoll can now be predicted by multiplying the expansion velocity by the
collapse time:

Hcoll ∼Uctcoll ∼UctsWe3/2
m ∼ R0We2

m. (3.7)

From figure 8(a,b), which show the BI simulation results of our parameter scan for
Rc and Hcoll, respectively, one can appreciate that the above scaling results agree with
the BI results. The curves seem to be universal, independent of the drop frequency f̃ ,
but note that the f -dependence is taken into account by means of Uc. This confirms
that Wem, and not We, is the proper dimensionless parameter to analyse the maximum
cavity radius and the cavity collapse. Note that Wem naturally varies over a smaller
range than We, due to its definition (3.3), setting a limit on the range in figure 8.

In figure 8(a) we superimposed the simulation results for the maximum cavity width
for several Wec, which also shows a good agreement with our scaling predictions.
Again, all of the parameters R0, U0 and f vary for these experimental measurements,
which even more confirms the universal behaviour within the shown parameter
regime. Since the cavity collapses much earlier in the experiments compared with
the numerical simulations (see § 3.1), we could not do such a one-to-one comparison
between the experiments and numerical simulations for the final cavity depth.

4. Discussion
Summarizing, we found that the expansion of the cavity resulting from a microdrop

train impact can be described as a purely inertial mechanism, except for the collapse
region that is a result of the capillary forces. From solving the 2D Rayleigh equation,
we concluded that the cavity shape is a parabola, which translates downward with a
constant velocity Uc. We showed that Uc/U0 only depends on the aspect ratio f̃ of
the drop train, i.e. the ratio of drop diameter to drop distance in the train. In addition,
we were able to predict the collapse duration tcoll, and the cavity depth Hcoll at the
moment of the collapse.

When comparing with experiments there is an important caveat, namely that we can
only expect the theory (and consequently also the comparison to the simulations) to
work when the influence of air is not too significant. The most important difference
in the limited range of parameter space that we are able to access experimentally,
is that, at later times, the width of the cavity in the experiments, is smaller than
the width in the numerical simulations, due to, most likely, the influence of the
streaming air, which has been neglected. Up to the time that the maximum cavity
depth is reached, our predictions for the depth of the cavity are still accurate for
the experiment. This originates from the fact that the dynamics at the bottom of
the cavity, in particular Uc, is hardly influenced by the airflow. Thus, the collapse
in experiments occurs earlier than predicted, but after that collapse, the bottom of
the cavity keeps expanding with the same Uc, until the last drop in the drop train
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FIGURE 8. (Colour online) (a) Maximum radius of the cavity Rc and (b) depth of the
cavity Hcoll at the moment of its collapse, plotted against the modified Weber number
Wem = ρR0U2

c/γ based on the vertical cavity growth speed Uc for several We and f .
R0 = 100 µm. We find a universal behaviour with respect to Wem, independent of f̃ .
Superimposed are the scaling predictions: Rc/R0 ∼Wem, and Hcoll/R0 ∼We2

m, with which
we find very good agreement. The prefactors of the fits are 0.325 and 0.600 respectively
for (a,b). The maximum reached cavity widths in the experiments are superimposed in (a),
which also shows good agreement with the scaling predictions. The error estimate in the
experiments is particularly based on the limited pixel resolution.
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inside the cavity has impacted, and the instantaneous depths are predicted correctly,
as shown in figure 4. Also the maximum widths are predicted correctly, as shown
in figure 8(a). In the experimentally accessible range, our simulation method appears
to be an efficient way to simulate drop train impact, if one focuses on the depth of
the cavity, neglecting the influence of air. Moreover, since the BI code solves the
Laplace equation only along the pool surface we are able to account for the many
different length scales in the problem, ranging from the cavity size, through the drop
dimension, to the scale of the recombination of the free surfaces of the drop and
the cavity. This would pose difficulties or at least much computational effort for
most other simulation methods. However, an advantage of the use of a two-phase
simulation method would be the ability to solve correctly for the influence of the
local airflow, in particular the airflow induced by the falling drops, which points
towards possible future work on this subject.

Other possible future studies on this subject could focus on different mechanisms
of the cavity collapse and bubble formation processes. In fact such a study has been
described in detail in Aristoff & Bush (2009), although that work is centred on sphere
impact on a pool. Our case, the impact of a collection of liquid onto a pool, gives rise
to the following question for future research: how does the mass distribution and the
time scale of the impact influence the cavity shape, and thus the collapse? We already
found that the impact of a jet is from a qualitative point of view not different from the
impact of a drop train, except that the frequency is an explicit parameter for the latter
case. We found that, in addition to the total amount of volume which impacts onto
the pool, the lengthscale and timescale of the total impact is highly determinative for
the cavity behaviour, because it determines the relevance of hydrostatics versus surface
tension. This is an aspect of the multidroplet train problem that can not be ignored.
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Appendix A. Solution of the cylindrical Rayleigh equation including the influence
of surface tension

Here, we analytically solve (3.1), including the Young–Laplace pressure based on
the azimuthal curvature of the cavity (Kedrinskii 2005). We start from (3.1), which
we non-dimensionalize using the drop radius R0 and R0/Uc, the drop radius over the
downward cavity speed, as typical length and time scales. This gives(

d
d̃t

(
R̃

dR̃
d̃t

))
log

(
R̃

R̃∞

)
+ 1

2

(
dR̃
d̃t

)2

= 1
Wem

1

R̃
, (A 1)

where R̃= R/R0, R̃∞ = R∞/R0, t̃ = tUc/R0 and Wem = ρR0U2
c/γ . In the remainder of

this appendix we will drop the tildes.
Writing U = dR/dt we first note that

d
dt
(RU)=U2 + R

dU
dt
=U2 + 1

2
R

d
dR
(U2), (A 2)
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where we used that dU/dt = dU/dR dR/dt = U dU/dR. With this, equation (A 1)
becomes

U2 log
(

R
R∞

)
+ 1

2
R

d
dR
(U2) log

(
R

R∞

)
+ 1

2
U2 = 1

Wem

1
R
. (A 3)

Now let x= R/R∞ and y= (dR/dt)2. Then the above equation reads

1
2

x log(x)
dy
dx
+
(

log(x)+ 1
2

)
y= 1

Wem

1
R∞x

. (A 4)

This is an ordinary linear differential equation of which the solution consists
of a homogeneous part and a particular part. The homogeneous solution of
(1/2)x log(x) dy/dx + (log(x) + 1/2)y = 0 is yH(x) = K/(x2 log(x)), where K is an
integration constant. A particular solution of the shape yP(x) = Cxa/ log(x) gives a
solution for a=−1 and C= 2/(WemR∞), so the full solution to (A 4) is

y(x)= K
x2 log(x)

+ 2
WemR∞x log(x)

. (A 5)

Going back to the original variables we have(
dR
dt

)2

=
(

2+ K ′

R

)
1

WemR log
(

R
R∞

) , (A 6)

with K ′ = KR2
∞Wem. If we scale back to the dimensional variables and substitute the

initial conditions R(t= 0)= AR0 and dR/dt(t= 0)= BUc (with A and B positive real
numbers), the solution reads

(
dR
dt

)2

= R0U2
c

R log
(

R
R∞

)
 2

Wem
+

B2A2R0 log
(

R0

R∞

)
− 2AR0

Wem

R

 . (A 7)

For Wem→∞, this implies

R
dR
dt

R0Uc
= AB

√√√√√√√
log
(

AR0

R∞

)
log
(

R
R∞

) , (A 8)

which is real and positive as long as R and R0 are smaller than R∞.
Finally, to find the maximum expansion radius of the cavity, Rc, one uses dR/dt= 0

in (A 7), which leads to

Rc = R0

A+
A2B2Wem log

(
R∞
R0

)
2

 . (A 9)

For large Wem, we thus expect Rc ∼ R0Wem, which agrees with the scaling law found
on dimensional grounds (3.6).
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