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Interface deformations due to counter-rotating vortices: Viscous versus elastic media

Jacco H. Snoeijer1,2 and Leen van Wijngaarden1

1Physics of Fluids Group and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217,
7500 AE Enschede, The Netherlands

2Mesoscopic Transport Phenomena, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
(Received 6 December 2014; published 2 March 2015)

Capillary forces determine the shape of a liquid interface. Although often not considered, elastic solids with
a free surface are also subjected to surface forces and these become important for materials of low Young’s
modulus. Here we consider two equivalent problems where a capillary free surface deforms due to vortices: (i) in
a steady viscous flow [solved by Jeong and Moffatt, J. Fluid Mech. 241, 1 (1992)], and (ii) in an elastic medium.
The equations of linear incompressible elasticity and viscous flow are strictly identical, and the two-dimensional
problems that we consider are solved using complex variable methods. Despite the similarity, the kinematics of
the free surface is very different for the viscous and elastic cases. We show for the present problem that these
kinematics result in displacement and velocity fields of different topology. Unexpectedly, the resulting surface
deflections are even of opposite sign.
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I. INTRODUCTION

Liquid menisci are shaped by capillary forces, following the
classical laws established by Young and Laplace [1]. Recently,
there is growing interest in how interfacial forces can deter-
mine the shape of very soft solids, such as gels and elastomers.
For example, it was found that a cylinder of agar gel of low
elastic modulus undergoes a Rayleigh-plateau-like instability
[2]. Just like liquids, soft elastic media are thus susceptible to a
Laplace pressure due to surface stress whenever their interface
is curved [3]. Similar conclusions were drawn for the rounding
of sharp edges [4,5] and indentation of soft layers by liquid
drops [6–12] or by rigid bodies [13,14], as well as for the
propagation of surface waves [15,16]. In all cases, the ratio of
surface tension γ and shear modulus μ defines a length scale
over which capillary effects are important. For glass or steel
this length scale γ /μ is smaller than the molecular size, while
for gels it can be as large as 10 to 100 μm. In the latter case,
elastocapillary deformations are thus significant and within the
range of microscopy techniques [17–19].

The analogy between liquid and elastic media carries
over to other properties as well. Like liquids, very soft gels
usually have a Poisson ratio ν ≈ 0.5 and are thus essentially
incompressible. This is due to the fact that such materials are
typically composed of a cross-linked network of incompress-
ible polymer melt, or a network that contains an incompressible
solvent. In addition, the equations for highly viscous flows
are mathematically identical to those of linear elasticity for
incompressible media. Namely, creeping flows are governed
by the Stokes equation complemented with incompressibility:

∇p = η∇2v, ∇ · v = 0, (1)

where η is the viscosity, v the velocity field, and p the
pressure field. Exactly the same set of equations describes the
displacement field u in an incompressible elastic medium, the
Navier equations, which at steady state give

∇p = μ∇2u, ∇ · u = 0. (2)

Again, μ is the shear modulus of the solid. Indeed, this
mathematical equivalence was exploited on numerous

occasions, where viscous flow problems were solved using
methods borrowed from linear elasticity. A well-known
example is the use of the Michell solution [20], used, e.g., for
two-dimensional corner flow problems [21–26]. Other notable
examples are free surface cusps [27] and the coalescence of
viscous drops [28,29], which are analyzed using complex
variable methods developed for linear elasticity [30].

In this paper we investigate the viscous flow–linear
elasticity analogy for the two-dimensional problem of free
surface deformation induced by counter-rotating vortices [31].
The flow induced inside a viscous liquid was determined
analytically by Jeong and Moffatt [27], by considering a vortex
dipole placed at a distance d below the free surface. This
situation is sketched in Fig. 1(a). Using complex variable
methods, it was demonstrated that the free surface develops
a sharp, steady cusp at large dipole strength. Later studies
have focused on the entrainment of air through such a cusp
[32,33]. The flow field appearing at small strength, i.e., for
vanishing interface deflection, is shown in Fig. 1(b). The
downward flow along the center line is responsible for pulling
down the interface. The goal of the present paper is to solve
the problem of the elastic equivalent, where a displacement
vortex dipole (generated by a torque dipole) is placed inside
an elastic body with a free surface. A physical realization
of this problem can be achieved by embedding two rigid
cylinders inside an elastic gel—exerting an opposite torque
on both cylinders will create a displacement field that can be
idealized by a vortex dipole. Despite the analogy with viscous
flow, we demonstrate that the resulting displacement fields
[Fig. 1(c)] are fundamentally different from the viscous flow
fields [Fig. 1(b)]. In the elastic case the interface is actually
pushed upwards, farther away from the dipole singularity.
We demonstrate how this originates from differences in the
kinematics of the free surface.

In Sec. II we analyze the problem by dimensional analysis
and present the complex variable formalism. The elastic
problem is solved by conformal mapping to the unit circle
in Sec. III, with and without the presence of surface tension
forces at the interface. We conclude in Sec. IV.
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FIG. 1. (Color online) (a) Problem sketch: A vortex dipole is placed at a distance d below an interface of surface tension γ . We compare
the resulting interface deflection for the cases where the medium is viscous (with viscosity η) or elastic (incompressible, with shear modulus
μ). (b) Velocity field in a steady viscous flow at very small dipole strength, as computed by Jeong and Moffatt [27]. The flow is such that the
free surface is drawn downwards, although the deflection in this case has a vanishing amplitude [i.e., small capillary number in Eq. (3)]. The
boundary condition for steady flow is that the free surface is a streamline. (c) Elastic displacement field in an incompressible elastic medium,
here taken with vanishing surface tension. The free surface is no longer a streamline: All streamlines outside the dark contour cross the free
surface and deflect the interface upwards.

II. FORMULATION

A. Steady viscous flow versus elasticity

1. Dimensional analysis

Let us first recall the essentials of the viscous problem of
interest. A vortex dipole of strength α (dimension m3/s) is
imposed in a viscous medium of viscosity η, at a distance d

below an interface of surface tension γ . We consider solutions
for which the interface is deformed, but steady. The problem
is characterized by a single dimensionless parameter, the
capillary number C = ηα/γ d2. This parameter quantifies the
driving strength and determines the amount of free surface de-
flection. At small driving the surface deflection h(x) can be ob-
tained from a perturbation analysis, which forC � 1 reads [27]

h(x)

d
= − 4C

(x/d)2 + 1
. (3)

The minus sign in front of the expression shows that
the interface is drawn downwards by the vortex dipole.
Interestingly, the free surface develops a cusp in the limit of
large C, with a diverging curvature [27,33]. Apart from the
very small radius of curvature of the tip of the cusp, the scale
of the global deflection is still determined by d.

The equivalent elastic problem is achieved by imposing
a dipole vortex of the displacement field (rather than of the
velocity field) in an incompressible elastic medium of shear
modulus μ. The strength of this vortex dipole is β (dimension
m3), which can be made dimensionless by the distance d

at which it is placed below the free surface. Hence, a first
dimensionless parameter is

B = β

d3
. (4)

As this dimensional argument already suggests, it turns out that
the elastic problem is well defined even without the introduc-
tion of surface tension. This is to be contrasted with the viscous

case: To achieve a steady state, one requires surface tension (or
another field such as gravity) in order to balance the time scale
from α. Still, the elastic free surface does possess a surface
tension γ , so that a second dimensionless number appears:

� = γ

μd
. (5)

This parameter can be seen as a ratio of length scales, where
γ /μ is the elastocapillary length previously referred to. In
linear response to the vortex dipole, we anticipate that the
surface deflection will be of the form

h(x)

d
= Bf (x/d,�). (6)

The central goal of the paper will be to compute the elastic
displacement field inside the elastic medium, and the resulting
surface shape characterized by f (x/d,�).

2. Boundary conditions

Since the equations of viscous flow and linear elasticity are
strictly identical, the differences above must find their origin
in the boundary conditions. The conditions of normal and
tangential stress at the free surface are identical, i.e.,

σnn = γ κ, σnt = 0, (7)

where κ is the interface curvature

κ = h′′

(1 + h′2)3/2
. (8)

To be precise, the factor γ in (7) is the surface stress. For the
elastic interface surface this can be different from its surface
free energy, due to the thermodynamic relation by Shuttleworth
[34–36]. Here we simply refer to this material property as the
surface tension.

The key difference occurs for the kinematic boundary
condition that relates the viscous and elastic fields to the free
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surface shape h(x). To achieve steady state in the case of flow,
the velocity field needs to be parallel to the free surface. In
terms of the field components vx,vy this implies

dh

dx
=

(
vy

vx

)
x,y=h(x)

. (9)

By contrast, the elastic free surface is defined by

h(x) = uy |x,y=0, (10)

which needs to be evaluated at the boundary of the undeformed
body (i.e., at y = 0). These different kinematic conditions
greatly affect the respective fields. For instance, a steady
fluid interface must be the streamline of the field, which is
manifestly not the case for an elastic boundary [cf. Figs. 1(b)
and 1(c)].

The kinematic conditions (9) and (10) are also very different
from a dimensional point of view. The viscous case (9) involves
a ratio of velocity components, so that knowledge of the veloc-
ity scale ∼α/d2 is not sufficient to know the typical magnitude
of the deflection dh/dx. The stress balance between surface
tension and viscosity is explicitly needed to determine the ratio.
By contrast, for the elastic case without surface tension one
immediately has h ∼ uy ∼ β/d2. Addition of surface tension
will of course influence the final shape of the interface.

B. Complex variable formulation of linear elasticity

The two-dimensional elastic problem is solved by complex
variable methods, following the classical approach in [30]. We
briefly summarize the key relations that are needed for our
analysis. The formulation is based on the Airy stress function
U(x,y), which satisfies the biharmonic equation ∇4U = 0.
Introducing the complex variable z = x + iy, the general
solution can be written as

U = Re [zφ(z) + χ (z)] , (11)

where the functions φ(z) are χ (z) are holomorphic on the
elastic domain. The overbar means the complex conjugate.
Introducing the complex displacement u = ux + iuy , one
finds for an incompressible elastic body

2μu = φ(z) − zφ′(z) − ψ(z), (12)

where ψ(z) = χ ′(z). Similarly to the displacement, the stress
components can be expressed in terms of the “potentials” φ(z)
and ψ(z). For the purpose of the present paper, the key equation
comes from the stress boundary condition. Defining Tx + iTy

as the traction vector at the boundary, one can express the
boundary condition as the integral [30]

φ(z) + zφ′(z) + ψ(z) = i

∫
ds(Tx + iTy). (13)

This equation applies for z along the boundary contour, while
s is the curvilinear coordinate along the contour.

For the geometry shown in Fig. 1(a), the contour is defined
by y = 0 or z = x. The traction then relates to the stress
components as Tx + iTy = σxy + iσyy . The integration can be
performed using ds = −dx, where the minus sign ensures the
convention that the integral requires the elastic domain to be
on the left. The condition that the interface has no shear stress,
i.e., Tx = 0, allows for an important simplification. In that case

the left-hand side of (13), which we recall to be valid along
the free surface, has no imaginary part. Combined with (12),
this gives the displacement at the free surface,

h(x) = uy(x,0) = 1

μ
{Im [φ(z = x)] + K}. (14)

Here we introduced a constant K , since adding a constant to
the potentials does not change the stress or strain field, but
gives a rigid body translation. Below the constant K will be
chosen such that h(±∞) = 0.

Finally we point out the connection to the viscous flow
formulation, which is commonly based on the stream function

(x,y). The stream function also satisfies the biharmonic
equation ∇4
 = 0, such that a similar complex variable
method can be applied. By definition of the stream function
one has

ux + iuy = ∂


∂y
− i

∂


∂x
, (15)

where for the present purpose we readily consider the field
ux + iuy to be the displacement vector. Compared to the
formulation (12), one then obtains


 = − 1

2μ
Im [zφ(z) + χ (z)] , (16)

which indeed satisfies ∇4
 = 0. This expression is convenient
in order to draw the “streamlines” of the displacement field,
which are defined by contours of constant 
(x,y). Note that
the introduction of the stream function in the elastic problem
applies only when the medium is incompressible.

The vortex dipole will be introduced in the same manner
as suggested by Jeong and Moffatt [27], who imposed it as a
singularity in the stream function. In the present notation this
becomes

ψ � 2iμβ

(z + id)2
, (17)

giving the dipole singularity at z = −id, while φ(z) is
holomorphic on the entire domain. This singularity in ψ can
be seen as a torque dipole per unit length, of strength 2μβ

(dimension N m). This represents the stress field necessary to
generate the vortex dipole of strength β.

III. SOLUTION FOR THE ELASTIC FREE SURFACE

From now on we will use dimensionless variables. Dis-
tances are scaled with d, while as anticipated B = β/d3 and
� = γ /μd. Stresses are scaled with μ, and the potentials φ

and ψ are made dimensionless with μd. We will first consider
the case without surface tension to illustrate the solution
method (� = 0, Sec. III A), before turning to the influence
of capillarity (� 	= 0, Sec. III B). The resulting displacement
fields will be illustrated and discussed in Sec. III C.

A. Neglecting surface tension

To illustrate the solution scheme, we first consider the
problem without surface tension, so that both boundary
stresses σxy = σyy = 0 at the free surface. Within linear
elasticity theory, the fields are defined on the undeformed
domain and as a consequence the boundary conditions are
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imposed at z = x (i.e., y = 0). In terms of the complex
potentials, the boundary condition at the free surface reads

φ(z) + zφ′(z) + ψ(z) = 0, (18)

valid at z = x. The boundary condition is homogeneous, but
we obtain a nontrivial solution when imposing the torque-
dipole singularity at z = −i as

ψ(z) � 2Bi

(z + i)2
. (19)

This is the dimensionless form of (17), with again B = β/d3.
The singularity will serve as a “forcing” of the solution.

To solve for the potentials, we will use the conformal map

z = w(ζ ) = i
ζ − i

ζ + i
, (20)

which maps the undeformed surface z = x to the unit circle
|ζ | = 1. The center of the circle (ζ = 0) corresponds to the
position of the dipole singularity (z = −i). We introduce
auxiliary potentials F (ζ ) and G(ζ ), defined as

F (ζ ) = φ(w(ζ )) = φ(z), (21)

G(ζ ) = ψ(w(ζ )) = ψ(z). (22)

Hence, φ′(z) = F ′(ζ )/w′(ζ ). Working out the derivative w′,
we obtain

zφ′(z) = w(ζ )

w′(ζ )
F ′(ζ ) = i

2

(
1 + 1

ζ 2

)
F ′(ζ ), (23)

where we used the fact that at the unit circle ζ = 1/ζ . The
boundary condition (18) then becomes

F (ζ ) + i

2
[(1 + ζ 2)F ′(ζ )] + G(ζ ) = 0, (24)

valid at the unit circle |ζ | = 1.
The equation can be solved by assuming F (ζ ) to be

holomorphic inside the unit circle (|ζ | � 1), while G(ζ )
exhibits the dipole singularity. The singularity is split off by
writing

G(ζ ) = iB

ζ 2
+ H (ζ ), (25)

and H (ζ ) is again holomorphic for |ζ | � 1. The correct
strength of the singularity (19) is obtained by taking B = B/2.
With this, we can write (24) as

F (ζ ) + i

2
[(1 + ζ 2)F ′(ζ )] + H (ζ ) = iBζ 2, (26)

valid at |ζ | = 1. This is an inhomogeneous linear equation
for the holomorphic functions F (ζ ) and H (ζ ). Indeed, the
singularity of the strength B provides the forcing for the elastic
displacements.

Using the standard procedure described in [30], we can
solve for the individual potentials by dividing (26) by
2πi(σ − ζ ) and integrating by dσ along the the unit circle, i.e.,
σ = eiθ . For terms holomorphic inside and on the contour, like
F , we can apply Cauchy’s integral formula and the integration
yields F (ζ ) for all |ζ | � 1. By contrast, the conjugate F of

a holomorphic function gives a constant after integration,
namely, F (0), which is a consequence of the contour being the
unit circle [30]. Since constants represent a gauge invariance
of the complex potentials, they can be omitted, so that this
procedure effectively removes conjugates of holomorphic
terms. This is the reason for mapping the boundary value
problem from z to the unit circle in ζ . Hence, (26) yields after
integration

F (ζ ) = iBζ 2, (27)

valid for all |ζ | � 1, i.e., on the entire elastic domain. The
function H (ζ ) can be obtained by applying the same procedure
to the conjugate of (26). This gives

− i

2
(1 + ζ 2)F ′(ζ ) + H (ζ ) = 0, (28)

again for all |ζ | � 1. Hence, we obtain the auxiliary potentials

F (ζ ) = iBζ 2, (29)

G(ζ ) = iB

ζ 2
− B

(
ζ + ζ 3

)
. (30)

The final step is now to invert the conformal map

ζ = w−1(z) = −i

(
z + i

z − i

)
, (31)

so that

φ(z) = F (w−1(z)) = − iB
2

(
z + i

z − i

)2

, (32)

ψ(z) = G(w−1(z)) = − iB
2

(
z − i

z + i

)2

+ iB
2

[(
z + i

z − i

)
−

(
z + i

z − i

)3
]

, (33)

where we used B = B/2 = β/(2d3). One verifies that these
potentials indeed satisfy (18) for any real-valued z = x.

The displacement field corresponding to the solution (32)
and (33) is sketched in Fig. 1(c). Our main interest is to find
the surface deflection, which using (14) is given by the vertical
displacement h(x) = uy(x,y = 0) = Im[φ(z = x)] + K . This
reads

φ(x) = − iB
2

(x + i)4

(x2 + 1)2
, (34)

which approaches −iB/2 for x → ±∞. Since we impose
vanishing displacements at large distance, we need K = B/2,
and we obtain the surface deformation

h(x) = 4B x2

(x2 + 1)2
= 4β

d3

x2

(x2 + 1)2
. (35)

B. Including surface tension

1. Solution

When the surface tension γ is included in the description,
the normal stress boundary condition is given by the Laplace
pressure jump. Since lengths and stresses are scaled with d
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and μ respectively, this takes the dimensionless form

σyy = �
∂2uy

∂x2
, (36)

with � = γ /(μd) as before. Here we assumed a small deflec-
tion (∂uy/∂x)2 � 1. Due to this inhomogeneous boundary
condition, the right-hand side of (13) becomes

i

∫
ds(Tx + iTy) = −�

∫
ds

∂2uy

∂x2
. (37)

Using ds = −dx this is integrated to give

−�

∫
ds

∂2uy

∂x2
= �

∂uy

∂x
= �

2i
[φ′(z) − φ′(z)], (38)

where in the last step we once again used uy(x,y = 0) =
Im[φ(z = x)] + K . The boundary condition then becomes

φ(z) + zφ′(z) + ψ(z) = �

2i
[φ′(z) − φ′(z)], (39)

valid at z = x.
As above, the problem is solved by mapping it onto the

unit circle using z = w(ζ ). In terms of the auxiliary potentials
F (ζ ) = φ(z) and G(ζ ) = ψ(z), the boundary condition (39)
becomes

F (ζ ) + i

2
[(1 + ζ 2)F ′(ζ )] + G(ζ )

= − �

4i
[(ζ + i)2F ′(ζ ) − (ζ + i)2F ′(ζ )]. (40)

Introducing once more the singularity using (25), this becomes

F (ζ ) + i

2
[(1 + ζ 2)F ′(ζ )]

+ �

4i
[(ζ + i)2F ′(ζ ) − (ζ + i)2F ′(ζ )]

+ H (ζ ) = iBζ 2, (41)

valid at the unit circle, where F (ζ ) and H (ζ ) are holomorphic
on the elastic domain. Following the integrations of (41) and its
conjugate as in the previous section, we obtain the differential
equations for F (ζ ) and H (ζ ):

F (ζ ) + �

4i
(ζ + i)2 F ′(ζ ) = iBζ 2, (42)

[
− i

2
(1 + ζ 2) + �

4i
(ζ + i)2

]
F ′(ζ ) + H (ζ ) = 0. (43)

The first-order linear differential equation for F (ζ ) can be
solved as

F (ζ ) = −4B

�

[
ζ + i − 2i

(
2

�
+ 1

)

× exp

(
4i

�(ζ + i)

)
E1

(
4i

�(ζ + i)

)]
, (44)

with the exponential integral E1 defined as

E1(σ ) =
∫ ∞

1
dt

e−tσ

t
for Re(σ ) � 0. (45)

One verifies that indeed Re( 4i
�(ζ+i) ) � 0 for |ζ | � 1. Substitut-

ing ζ + i = 2
z−i

, we thus find the sought-for potential

φ(z) = −2B
�

[
2

z − i
− 2i

(
2

�
+ 1

)

× exp

(
2i(z − i)

�

)
E1

(
2i(z − i)

�

)]
. (46)

This is sufficient to compute the interface deflection h(x) =
uy(x,y = 0) = Im[φ(x)]; for the current case it turns out that
the constant K = 0 to achieve vanishing displacements at
infinity. However, if we wish to compute the displacements
inside the elastic body, we also require the other potential
ψ(z). Combining (43) and (44), we obtain

H (ζ ) = −4Bi

�

[
�

4
(ζ + i)2 + 1

2
(ζ 2 + 1)

] [
1 + 2i

(
2
�

+ 1
)

ζ + i

{
4i

�(ζ + i)
exp

(
4i

�(ζ + i)

)
E1

(
4i

�(ζ + i)

)
− 1

}]
, (47)

which after the substitution ζ + i = 2
z−i

yields

ψ(z)=− iB
2

(
z − i

z + i

)2

− 2Bi

�

(� − 2iz)

(z − i)2

[
1+i

(
2

�
+ 1

)
(z − i)

{
2i(z − i)

�
exp

(
2i(z − i)

�

)
E1

(
2i(z − i)

�

)
−1

}]
. (48)

2. Asymptotics

It is instructive to briefly consider the behavior for large |(z − i)|/�. For large arguments, the exponential integral can be
expanded as

exp(σ )E1(σ ) = 1

σ
− 1

σ 2
+ O

(
1

σ 3

)
, (49)

so that, to leading order, the potential φ in (46) becomes

φ(z) � −2B
�

[
2

z − i
− 4i

�

{
�

2i(z − i)
−

(
�

2i(z − i)

)2
}

− 2i

{
�

2i(z − i)
−

(
�

2i(z − i)

)2
}]

� B 2z + i�

(z − i)2
. (50)
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FIG. 2. (a) Interface deformation h(x)/B for different values of the surface tension: � = 0 (solid), � = 1 (dashed), � = 5 (dash-dotted),
and � = 20 (dotted). Here, all lengths h and x are already dimensionless and scaled by d . The influence of surface tension is to smooth interface
variations. (b) Central deflection h(0)/B exhibits a nonmonotonic dependence on surface tension �.

For vanishing � this reduces to (32), the result without
surface tension (up to a redundant constant). For finite �, this
expression provides the far-field solution valid for |z| � �.
The corresponding surface deflection, for |x| � �, reads

h(x) � (4 + �)B x2

(x2 + 1)2
= (4 + �)β

d3

x2

(x2 + 1)2
. (51)

The interface deformation thus decays as 1/x2, but with a
prefactor that depends on the strength of the surface tension.

Similarly, we can perform the expansion of the exponential
integral for small arguments, E1(σ ) � −γE − ln σ , where γE

is the Euler-Mascheroni constant. From this, one can compute
for example the central height in the limit of large surface
tension � � 1:

h(0) � 4B ln �

�
, (52)

where we kept only the dominant logarithmic factor. The
interface deformations near the center will thus be suppressed
at large �.

C. Results

Let us now discuss our findings using graphical representa-
tions. Our main goal was to compute the surface deflection of
the elastic body due to the vortex dipole, and to consider the
effect of surface tension. Figure 2(a) shows the corresponding
profiles h(x), normalized by the dipole strength B = β/d3,
for different values of � = γ /(μd). In all cases the interface
deflection is upwards (positive) at all positions x. This is to
be contrasted with the viscous case, for which the surface
deflection is downwards (negative). The result for � = 0, given
by (35), is shown as the solid line. Interestingly, this case
gives no displacement at the center, x = 0. This could also be
inferred from the streamline pattern shown in Fig. 1(c): The
origin (x = 0,y = 0) is a stagnation point of the displacement
field. The maximum displacements are found at x = ±1.

The inclusion of surface tension leads to a reduction of
the interfacial area, and hence smooths the spatial variations.

However, its effect on the detailed spatial structure is rather
subtle. Figure 2(a) shows that the increase of surface tension
gives rise to a reduction of the maxima: The traction induced
by the positive Laplace pressure locally pushes down on the
elastic body. Interestingly, the displacement at x = 0 evolves
nonmonotonically with �. Initially the effect of surface tension
is to reduce the difference with respect to the pronounced
maxima. The Laplace pressure is negative at the center, pulling
up the elastic body along its center line. For very large surface
tensions, however, interface deflections are suppressed over
a very wide central range. This nonmononotonic behavior is
summarized in Fig. 2(b), showing h(0)/B versus �. Notice
the very slow decay at large �, which can be understood from
the asymptotics (52). The width of the central region is given
by � = γ /(μd), or in dimensional units it is governed by the
elastocapillary length γ /μ. Outside this region, the deflections
decay as 1/x2, as described by the asymptotics (51). The
amplitude of the far-field displacements is proportional to �:
In this region the Laplace pressure is again negative, such that
surface tension locally enhances the upward displacement.

Figure 3 finally represents the computed displacement fields
as “streamline” patterns. As in Fig. 1, the free surface is at the
top of the panels while the dipole is seen at the center line,
just above the middle. The leftmost panel shows the result for
� = 0, as was previously given in Fig. 1(c). For � > 0 we
observe that the stagnation point of the displacement field is
below the free surface: As a consequence, the displacements
at the free surface are indeed in the upward direction. The
topology of the fields is highlighted by the black lines, which
separate streamlines that return to the dipole from those that
cross the free surface. While the topology of the fields remain
the same at all values of �, one observes a “flattening” of the
contours near the center line that is due to the effect of surface
tension.

IV. DISCUSSION

In summary, we have considered the elastic analog of
the viscous problem considered by Jeong and Moffatt [27],
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FIG. 3. (Color online) Displacement field for different surface tensions � = γ /(μd), using the same scales as in Fig. 1. The position of the
vortex dipole is clearly visible below the free surface. The black lines separate the streamlines that return to the dipole from those that cross the
interface. Apart from the case � = 0, the stagnation point of the field lies below the free surface and as a consequence gives rise to an upward
displacement at the free surface.

where a capillary interface is deformed due to a vortex dipole
(cf. Fig. 1). Despite the equivalence of Stokes flow and the
equations of linear elasticity, we found that the resulting
deflections and streamline patterns are rather distinct. This
can be attributed to the kinematic boundary condition of the
interface, which is very different for steady viscous flow and
for an elastic free surface. However, the presented elastic
calculation does have a counterpart in the viscous flow case.
Namely, the unsteady kinematic boundary condition reads

∂h

∂t
= vy |y=h − vx |y=h

∂h

∂x
. (53)

At steady state this reduces to the previously used (9).
However, let us consider the transient flow that is achieved
when the vortex dipole is started at t = 0 in a pool that
is initially at rest. The interface is initially flat, so that the
kinematic condition at early times becomes

∂h

∂t
� vy |y=h. (54)

This is equivalent to the elastic kinematic condition (10), upon
identification of h → ∂h/∂t and uy → vy . When counter-
rotating vortices are started up in a viscous experiment, we
therefore expect the flow to initially resemble the field in
Fig. 1(c). The interface then initially deflects upwards, but
after a short transient relaxes towards the steady flow pattern
in Fig. 1(b).

The prime interest of the viscous flow problem was to study
the appearance of an interfacial cusp at large driving strength

[27,31–33]. Unfortunately, the limit of large deformation is
beyond the realm of linear elasticity, and can thus not be
assessed with the methods discussed in the present paper.
However, we speculate that a free surface cusp does not form
in the elastic problem. The mechanism for cusp formation in
Stokes flow is that the interface is deflected towards the vortex
dipole, strongly enhancing the velocities in the vicinity of the
stagnation point at the center of the free surface, at x = 0. Our
linear analysis suggests that this enhancing mechanism is not
present in the elastic case, as the displacement near the free
surface is opposite to that of the dipole. A fully nonlinear
(numerical) analysis is required to resolve this question.
Alternatively, an experimental approach may be attempted by
embedding cylinders inside an elastic gel, which will allow a
torque dipole to be exerted.

As a final remark, we note that the complex variable method
could be of interest for describing other types of elastocapillary
problems. A technical difficulty that is common for deformable
gels is that the surface traction explicitly depends on the
displacement field: Stresses and displacements thus have to be
solved self-consistently. For the present case we showed that
this can be resolved quite naturally within the complex variable
formalism, reducing the effort to solution of a first-order
differential equation.
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184501 (2003).
[34] R. Shuttleworth, Proc. Phys. Soc., London, Sect. A 63, 444

(1950).
[35] P. Muller and A. Saul, Surf. Sci. Rep. 54, 157 (2004).
[36] J. H. Weijs, B. Andreotti, and J. Snoeijer, Soft Matter 9, 8494

(2013).

033001-8

http://dx.doi.org/10.1103/PhysRevLett.109.236101
http://dx.doi.org/10.1103/PhysRevLett.109.236101
http://dx.doi.org/10.1103/PhysRevLett.109.236101
http://dx.doi.org/10.1103/PhysRevLett.109.236101
http://dx.doi.org/10.1140/epje/i2012-12134-6
http://dx.doi.org/10.1140/epje/i2012-12134-6
http://dx.doi.org/10.1140/epje/i2012-12134-6
http://dx.doi.org/10.1140/epje/i2012-12134-6
http://dx.doi.org/10.1039/c2sm25540e
http://dx.doi.org/10.1039/c2sm25540e
http://dx.doi.org/10.1039/c2sm25540e
http://dx.doi.org/10.1039/c2sm25540e
http://dx.doi.org/10.1017/jfm.2014.152
http://dx.doi.org/10.1017/jfm.2014.152
http://dx.doi.org/10.1017/jfm.2014.152
http://dx.doi.org/10.1017/jfm.2014.152
http://dx.doi.org/10.1039/C4SM00891J
http://dx.doi.org/10.1039/C4SM00891J
http://dx.doi.org/10.1039/C4SM00891J
http://dx.doi.org/10.1039/C4SM00891J
http://dx.doi.org/10.1038/ncomms3728
http://dx.doi.org/10.1038/ncomms3728
http://dx.doi.org/10.1038/ncomms3728
http://dx.doi.org/10.1038/ncomms3728
http://dx.doi.org/10.1039/c3sm51780b
http://dx.doi.org/10.1039/c3sm51780b
http://dx.doi.org/10.1039/c3sm51780b
http://dx.doi.org/10.1039/c3sm51780b
http://dx.doi.org/10.1063/1.460525
http://dx.doi.org/10.1063/1.460525
http://dx.doi.org/10.1063/1.460525
http://dx.doi.org/10.1063/1.460525
http://dx.doi.org/10.1103/PhysRevLett.81.3167
http://dx.doi.org/10.1103/PhysRevLett.81.3167
http://dx.doi.org/10.1103/PhysRevLett.81.3167
http://dx.doi.org/10.1103/PhysRevLett.81.3167
http://dx.doi.org/10.1002/cphc.200800098
http://dx.doi.org/10.1002/cphc.200800098
http://dx.doi.org/10.1002/cphc.200800098
http://dx.doi.org/10.1002/cphc.200800098
http://dx.doi.org/10.1103/PhysRevLett.110.066103
http://dx.doi.org/10.1103/PhysRevLett.110.066103
http://dx.doi.org/10.1103/PhysRevLett.110.066103
http://dx.doi.org/10.1103/PhysRevLett.110.066103
http://dx.doi.org/10.1039/c2sm26714d
http://dx.doi.org/10.1039/c2sm26714d
http://dx.doi.org/10.1039/c2sm26714d
http://dx.doi.org/10.1039/c2sm26714d
http://dx.doi.org/10.1112/plms/s1-31.1.100
http://dx.doi.org/10.1112/plms/s1-31.1.100
http://dx.doi.org/10.1112/plms/s1-31.1.100
http://dx.doi.org/10.1112/plms/s1-31.1.100
http://dx.doi.org/10.1017/S0305004100025019
http://dx.doi.org/10.1017/S0305004100025019
http://dx.doi.org/10.1017/S0305004100025019
http://dx.doi.org/10.1017/S0305004100025019
http://dx.doi.org/10.1017/S0022112064000015
http://dx.doi.org/10.1017/S0022112064000015
http://dx.doi.org/10.1017/S0022112064000015
http://dx.doi.org/10.1017/S0022112064000015
http://dx.doi.org/10.1016/0021-9797(71)90188-3
http://dx.doi.org/10.1016/0021-9797(71)90188-3
http://dx.doi.org/10.1016/0021-9797(71)90188-3
http://dx.doi.org/10.1016/0021-9797(71)90188-3
http://dx.doi.org/10.1017/S0022112080002133
http://dx.doi.org/10.1017/S0022112080002133
http://dx.doi.org/10.1017/S0022112080002133
http://dx.doi.org/10.1017/S0022112080002133
http://dx.doi.org/10.1017/S0022112093002976
http://dx.doi.org/10.1017/S0022112093002976
http://dx.doi.org/10.1017/S0022112093002976
http://dx.doi.org/10.1017/S0022112093002976
http://dx.doi.org/10.1017/jfm.2012.321
http://dx.doi.org/10.1017/jfm.2012.321
http://dx.doi.org/10.1017/jfm.2012.321
http://dx.doi.org/10.1017/jfm.2012.321
http://dx.doi.org/10.1017/S0022112092001927
http://dx.doi.org/10.1017/S0022112092001927
http://dx.doi.org/10.1017/S0022112092001927
http://dx.doi.org/10.1017/S0022112092001927
http://dx.doi.org/10.1017/S002211209000235X
http://dx.doi.org/10.1017/S002211209000235X
http://dx.doi.org/10.1017/S002211209000235X
http://dx.doi.org/10.1017/S002211209000235X
http://dx.doi.org/10.1017/S002211209900662X
http://dx.doi.org/10.1017/S002211209900662X
http://dx.doi.org/10.1017/S002211209900662X
http://dx.doi.org/10.1017/S002211209900662X
http://dx.doi.org/10.1017/S0022112091001477
http://dx.doi.org/10.1017/S0022112091001477
http://dx.doi.org/10.1017/S0022112091001477
http://dx.doi.org/10.1017/S0022112091001477
http://dx.doi.org/10.1103/PhysRevLett.86.4290
http://dx.doi.org/10.1103/PhysRevLett.86.4290
http://dx.doi.org/10.1103/PhysRevLett.86.4290
http://dx.doi.org/10.1103/PhysRevLett.86.4290
http://dx.doi.org/10.1103/PhysRevLett.90.184501
http://dx.doi.org/10.1103/PhysRevLett.90.184501
http://dx.doi.org/10.1103/PhysRevLett.90.184501
http://dx.doi.org/10.1103/PhysRevLett.90.184501
http://dx.doi.org/10.1088/0370-1298/63/5/302
http://dx.doi.org/10.1088/0370-1298/63/5/302
http://dx.doi.org/10.1088/0370-1298/63/5/302
http://dx.doi.org/10.1088/0370-1298/63/5/302
http://dx.doi.org/10.1016/j.surfrep.2004.05.001
http://dx.doi.org/10.1016/j.surfrep.2004.05.001
http://dx.doi.org/10.1016/j.surfrep.2004.05.001
http://dx.doi.org/10.1016/j.surfrep.2004.05.001
http://dx.doi.org/10.1039/c3sm50861g
http://dx.doi.org/10.1039/c3sm50861g
http://dx.doi.org/10.1039/c3sm50861g
http://dx.doi.org/10.1039/c3sm50861g



