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A striking example of levitation is encountered in the “kugel fountain” where a granite sphere,

sometimes weighing over a ton, is kept aloft by a thin film of flowing water. In this paper, we

explain the working principle behind this levitation. We show that the fountain can be viewed as a

giant ball bearing and thus forms a prime example of lubrication theory. It is demonstrated how

the viscosity and flow rate of the fluid determine (i) the remarkably small thickness of the film

supporting the sphere and (ii) the surprisingly long time it takes for rotations to damp out.

The theoretical results compare well with measurements on a fountain holding a granite sphere

of one meter in diameter. We close by discussing several related cases of levitation by lubrication.
VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4886365]

I. INTRODUCTION

Granite sphere or “kugel” fountains (see Fig. 1) are a
familiar sight in town squares and science museums, and
smaller ones—often with a marble sphere—decorate many
private homes and gardens. These fountains consist of a per-
fectly polished ball floating in a socket that fits precisely
around it. The fluid that wells up around the rim of the socket
is pumped into the fountain via a hole at the base. In spite of
its considerable weight, the sphere is easily brought into a
spinning motion, which is an attractive sight especially when
the surface of the sphere is engraved with the Earth’s map, a
soccer ball, the night sky, or something of the kind. The fluid
layer between the socket and sphere is very thin (thinner
than a credit card1), which is important for any kugel on
display in a public place, since it means there is no risk of
children’s fingers being caught under the spinning sphere.

Despite its popularity, the granite sphere fountain is poorly
understood by most people. When we asked visitors of the
House of Science in Patras, Greece, which physical mecha-
nism they thought was responsible for the floating of the
sphere in front of the main entrance (a granite ball with a
diameter of 1 m), the most common answer was
“Archimedes’ law of buoyancy,” as if the sphere were an
iceberg or a ship. Perhaps the visitors who gave this answer
were under the impression that the sphere was hollow. In
reality, however, the sphere is solid and the buoyant force is
by no means capable of keeping the sphere afloat, since gran-
ite has a density 2.75 times that of water.

The second most common answer was “the incompressi-
bility of water.” This is not too convincing either, because
it fails to explain why the sphere does not squeeze the
water out of the space between itself and the socket and
simply sit on top of the inlet nozzle like a giant granite
plug.

A third answer was “Pascal’s principle,” which states that
a pressure applied to an enclosed incompressible fluid at rest
is transmitted undiminished and isotropically to every part of
the fluid, as well as to the walls of the container. This comes
much closer to the truth, as we will see, even though the
water in the fountain is neither fully enclosed (it is open at
the rim of the socket) nor at rest.

A search on the internet did not yield much in the way of
a conclusive answer. On the website of one of the leading
manufacturers of these fountains, it is stated that “basic
physical principles and very accurate working of the stone
allow granite objects weighing tons to float on air or water,”2

without giving any hint as to what these basic principles are.
Another website, describing the Millennium Globe in
Kenilworth, UK, says that “complex physics and precision
engineering” are involved.3 The description on wikipedia
about the kugel ball, as the fountain is widely known (from
the German “Kugel,” meaning bullet or ball), states that the
sphere is supported by a very thin film of water and “because
the thin film of water lubricates it, the ball spins.”4 Finally,
we came across several physics forums where students asked
about the working of the kugel fountain without getting any
answer that went much deeper than the above statements.

In our view, therefore, there is some reason for a paper
that explains the physics of the granite sphere fountain. It
turns out that the levitation hinges on the principle of lubri-
cation. The key observation is that the pressure that builds
up in the thin fluid layer, squeezed as it is between the kugel
and the socket, supplies the force required to balance the

Fig. 1. One of the largest granite sphere fountains in the world, the Grand

Kugel at the Science Museum of Virginia, in Richmond, VA. The sphere

has a diameter of 2.65 m and a mass of about 27 tons.
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colossal weight of the granite sphere. The pressure integrated
over the submerged area gives an upward force that equals
the weight of the sphere plus the force exerted by the atmos-
pheric pressure on the equivalent area around the top. For
the sake of clarity, we neglect buoyancy and also the minor
contribution to the upward force from the shear stresses at
the submerged surface of the kugel. Hence, if Fg is the
weight of the sphere and Fup the resultant upward force due
to the pressure inside the fluid layer minus the atmospheric
counterforce, the balance gives

Fg ¼ Fup ¼
ð ð
Asub

PðhÞ � Patm½ �cos h dA; (1)

where Asub denotes the submerged area of the sphere. The
angle h appearing in this relation runs from 0 at the center of
the fountain’s basin to hmax at the rim. In the next sections,
we will work out Eq. (1) in detail, but we can already make a
back-of-the-envelope estimate right here.

For a granite sphere with a diameter of 1 m, the mass is
m ¼ ð4=3ÞpR3qgr ¼ 1440 kg (with R¼ 0.5 m and qgr

¼ 2750 kg=m3), so its weight is Fg ¼ mg � 1:4� 104 N.
Given that the submerged area of such a sphere will be
approximately Asub � 1:5 m2, the average fluid overpressure
(above atmospheric pressure) on this surface must be 1:4
�104 N=1:5 m2 ¼ 0:93� 104 N=m2 � 0:1 atm. Thus, with
the pressure at the rim of the socket (where the water meets
the surrounding air) being 1 atm, the pressure under the
sphere must exceed this on average by 0.1 atm. Thus, a sur-
prisingly low pressure is required to make the fountain work.
The excess pressure above atmospheric pressure (0.1 atm) is
usually called gauge pressure, and the total pressure
(1.1 atm) is called absolute pressure. In the present work, we
must take care to distinguish between these two quantities.
The absolute pressure will be denoted by P, the gauge pres-
sure by P – Patm [as in Eq. (1)].

The remainder of this paper is organized as follows. In
Sec. II, we first turn our attention to the cylindrical version
of the Kugel fountain and, performing the above calculation
in more detail, we will see that it is in fact a beautiful exer-
cise in lubrication theory. This calculation may well find its
way into the classroom as part of an introductory course in
fluid dynamics. In Sec. III, we analyze the spherical foun-
tain, which is slightly more advanced both from a mathemat-
ical and a physical point of view. In Sec. IV, we address the
spinning motion of the sphere and especially the rate with
which the rotations damp out due to the viscosity in the fluid
layer. Finally, in Sec. V, we discuss the analogies between
the granite sphere fountain and other instances in which
objects are levitated by a thin fluid layer, such as water drops
floating on their own vapor layer above an overheated sur-
face (the so-called Leidenfrost phenomenon) and also the
air-borne variety of the kugel fountain.

II. CYLINDRICAL FOUNTAIN

We first consider a two-dimensional version of the foun-
tain where the levitated object is a cylinder instead of a
sphere. This is known as the “granite wheel,” an example of
which is shown in Fig. 2. The analysis for the cylinder is eas-
ier than for the sphere and therefore provides a more direct
illustration of the physical mechanism. In this section, we
will not include rotation yet, so the floating cylinder is
assumed to be at rest. We compute the pressure at the inlet

nozzle (or equivalently, the inflow rate Qin) required to give
the fluid layer the desired thickness h of a few tenths of a
millimeter—sufficiently large for two well-polished surfaces
to not grind each other and at the same time sufficiently
small to guarantee that no fingers (not even those of the
smallest children) can get caught between them.

A. Physical mechanism: Balance of forces

The mechanism of levitation requires an upward force that
balances the weight of the levitated object. In the case of a
cylinder of radius R and length L, this weight is

Fg ¼ pR2Lgqgr; (2)

where qgr ¼ 2:75� 103 kg=m3 is the density of granite and
g¼ 9.81 m/s2 is the gravitational field strength. The net levi-
tation force is provided by the gauge pressure PðhÞ � Patm

inside the fluid layer. We anticipate that this pressure is not
uniform, but rather a function of the angle h defined in Fig.
3(a). The associated force then follows from an integral of
½PðhÞ � Patm�cos h (the excess pressure on the cylinder, taken
in the vertically upward direction) over the submerged
surface:

Fup ¼
ð ð
Asub

½PðhÞ � Patm�cos h dA

¼ LR

ðhmax

�hmax

½PðhÞ � Patm�cos h dh: (3)

The desired balance between gauge pressure and weight is
achieved when Fup¼Fg, or

Ð
½PðhÞ � Patm�cosðhÞ dh

¼ pRgqgr. In order to proceed, we thus need to know the
gauge pressure PðhÞ � Patm inside the fluid layer.

One may note that, next to the pressure, also the shear
stress in the liquid contributes to the force on the cylinder.
As the stress s induces a force parallel to the solid surface,
rather than perpendicular as is the case for the pressure, the

Fig. 2. A “granite wheel” fountain, in which the levitated object is a cylinder

instead of a sphere. The disk in this particular fountain has an estimated ra-

dius of R ¼ 0.50 m and approximate width 0.30 m and is immersed in the

fluid to an angle hmax of about 35� or 0.60 rad [cf. Fig. 3(a)].
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contribution to the upward force is of the form
dFs ¼ s sin h dA. As we will show, however, the shear stress
is much smaller than the pressure (by a factor h/R) and there-
fore the contribution of the shear stress may be omitted in
Eq. (3).

For simplicity, we also omit the contribution from the buoy-
ant force. Given that the depth of the basin is Rð1� cos hmaxÞ
¼ 0:175R (for hmax¼ 0.60 rad), only a small part of the
cylinder’s volume is under water: the submerged fraction is
given by ðhmax � cos hmax sin hmaxÞ=p ¼ 0:043. The associated
buoyant force is qg times the submerged volume
(0:043R2Lqg, with q the density of water), which amounts to a
fraction 0:043q=qgr ¼ 0:016, or 1.6% of the cylinder’s weight.
A similar calculation for the spherical fountain yields that the
submerged volume fraction in that case is ð2þ cos hmaxÞ
ð1� cos hmaxÞ2=4 ¼ 0:0069, meaning that the buoyant force
compensates no more than 0.0025 (0.25%) of the kugel’s
weight. Clearly, the levitation owes little to Archimedes’ law
of buoyancy.

B. The fluid mechanical equations

The pressure field (and the related velocity field) can be
found by solving the set of partial differential equations that

express the mass and momentum balance within the fluid.
The mass balance is represented by the continuity equation

@q
@t
þr � ðquÞ ¼ 0; (4)

where q is the density of the fluid and u the velocity field.
For an incompressible fluid ðq ¼ constantÞ like water this
simplifies to r � u ¼ 0. The natural coordinates for the cylin-
drical fountain are r, h and z [see Fig. 3(a)], but in view of
the fact that the liquid film is extremely thin ðh=R� 1Þ we
may also treat the flow as being essentially along a straight
line and use the coordinates (x, y, z) parallel and perpendicu-
lar to the surface of the cylinder, as in Fig. 3(b). In principle,
the velocity field could have three components u ¼ uex

þvey þ wez, but due to the symmetry in the z-direction—and
ignoring the edges of the cylinder—the velocity in the
z-direction may be assumed to be identically zero. In addi-
tion, after leaving the nozzle the flow field rapidly orients
itself in the x-direction, so the velocity in the y-direction will
be zero. Thus, in the steady state we have5 u ¼ uðx; yÞex, in-
dependent of z or t. The continuity equation r � u ¼ @u=@x
þ @v=@yþ @w=@z ¼ 0 then reduces to

@u

@x
¼ 0; (5)

from which we infer that the velocity is also independent of
x, so that u ¼ uðyÞex.

The momentum balance is expressed by the Navier-Stokes
equation, which for fluids with constant density q and viscos-
ity l is given by

q
@u

@t
þ ðu � rÞu

� �
¼ qg�rPþ lr2u: (6)

It is the presence of the nonlinear term ðu � rÞu on the left
hand side that makes this equation so notoriously difficult to
solve in general. Fortunately, in the present case, all terms
on the left hand side (proportional to the fluid density q) are
negligibly small in comparison with the viscous term lr2u
on the right hand side. This means that inertia of the fluid
plays a negligible role, making the cylindrical fountain an
example of Stokes (or creeping) flow (a term arising after
Stokes’ seminal 1851 paper on the subject6). Usually,
this type of flow is associated with low Reynolds number
ðRe < 1Þ but in the present case it also holds for larger val-
ues of Re. Indeed, the first term in Eq. (6) vanishes because
we consider steady flow ðq@u=@t ¼ 0Þ and the second term
qðu � rÞu ¼ qu@u=@x ex is identically zero on account of
Eq. (5).

In a more general setting, when the derivative @u=@x is
not equal to zero, inertial effects could come into play. This
is, for instance, the case for the spherical fountain. In that
case one estimates the relative importance of the fluid inertia
by inserting the order-of-magnitude estimates @u=@x 	 U=R
and @2u=@y2 	 U=h2 (where U denotes a characteristic value

of the velocity). Then, the condition qu@u=@x� l@2u=@y2

can be written as qU2=R� lU=h2, or equivalently7,8

h2

R2

qUR

l

� �
¼ h2

R2
Re� 1; (7)

where Re ¼ qUR=l is the Reynolds number based on the
kugel radius R. It is at once apparent (even when @u=@x is

Fig. 3. (a) Sketch of the cylindrical fountain. The gap coordinates (x, y, z)

parallel and perpendicular to the curved surface are related to the cylindrical

coordinates ðr; h; zÞ as x ¼ Rh; y ¼ Rþ h� r, and z¼ z, where R denotes

the radius of the cylinder and h the thickness of the fluid layer. The cylinder

is submerged up to the angle hmax. The thickness of the layer has been

greatly exaggerated for the sake of clarity. (b) The flow inside the water

layer is essentially straight since h� R. After leaving the inlet nozzle, the

velocity profile u(y) quickly takes a parabolic shape.
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not identically zero) that our analysis need not be restricted
to low Reynolds number. Provided the film thickness h is
small with respect to the radius of the levitated object
ðh� RÞ, the Reynolds number Re based on R may in fact be
quite large. This puts our problem into a special class of
Stokes flows called lubrication flows,9 first analyzed by
Reynolds in 1886.10 According to Eq. (7), the appropriate
dimensionless parameter can be thought of as a Reynolds
number based on the length scale h2/R, which is a subtle
combination of the kugel radius and the thickness of the
water layer. We note that the cylindrical fountain, with
@u=@x ¼ 0, is an exceptionally pure example of lubrication
flow.

Returning to Eq. (6), we can see that the gravitational
term qg is negligibly small in the problem at hand if we rec-
ognize that the effect of gravity is simply to add a hydrostatic
component to the pressure. With q ¼ 103 kg=m3 and an esti-
mated film thickness of h¼ 0.3 mm, the magnitude of this
gravitational contribution to the fluid pressure is at most
qgh � 3 Pa ¼ 3� 10�5 atm. Comparing this to the required
gauge pressure at the inlet nozzle (which is in the order of
several tenths of an atmosphere) we see that the contribution
from gravity is indeed marginal and may safely be neglected.
The Navier-Stokes equation then reduces to

0 ¼ �rPþ lr2u; (8)

which is known as the “Stokes flow” or “creeping flow”
approximation.7,8,11,12 The components of this equation rep-
resent a balance of pressure and viscous stress inside the
fluid layer. Inertia of the fluid (represented by the fluid den-
sity q) plays no role for the cylindrical fountain.

C. Pressure field and velocity inside the fluid layer

Solving the creeping flow equation—The problem is now
properly laid out and we are ready to solve for the flow and
pressure inside the fluid layer. With the fluid speed u(y)
depending only on the perpendicular position within the
layer, the components of Eq. (8) take the form

@P

@x
¼ l

d2u

dy2
; (9)

@P

@y
¼ 0; (10)

@P

@z
¼ 0: (11)

The latter two equations imply that the pressure is a function
of x only; the first equation can then be solved by separation
of variables. Recognizing that the expression on the left-
hand side does not depend on y while the right-hand side
does not depend on x, the only consistent solution is that
both sides depend neither on x nor y but are simply constant.
For reasons that will become clear in a moment, this constant
has to be negative, say –lK, and thus Eq. (9) yields

dP

dx
¼ 1

R

dP

dh
¼ �lK (12)

and

d2u

dy2
¼ �K: (13)

The first of these two equations immediately reveals the rea-
son why the constant (–lK) had to be negative: the pressure
must decrease from the inlet nozzle to the rim of the socket
so the pressure gradient dP/dh must necessarily be negative.
Integrating Eq. (12) yields the form of the pressure profile

PðhÞ ¼ Pð0Þ � lRKh; (14)

where P(0) is the pressure at the inlet nozzle. The pressure at
hmax where the flow meets the surrounding air must be Patm

(¼1 atm), so Patm ¼ Pð0Þ � lRKhmax. This gives the gauge
pressure Pð0Þ � Patm ¼ lRKhmax. The only unknown in this
relation, K, will follow when we solve Eq. (13).

Integrating Eq. (13), we find that the velocity profile has the
form uðyÞ ¼ Aþ By� ð1=2ÞKy2, where A and B are integra-
tion constants to be determined from the boundary conditions.
We employ no-slip boundary conditions at the socket (y¼ 0)
and at the surface of the cylinder (y¼ h). If the cylinder is not
rotating this means that the speed vanishes at both boundaries,
giving respectively A¼ 0 and B ¼ ð1=2ÞKh, hence we arrive
at the parabolic velocity profile [see also Fig. 3(b)]

u0ðyÞ ¼
1

2
Kyðh� yÞ; (15)

where we use the subscript “0” to indicate zero rotation. This
is the well-known planar Poiseuille velocity profile for flow
between parallel plates under the influence of a constant
pressure gradient. The constant K sets the strength of the
velocity field and is directly related, as we shall see, to the
fluid influx Qin at the nozzle.

Mass balance—The inflow rate Qin has dimensions of
volume per unit time (e.g., liters per minute) and is, in the
absence of rotation, equally distributed over the left and right
sides of the cylinder. By mass conservation, this must be
equal to the flow integrated across the fluid layer

Qin

2
¼ L

ðh

0

u0ðyÞ dy ¼ 1

12
LKh3; (16)

where we have simply integrated the velocity profile (15). So
the constant K is found to be

K ¼ 6Qin

Lh3
; (17)

which is, as expected, directly proportional to the inflow
rate.

Pressure field—With the above value of K, the value of
the gauge pressure at the inlet nozzle becomes

Pð0Þ � Patm ¼ lRKhmax ¼
6lRQin

Lh3
hmax (18)

and P(h) for every angle between 0 and hmax is then readily
obtained using Eq. (14):

PðhÞ � Patm ¼
6lQinR

Lh3
hmax � jhjð Þ: (19)

The pressure field P(h) is shown in Fig. 4 for typical parame-
ter values (see Sec. II D); it is symmetric around the flow

1032 Am. J. Phys., Vol. 82, No. 11, November 2014 Jacco H. Snoeijer and Ko van der Weele 1032

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

150.140.170.210 On: Fri, 24 Oct 2014 14:40:51



inlet (h¼ 0) and decreases with a constant negative gradient
(–lRK) until it reaches Patm at the edge of the socket at hmax.

The strong h-dependence of the pressure, P 	 lQinR=Lh3,
is one of the foremost features of lubrication flow. If we
compare P to the typical shear stress at the kugel surface,
s ¼ ldu=dy 	 lQin=Lh2, we find that s=P 	 h=R� 1. The
smallness of this ratio is the origin of the renowned low fric-
tion in lubrication layers. Without the lubricant, Coulomb’s
friction law would dictate the frictional force (shear
stress� area) to be equal to the friction coefficient f times
the normal force (pressure� area), so in that case the ratio
s=P would be f� 0.6 (for granite on granite).

D. Thickness of the fluid layer

Now that we know PðhÞ � Patm in terms of l and Qin, we
are in a position to compute the integral in Eq. (3) to obtain
the net levitation force. The result is

Fup ¼
12lQinR2

h3
1� cos hmaxð Þ: (20)

In equilibrium, this upward force is equal to the weight of
the cylinder Fg, Eq. (2), and thus we arrive at the expression
for the film thickness:

h ¼ hcyl ¼
12

p
ð1� cos hmaxÞ

� �1=3
lQin

Lgqgr

 !1=3

: (21)

The subscript “cyl” indicates that this result concerns the
cylindrical fountain. The inlet of the cylindrical fountain is
not point-like, but rather distributed along a line of length L,
and Qin /L represents the inflow rate per unit length along
this line. For clarity, the expression (21) has been split into a
dimensionless prefactor (depending on the geometry of the
fountain via hmax) and a factor that has the dimension of a
length. Interestingly, in the case of the cylindrical fountain,
the thickness of the fluid layer is independent of the radius R
of the cylinder. The physical explanation for this is that both

the levitation force and the weight of the cylinder scale as R2

and thus cancel in the end result for h.
To get a feel for Eq. (21), let us insert typical values of the

fountain parameters, taking the granite wheel in Fig. 2 as an
example. From the figure, we estimate that hmax is a little
under 35� (or 0.60 rad), giving a prefactor of 0.87. With
L� 0.30 m, the density of the wheel qgr ¼ 2:75� 103 kg=m3,
the viscosity of water l ¼ 1:00� 10�3 Pa � s, and a typical
inflow rate Qin of 0.30 liters per second (0.30� 10–3 m3/s) we
arrive at a film thickness of 0:87 lQin=qgLð Þ1=3 	 0:3 mm.
This is satisfactorily small: there is no danger for fingers
being caught between the wheel and the socket. The small
value of h also justifies our earlier assumption that h=R� 1.
In the present example, this ratio is h/R¼ 0.6� 10–3, which is
very good news in the context of the lubrication condition
Eq. (7).

In practice, it is wise to choose the inflow rate such that
the film thickness is several tenths of a millimeter. We note,
however, that there is no specific threshold value of Qin

below which the fountain would not work in principle. As
long as Qin is positive, the pressure P(0) at the inlet will
always exceed the atmospheric pressure and a thin lubrica-
tion layer establishes itself between the basin of the fountain
and the cylinder. If the surfaces were perfectly smooth, any
supramolecular thickness h (corresponding to tiny inflow
rates Qin) would be sufficient to make the fountain work.
The only problem with choosing a very small value of Qin is
that it will render the system rather vulnerable; small irregu-
larities in the masonry, a slight unbalance, or even sand
grains caught in the fluid layer may be enough to cause
scratches on the polished surfaces.

III. SPHERICAL FOUNTAIN

We now turn to the spherical fountain. In Fig. 5, we show
the kugel fountain that adorns the main entrance of the
House of Science in Patras, Greece, where we were allowed
to perform some elementary measurements. The granite
sphere has a diameter of precisely one meter (R¼ 0.50 m)
and, by trying to fit plastic sheets of different thickness
inside the gap between the sphere and the socket, we found
that the thickness of the water layer is h¼ 0.30 6 0.05 mm.
In this section, we will show that such a thickness is indeed

Fig. 4. The linear pressure distribution PðhÞ=Patm in the water layer under

the levitated cylinder, given by Eq. (19). The radius and width of the cylin-

der are taken to be R¼ 0.50 m and L¼ 0.30 m, mimicking the granite wheel

of Fig. 2, and the inflow rate is Qin¼ 0.30 L/s. The associated thickness of

the fluid layer is 0.29 mm [cf. Eq. (21)]. Above and close to the inlet nozzle

(from h¼ 0 to about h� 0.05 rad) the pressure field may be expected to

deviate from the straight line; that is why this part of the plot has been

hatched. The outer rim of the fountain, where the water meets the air and

hence the fluid pressure equals the atmospheric pressure, lies at

h¼ hmax¼ 0.60 rad (�35�).

Fig. 5. The kugel fountain at the House of Science in Patras, Greece. The

granite sphere has a diameter of precisely 1 m and is immersed in the water

basin up to an angle hmax � 35�. We measured the thickness of the water

layer to be 0.30 6 0.05 mm.
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consistent with hydrodynamic theory. For sufficiently small
inflow rates the calculation can again be based on Stokes
flow alone, i.e., neglecting the liquid inertia. At higher flow
rates, however, inertial effects become increasingly impor-
tant for the spherical fountain and this turns out to have a
negative effect on the levitation force. Consequently, Qin

should neither be too small (as before, to avoid scratches)
nor too large (to prevent the inertial effects from becoming
dominant), meaning that there exists some intermediate
range of Qin for which the fountain works optimally.

A. Creeping flow approximation

The spherical fountain calls for a three-dimensional analy-
sis (see Fig. 6). The flow is now radially outward from the
inlet nozzle so that u ¼ ður; uh; u/Þ ¼ u0ðr; hÞ eh, and as the
fluid is being spread over a region of increasing area its
speed must decrease with h to ensure conservation of mass.
(This deceleration means that the inertial term qðu � rÞu in
the Navier-Stokes equation is not identically zero anymore,
but for the time being we shall assume it is still small in
comparison with the terms rP and lr2u, which is a valid
approximation as long as the inflow rate Qin is sufficiently
small.) When reaching an angle h, the circumference of the
cross-section has become 2pR sin h, and the total flux
through this circumference per unit time is simply

Qin ¼ 2pR sin h
ðh

0

u0ðy; hÞ dy: (22)

Once more, the velocity profile across the fluid layer is para-
bolic in the creeping flow approximation. So we set
u0ðy; hÞ ¼ ð1=2ÞKðhÞyðh� yÞ and the integral in Eq. (22) is
then readily evaluated to give

Qin ¼
1

6
pR sin h KðhÞh3; (23)

showing that the factor K(h) in the expression for the veloc-
ity decreases as 1=sin h:

KðhÞ ¼ 6Qin

pRh3 sin h
; (24)

and hence

u0ðy; hÞ ¼ 3
Qin

pRh3

� �
yðh� yÞ

sin h
: (25)

We proceed along the same lines as for the cylindrical
fountain, picking up the analysis at Eqs. (12) and (13). The
relation (13) corresponds to the above assumption of a para-
bolic velocity field. With the factor K being given by
Eq. (24), the gauge pressure PðhÞ � Patm can then be com-
puted from the equation for the pressure gradient (12):

PðhÞ � Patm ¼
6lQin

ph3
ln
ð1� cos hmaxÞsin h
ð1� cos h Þsin hmax

� �
: (26)

This pressure profile is depicted in Fig. 7 (solid curve).
Interestingly, the pressure exhibits a singularity at h¼ 0,
where the logarithmic factor diverges (this can be traced
back to the diverging velocity 	1=sin h). This poses no prob-
lem, however. In the first place, we should exclude the
immediate neighborhood of the nozzle—a small area around
h¼ 0—because our analysis does not cover this region (the
velocity of course does not diverge in reality). Secondly,
even if we choose to use the above expression for the pres-
sure down to h¼ 0, the contribution to the levitation force
remains finite:

Fig. 6. The spherical coordinates ðr; h;/Þ for the kugel fountain. Within the

fluid layer one may also conveniently use the coordinates ðx; y;/Þ, with x ¼
Rh and y ¼ Rþ h� r as in Fig. 3. The thickness of the fluid layer has been

exaggerated for clarity.

Fig. 7. Pressure distribution PðhÞ=Patm under the spherical fountain of Fig.

5. The solid curve is the pressure due to viscosity alone, given by Eq. (26),

while the dashed curve includes also the contribution from the inertial

effects [Eq. (31)]. We take a typical water influx of Qin¼ 1.5 L/s, and the

associated thickness of the fluid layer is 0.31 mm. The hatched area indicates

the nozzle region (from h¼ 0 to h� 0.05 rad) where the water flows into the

system and the actual pressure will deviate from our theory; thus, both the

logarithmic singularity in the solid curve for h! 0, as well as the strong

Bernoulli suction when the dashed curves dives to negative values, are

shrouded and made harmless by the presence of the nozzle. The outer rim of

the fountain, where the water meets the air (and hence the fluid pressure

becomes equal to the atmospheric pressure), lies at h¼ hmax¼ 0.60 rad.
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Fup ¼
ð ð
A
½PðhÞ � Patm�cos h dA

¼
ð2p

0

ðhmax

0

½PðhÞ � Patm�cos h R2 sin h dh d/

¼ 6lQinR2

h3
ð1� cos hmaxÞ: (27)

So we see that the logarithmic singularity in the pressure is
tamed by the smallness of the area around the origin over
which it is integrated.

Now, by equating the above levitation force [Eq. (27)] to
the weight of the sphere, Fg ¼ ð4=3ÞpR3gqgr, one readily
obtains the thickness of the fluid layer for the spherical foun-
tain (in the creeping flow approximation)

hsph ¼
9

2p
ð1� cos hmaxÞ

� �1=3
lQin

Rgqgr

 !1=3

: (28)

This result for the spherical fountain has essentially the same
structure as that for the cylindrical fountain [see Eq. (21)]
and illustrates that a perfectly polished spherical fountain
(just like the cylindrical one) does not require a specific
threshold value of Qin in order to function. As long as Qin is
positive, small as it may be, a lubrication layer with a finite
thickness h will establish itself.

Taking the fountain depicted in Fig. 5 as an example
(with R¼ 0.50 m, hmax¼ 0.6 rad, l ¼ 10�3 Pa � s; qgr

¼ 2750 kg=m3) and setting the inflow rate to Qin¼ 0.3 L/s
¼ 0.3� 10–3 m3/s, Eq. (28) yields a value for the gap width
of hsph� 0.18 mm. A smoothly polished kugel may just be
able to operate with such a thin water layer. To be on the
safe side, however, it is good to have a somewhat thicker
layer and this can readily be accomplished by choosing a
larger inflow rate. At Qin¼ 1.5 L/s, Eq. (28) predicts a layer
thickness hsph¼ 0.31 mm, in excellent agreement with the
0.30 6 0.05 mm, we measured on the fountain of Fig. 5.

B. Inertial effects: Bernoulli suction

Contrarily to the cylindrical fountain, the velocity in the
film below the sphere is not uniform, but decreases as
1=sinh. This means that the inertia of the liquid can become
important: the deceleration of the fluid mass induces an extra
contribution to the pressure field inside the water layer, origi-
nating from the advection term qðu � rÞu in Eq. (6). To esti-
mate the importance of this advection term with respect to
the viscous term lr2u, we check whether the condition (7)
is still satisfied. For the parameter values cited above (with
Qin¼ 1.5 L/s) the Reynolds number is Re ¼ qUR=l 	 106.
Given that ðh=RÞ2 	 10�6 we must conclude that ðh=RÞ2Re
is of order unity, so inertial effects cannot really be neglected
at these values of Qin. As an aside, we note that the Reynolds
number based on the film thickness—Reh ¼ qUh=l—is, for
the same value of Qin, still small enough for the flow to
remain laminar.

1. Inviscid flow: The yarn spool effect

To illustrate the effect of inertia in its purest form, we first
consider the idealized case of inviscid flow. This is the oppo-
site limit of creeping Stokes flow: one now assumes that the
inertia (or kinetic energy) of the liquid is so large that it

completely dominates over viscous friction. If in addition the
flow is steady and irrotational, one can integrate the Navier-
Stokes equation (6) to a very simple form: 1

2
qjuj2 þ qgy

þP ¼ constant, or if we neglect gravity as before,

1

2
qjuj2 þ P ¼ C; (29)

where C is a constant. This is the celebrated Bernoulli’s law
that expresses the conservation of energy in an inviscid flow;
regions of high kinetic energy correspond to low pressure,
and vice versa. This behavior has a remarkable consequence
for the spherical fountain, where mass conservation dictates
that the velocity in the water below the sphere decreases
from the nozzle to the outlet. According to Bernoulli’s law
(29), the pressure P is lowest at the nozzle. Thus, if it were
for the inertial contribution alone, the pressure would in fact
be below atmospheric pressure everywhere except at the
outer rim. Rather than providing a levitating force, the iner-
tial pressure induces a downward force that attracts the
sphere towards the socket. This effect is known as Bernoulli
suction.

A classic demonstration of Bernoulli suction is the experi-
ment with a paper card and a spool illustrated in Fig. 8.
When air is blown through the spool, the increased air veloc-
ity in the layer between the spool and the card means
(according to Bernoulli’s law) that a region of low pressure
is created here. As a result, the atmospheric pressure of the
ambient air pushes the card against the spool.

If u(r) denotes the radially outward velocity in the layer at
a distance r from the inlet, and P(r) the local pressure,
Bernoulli’s law tells us that ð1=2Þqu2ðrÞ þ PðrÞ ¼ ð1=2Þqu2

ðrmaxÞ þ Patm, with rmax the radius at the rim where the layer
meets the ambient atmosphere. Now, by mass conservation
Qin ¼ 2pruðrÞh, or uðrÞ ¼ Qin=ð2phrÞ, and thus we get

PðrÞ ¼ Patm �
1

2
q u2ðrÞ � u2ðrmaxÞ
� �

¼ Patm �
qQ2

in

8p2h2

1

r2
� 1

r2
max

� �
: (30)

Fig. 8. The classic demonstration of Bernoulli suction, using a spool and a

paper card with a thin needle pierced through it to keep it centered with

respect to the hole of the spool. If one blows air through the spool, the

increased air velocity in the narrow layer between the spool and the card

induces (by Bernoulli’s law) a region of low pressure. As a result, the atmos-

pheric pressure of the ambient air pushes the card against the spool. The

demonstration is usually done upside down, as in the above picture, to show

that (apart from the surprising fact that the card is not simply blown away)

the Bernoulli suction can even defy gravity.
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Clearly, the pressure in the layer is everywhere smaller than
Patm; it only attains this value at r¼ rmax.

2. Inertial effects and the granite sphere fountain

From the above analysis, it is evident that the granite
sphere can only be levitated when viscosity dominates over
inertia. If not, the pressure reduction due to the decelerating
liquid would disable the fountain. This means that one
should not make the inflow rate too large (because the rela-
tive influence of inertia grows with Qin). On the other hand,
as we have noted before, one should not make Qin too small
in order to avoid damaging contact between the kugel and
the basin. Hence, there is an intermediate range of Qin for
which the spherical fountain works optimally.

A consistent description that includes both viscous and
inertial effects is notoriously difficult for the Navier-Stokes
equations. This is why we have until now concentrated on
the limiting cases of purely viscous and purely inertial flow.
If one wants to combine the two, one generally has to reside
to approximation schemes. For a radial flow between two
parallel discs in the horizontal plane (such as the spool of
Fig. 8 and arguably also the spherical fountain, since the cur-
vature of the kugel plays only a minor role), this problem has
recently been addressed by Armengol et al. in this journal.13

They derive the following approximate expression for the
pressure field in the fluid layer:

PðrÞ ¼ Patm þ
6lQin

ph3
ln

rmax

r

� �

� 27qQ2
in

140p2h2

1

r2
� 1

r2
max

� �
: (31)

In this equation, one recognizes the pressure contributions
from viscosity and inertia, respectively; their structure is
very similar to the previously derived exact expressions (26)
and (30) for the idealized limiting cases. As expected, the
pressure due to viscosity generates a positive levitating force
whereas the inertial pressure works in the negative direction.

We note that the magnitudes of both contributions
increase with the inflow rate, but while the viscous pressure
grows linearly with Qin, the inertial contribution scales as
Q2

in. This confirms our earlier observation that the dominance
shifts from the viscous to the inertial regime as Qin is gradu-
ally increased. Using the estimates Qin 	 hRU and r 	 R,
one verifies from Eq. (31) that the cross-over takes place
when qUh2=ðlRÞ is of order unity, consistent with Eq. (7).
Eventually, at large flow rates, the generated levitating force
will no longer be able to lift the kugel. In Fig. 7, we have
sketched how inertial effects change the pressure profile in
the fluid layer below the granite sphere (dashed curve).

IV. DAMPING OF ROTATIONS

Anybody who has ever put his or her hands on the kugel
fountain will have experienced that the sphere is easily set
into a rotating motion and that it takes a surprisingly long
time before the sphere comes to a halt. This is because there
is no direct contact between the sphere and the socket, mak-
ing friction very low. In fact, the only source of friction lies
in the viscous drag the fluid layer exerts on the sphere and
this is exactly the same principle on which roller bearings
work. In this section, we compute this small viscous drag

and show that it causes the angular speed to slow down expo-
nentially as xðtÞ ¼ xð0Þexpð�t=trelÞ, with a relaxation time
trel of the order of 10 min. We first address the cylindrical
fountain, which we treat analytically, and then present exper-
imental results for the case of a sphere.

A. The cylindrical fountain: Analysis

When the cylinder is set into rotation with angular fre-
quency x, the velocity at the cylinder surface becomes
u ¼ Rx. This has an effect on the flow inside the water layer.
The no-slip boundary condition now becomes uðy ¼ hÞ
¼ xR. As illustrated in Fig. 9, the resulting profile can be
seen as a superposition of the Poiseuille parabolic profile
and a simple linear Couette profile. Such a superposition is
allowed since the Stokes equation (8) is linear with respect
to the velocity. Mathematically, the profile can thus be writ-
ten as uðyÞ ¼ u0ðyÞ þ uxðyÞ, where u0(y) is the profile with-
out rotation, given by Eq. (15), and

uxðyÞ ¼ xR
y

h
: (32)

Interestingly, the rotational profile has zero second derivative
ðd2ux=dy2 ¼ 0Þ and therefore does not contribute to the
pressure balance @P=@x ¼ ld2u=dy2 ¼ ld2u0=dy2, cf.
Eq. (9). So the pressure distribution P(h) is unaffected by
rotation.

The main effect of the rotation is to break the left-right
symmetry of the system and hence it produces a nonzero
frictional torque (i.e., force moment) on the cylinder. The
cylinder applies a force on the water and, by Newton’s third
law, the water applies an equally strong reaction force on the
cylinder. This is accomplished via the shear stress s in the
water layer, which can be computed as

s ¼ s0 þ sx ¼ l
du0

dy
þ dux

dy

� �
: (33)

Shear stress is also present when there is no rotation but by
symmetry the Poiseuille contribution s0 does not yield a net
torque on the cylinder; the entire net torque comes from the
Couette contribution sx ¼ lRx=h. We can compute the tor-
que on the cylinder by integrating the force moment dT ¼
�RsxdA over the submerged surface

T ¼ �
ð ð
A

Rsx dA

¼ �
ðhmax

�hmax

R
lRx

h
LR dh

¼ � 2hmaxlLR3

h
x: (34)

The frictional torque is thus proportional to x and opposite
to the direction of rotation. It will slow down the rotation
according to the equation of motion

T ¼ Icyl

dx
dt
; (35)

where Icyl ¼ ð1=2ÞMR2 ¼ ð1=2ÞqgrpLR4 is the moment of
inertia of the granite wheel. Given the expression for T
above, this equation of motion takes the form
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dx
dt
¼ � 4hmaxl

pqgrRh
x; (36)

which is easily solved to give an exponential decay

xðtÞ ¼ x0e�t=trel ; (37)

with the relaxation time trel given by

trel ¼
p

4hmax

qgrRh

l
: (38)

This relaxation time consists of a characteristic time scale
for the damping, qgrRh=l, multiplied by a dimensionless
geometric prefactor. Using the same fountain parameters as
in Sec. II (qgr ¼ 2750 kg=m3; R ¼ 0:5 m; h ¼ 0:3 mm;
hmax ¼ 0:6 rad, and l ¼ 0:001 Pa � s) the characteristic time
scale is qgrRh=l ¼ 412 s. Putting in the geometric prefactor,
the relaxation time is found to be 540 s, i.e., no less than
9 min! Indeed, the damping of the rotations turns out to be a
slow process, with the weak viscous drag only very gradually
wearing down the angular momentum of the massive granite
wheel.

B. The spherical fountain: Scaling argument and
experiment

The calculation of the torque on the sphere is much more
involved than for the cylinder. To begin with, the axis of
rotation is no longer fixed. There are two basic modes of
rotation: around the horizontal axis, as for the cylinder, and
also around the vertical axis. The effectiveness of the viscous
drag is different for the two modes, due to the fact that the
fluid velocity (and thus the strength of the drag) as well as
the effective “moment arm” are not uniform over the surface.
Rather than pursuing a detailed analysis of the rotating
sphere it is more insightful to give a scaling argument that
focuses on the essential physics.

In analogy to the torque on the cylindrical wheel, given by
Eq. (34), we find for the sphere

T 	 lR4x
h

: (39)

Here, the width of the wheel L appearing in Eq. (34) has
been replaced by R. Different modes of rotation will have
different (geometric) prefactors, but these are not captured
by a scaling analysis. The above torque T must be equated to
Idx=dt, where the moment of inertia I 	 MR2 	 qgrR

5,
giving

lR4x
h
	 qgrR

5 dx
dt
: (40)

Hence, we recover a similar exponential decay of the angular
velocity x as in Eq. (36), with a relaxation time that once
more reads

trel 	
qgrRh

l
: (41)

To verify this scaling argument, we have performed a series
of experiments on the granite sphere fountain of Fig. 5.
Bringing the sphere in a rotation around the horizontal axis,
we monitored the decay of the angular velocity during approxi-
mately 40 revolutions. By tracking a distinct spot on the sur-
face of the sphere, we were able to determine the time for each
complete revolution and thus the angular velocity xðtÞ. The
results are presented in Fig. 10, showing ln x versus time. The
data are seen to lie on a straight line, in excellent agreement
with the predicted exponential decay of xðtÞ. The slope of the

Fig. 9. (a) Rotation of the levitated object breaks the symmetry of the flow

inside the fluid layer. (b) The velocity field is now a superposition of the par-

abolic Poiseuille profile (caused by the pressure gradient from the inlet noz-

zle to the surrounding air) and the linear Couette profile caused by the

velocity difference between the socket, which is at rest, and the surface of

the kugel moving at speed xR.
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curve can be identified with �1=trel and yields trel � 220 s.
(The same value was found, within about 15 s, for different
runs of the experiment). This value of trel is consistent with the
order-of-magnitude estimate given in Eq. (41), which, for the
sphere in question (with qgr ¼ 2750 kg=m3, R¼ 0.50 m,
h¼ 0.3 mm and l ¼ 0:001 Pa � s), predicts a relaxation time of
the order of 400 s.

In the above discussion, we have left out several effects
that might influence the relaxation time. For one, we expect
the inlet nozzle is not positioned precisely in the center of the
socket but several centimeters off center. This induces a spon-
taneous rotation even in the absence of any human interven-
tion, adding a realistic effect to kugels decorated with a map
of the Earth and keeping the whole surface properly wetted,
and, in all likelihood, affecting the relaxation time. Another
feature that has not been taken into account is that the rotation
generates an asymmetry in the outflow at the edge of the
socket, as sketched in Fig. 9(a): the water comes out with
much more vigor on one side (in the direction of the rotation)
than on the other. Any extra source of dissipation this asym-
metry introduces is beyond the scope of the present analysis.

V. DISCUSSION

In conclusion, we are now in a position to give a definitive
answer to our original question, “What makes the fountain
work?” It is not Archimedes’ law of buoyancy, the favorite
of the Science Museum visitors. Instead, it is another basic
principle, less familiar to the general public but of key im-
portance in almost every type of machinery: lubrication.

As a matter of fact, the kugel fountain can be thought of
as a giant ball bearing. The pressure inside the thin fluid
layer (thickness h) scales as 1/h3 and is perfectly able to
carry the heavy granite sphere. For a given flow rate Qin,
usually around 1 L/s, the water layer automatically adjusts
itself to the thickness required to lift the weight. The water
acts as a lubricant and is responsible for the surprisingly low
friction experienced by the sphere.

Another phenomenon that relies on the same lubrication
principle is the Leidenfrost drop, shown in Fig. 11. This is a
water drop hovering above a hot plate (typically around
250 �C) without touching it, carried by its own vapor

layer.14,15 The fact that air is a poor conductor of heat
ensures that the drop, instead of instantly boiling away, only
slowly evaporates and can survive for more than a minute.
The same effect is observed when pouring liquid nitrogen on
a table. Nitrogen drops skate freely over the surface with
negligible friction, thanks to the lubricating layer of nitrogen
vapor. In addition, the popular game of air hockey works on
the same principle, only in this case the puck does not evapo-
rate of course, but the lubrication layer is provided by air
flowing out of tiny pores in the table.12

In all of these examples, the thickness of the layer adjusts
itself such that the integrated pressure exactly balances the
weight of the levitated object. Owing to the smallness of the
gap, the viscous forces inside the flow dominate over the in-
ertial ones. This is, as we have shown, a necessary condition
for achieving an upward levitation force. In the above exam-
ples, one may wonder whether the compressibility of the air
does not fundamentally change the physics of levitation. The
effects of compressibility, however, only begin to play a role
when the Mach number becomes of order unity. This number
is defined as Ma¼ u/c, where u is the velocity of the flow
and c the speed of sound in air. Since the latter is roughly
330 m/s, the Mach number in all examples mentioned
remains much smaller than 1, and hence the flow may safely
be treated as incompressible.

In fact, the granite sphere fountain itself can operate on
air. As compared to water, both viscosity and inertial effects
become smaller in air but not to the same degree. While the
viscosity l is reduced by a factor of 50, the density q is
reduced by no less than a factor of 1000. This means that the
troublesome inertial effects are relatively smaller for the
air-borne kugel than for the water version, at least as long as
we may keep the air inflow rate Qin at a reasonably low level.
(Recall that the viscous effects grow linearly with Qin,
whereas the inertial effects grow quadratically.) The condi-
tion that Qin be kept small poses just one practical challenge:
it implies, by Eq. (28), that the gap width h will be very
small (typically of the order of 0.30 mm/501=3¼ 0.08 mm),
which calls for a sphere and basin that are both perfectly
spherical and exceptionally well polished. The successful
lubrication of the kugel with air thus relies, not on a strong
airflow, but on the craftsmanship of the stonemason. Not
without reason an airborne kugel (a perfectly polished black
granite sphere with a diameter of 0.40 m) was awarded a spe-
cial prize at the International Granite and Stone Fair “Stona
2004” in Bangalore, India.16

Fig. 10. Measured decrease of the angular velocity x(t) for the spherical

fountain of Fig. 5 rotating around a horizontal axis. At the start of the experi-

ment, the kugel was given a spinning motion with x(0)¼ 1.57 rad/s, i.e., one

complete revolution in precisely 4 s. The plot shows that ln½xðtÞ=xð0Þ� ¼
�Ct with C¼ 4.55� 10�3 s�1, or equivalently, that the angular velocity

decays exponentially as xðtÞ ¼ xð0Þe�Ct; the corresponding relaxation time

is trel¼ 1/C¼ 220 s.

Fig. 11. The Leidenfrost phenomenon: a water drop hovering above a hot plate,

levitated by its own thin vapor layer. The horizontal diameter of the drop is

about 1 cm. In the upper part of the photo we see the pipette from which the

drop was released. Image courtesy of Rapha€ele Th�evenin and Dan Soto.
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