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The equilibrium shape of liquid drops on elastic substrates is determined by
minimizing elastic and capillary free energies, focusing on thick incompressible
substrates. The problem is governed by three length scales: the size of the drop R,
the molecular size a and the ratio of surface tension to elastic modulus γ /E. We
show that the contact angles undergo two transitions upon changing the substrate
from rigid to soft. The microscopic wetting angles deviate from Young’s law when
γ /(Ea)� 1, while the apparent macroscopic angle only changes in the very soft limit
γ /(ER)� 1. The elastic deformations are worked out for the simplifying case where
the solid surface energy is assumed to be constant. The total free energy turns out to
be lower on softer substrates, consistent with recent experiments.
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1. Introduction

A liquid drop can deform a soft elastic substrate due to capillary forces (Lester
1961; Rusanov 1975, 1978; Shanahan 1987; de Gennes, Brochard-Wyart & Quere
2004; Pericet-Camara et al. 2008a). Elastic deformations take place over a length
of the order of the elastocapillary length γ /E, where γ is the liquid surface tension
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and E is the solid Young’s modulus. Recent experiments have considered liquids
on very soft elastomers with γ /E of the order of 1–100 µm and have reported
many interesting features, such as the geometry near the contact line (Pericet-Camara,
Bonaccurso & Graf 2008b; Jerison et al. 2011; Style et al. 2013a), compression of
the solid (Marchand et al. 2012a), evaporation and spreading dynamics (Carre, Gastel
& Shanahan 1996; Li et al. 2007; Pericet-Camara et al. 2008b; Sokuler et al. 2010)
and migration of droplets on substrates with a stiffness gradient (Style et al. 2013b).

While the contact angle of a drop on a rigid homogeneous substrate is governed
by Young’s law, the contact-angle selection for a drop on a soft deformable substrate
is still debated. One of the earliest theoretical approaches consisted of treating the
elastic energy stored below the contact line as an effective line tension (Shanahan
1987; White 2003; Style & Dufresne 2012). This predicts an increase of the apparent
macroscopic contact angle on soft surfaces, which has been contradicted by recent
experiments (Style et al. 2013a). The line-tension approach did not include the surface
energy of the solid, which turns out to be a crucial factor for the shaping of soft
solids. Such surface effects were introduced by Jerison et al. (2011) and Limat (2012)
in a purely macroscopic theory based on the balance of forces exerted ‘on’ the contact
line. In this framework, the microscopic contact angles always obey Neumann’s law,
regardless of E, as if the substrate at the contact line was a liquid. The same work
reveals that there exists a transition for the apparent macroscopic contact angle,
controlled by the dimensionless parameter γ /(ER), where R is the drop size. By
contrast, a microscopic description based on van der Waals interactions (Marchand
et al. 2012b) suggests that Young’s law for the microscopic contact angle is recovered
for γ /(Ea)� 1, where a is the characteristic length of molecular interactions. The
formation of a solid cusp below the contact line arises for γ /(Ea) � 1, and the
corresponding contact angles generically differ from Neumann’s law, even for very
soft substrates.

The controversy on the selection of contact angles on soft substrates underlines the
difficulty of defining a force balance near the contact line (Marchand et al. 2011). This
has two distinct reasons: on the one hand, the difference between macroscopic and
microscopic descriptions of capillarity, and on the other hand, the difference between
surface stress Υ (force per unit length), which is manifested in the superficial layers
of a solid, and surface free energy γ (energy per unit area). The latter is due to the
coupling of elastic strain and surface free energy, an effect that is absent for liquid–
liquid interfaces. Surface stress and surface energy are related by a thermodynamic law
known as the Shuttleworth equation, Υ = γ + (dγ /dε‖), where ε‖ is the elastic strain
parallel to the interface (Shuttleworth 1950). The strain dependence dγ /dε‖ is directly
responsible for tangential elastic stress transmitted below the contact line (Das et al.
2011; Marchand et al. 2012a; Weijs, Andreotti & Snoeijer 2013), usually ignored in
elasto-capillary modelling.

In this paper we revisit the contact-angle selection from a thermodynamic
perspective, using variational calculus, i.e. without relying on a mechanical view
in terms of a force balance. The challenge is to derive the contact angles directly
by minimizing the capillary and elastic free energies. An important question then is
whether microscopic and macroscopic descriptions of capillarity will give consistent
results. To make progress, we restrict ourselves to the case where the Shuttleworth
effect is absent, i.e. dγ /dε‖= 0, for which it was previously shown that the tangential
elastic stress vanishes (Weijs et al. 2013). Combined with an incompressible thick
substrate (Poisson ratio ν = 1/2), this implies no in-plane displacements, making the
problem amenable for detailed variational analysis.
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FIGURE 1. (a) The liquid and solid surface shapes are described by H(x) and h(x)
respectively. The contact line geometry is characterized by the angles θ, θSV and θSL (see
inset). (b,c) Normal component of capillary stress exerted on the solid. (b) Macroscopic
view given by (2.14). A force per unit length is pulling on the solid at the contact-line
positions while a Laplace pressure is applied below the drop. (c) Microscopic view of the
normal stress σn below a Lennard-Jones nanodroplet in a Molecular Dynamics simulation
(adapted from Weijs et al. (2013)). The force near the contact lines is spread over a finite
width a of a few molecular sizes (units in terms of molecular size d). At the centre of
the drop one recognizes the slightly negative capillary stress.

The key questions resolved here are how the contact angles and the elasto-capillary
free energies evolve upon changing the substrate from perfectly rigid (no deformation)
to extremely soft (no elasticity). We predict the angles θ, θSV and θSL, as defined
in figure 1(a), as a function of the ‘softness parameters’ γ /(Ea) and γ /(ER). We
show that both parameters govern a transition from Young’s law to Neumann’s law,
but apply to different features of the angles in figure 1. This reveals the connection
between previously proposed results in a single framework. Finally, the full shapes of
the drops and the surface deflections are worked out for a case where the solid surface
energies γSV =γSL. We find that the free energy is lower on softer substrates, and relate
this to experiments on drop motion on substrates exhibiting a stiffness gradient (Style
et al. 2013b).

2. Equilibrium conditions from variational analysis

2.1. Macroscopic theory of capillarity
2.1.1. A single contact line

Considering a semi-infinite incompressible solid (ν = 1/2) in a two-dimensional
system, the elastic free energy per unit length can be expressed as a surface integral,

Fel = E
2

∫ ∞
−∞

dq
2π

Q̂(q)
[
ĥ(q)ĥ(−q)+ û(q)û(−q)

]
, (2.1)

where ĥ(q) and û(q) are Fourier transforms of the normal and tangential displacements,
h(x) and u(x), at the interface (Long, Ajdari & Leibler 1996). The Green’s function
reads Q̂(q)= 2|q|/3 in the incompressible limit.
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Before analysing a two-dimensional drop (figure 1), we consider the simpler case of
a single contact line located at x=R. The liquid–vapour interface is described by H(x),
while h(x) is the profile of the solid surface. When useful, we will use the indexed
notation hSL or hSV to distinguish whether the solid is wet or dry, with surface free
energies γSL and γSV . The total surface free energy in this case is

Fc= γ
∫ R

−∞
dx
(
1+H′2

)1/2+ γSL

∫ R

−∞
dx
(
1+ h′2SL

)1/2+ γSV

∫ ∞
R

dx
(
1+ h′2SV

)1/2
, (2.2)

where ∞ refers to a very large (finite) distance far away from the contact line. We
anticipate a slope discontinuity h′SV 6= h′SL at x= R. The condition that H, hSL and hSV
take the same value at the contact line can be enforced by introducing two Lagrange
multipliers, λSL and λSV , into the energy functional,

Ftot =Fel +Fc + λSL [H(R)− hSL(R)]+ λSV
[
H(R)− hSV(R)

]
, (2.3)

where the Lagrange multipliers can be interpreted as reaction forces (per unit length).
Minimization must be performed with respect to H(x), h(x) and the contact line
position R. As explained in the introduction, the tangential displacements u(x) vanish
when the surface free energies are assumed to be constant, i.e. independent of the
elastic strain.

First, we consider the variation δH(x), which gives

δFtot = δH(R)
[
λSL + λSV + γH′(

1+H′2
)1/2

]
+
∫ R

−∞
dx δH(x)

[−γ κ] . (2.4)

The boundary term δH(R) originates from the constraints on the contact-line position
and from the integration by parts of the capillary term Fc with respect to δH′ and
gives λSL+λSV =γ sin θ . The second term on the right-hand side involves the curvature
κ =H′′/(1+H′2)3/2, which is zero for a single contact line.

Second, we consider the variation δh(x), which gives

δFtot = δhSL(R)

[
−λSL + γSLh′SL(

1+ h′2SL

)1/2

]
+ δhSV(R)

[
−λSV − γSVh′SV(

1+ h′2SV

)1/2

]

+
∫ R

−∞
dx δhSL(x)

[−γSLκSL
]+ ∫ ∞

R
dx δhSV(x)

[−γSVκSV
]

+
∫ ∞
−∞

dx δh(x)
[

E
∫ ∞
−∞

dq
2π

Q̂n(q)ĥ(q)eiqx

]
, (2.5)

where the first four terms in brackets are analogous to those in (2.4), but they now
express vertical forces acting on a corner of solid. The last term represents the inverse
Fourier transform of the variation of Fel, and involves the elastic normal stress

σn(x)≡ E
∫ ∞
−∞

dq
2π

Q̂n(q)ĥ(q)eiqx. (2.6)

When σn contains a Dirac δ-function at x = R, this elastic stress could contribute
to the boundary condition at x = R, but within the macroscopic framework this
can be excluded on mathematical grounds. As Q̂ ∼ |q|, a δ-function contribution
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would require a (weakly) singular displacement, h∼ log |x−R|, and hence a (weakly)
diverging elastic free energy. The equilibrium condition at the contact line is therefore
determined by the surface energies only (Jerison et al. 2011; Limat 2012), implying
a weaker singularity in the form of a discontinuity in h′. One can show that this
implies a weakly diverging stress, σn ∼ log |x − R|, but an integrable free energy.
Given this singularity, the physics may be significantly different when microscopic
effects are included.

Following for now the macroscopic derivation, the variations at the contact line,
δh(R), determine the Lagrange multipliers, λSL = γSL sin θSL and λSV = γSV sin θSV .
Combined with the boundary condition resulting from (2.4), these expressions give

γ sin θ = γSL sin θSL + γSV sin θSV, (2.7)

which can be recognized as the vertical component of the Neumann condition. This
condition is analogous to that describing a liquid lens floating on another liquid, since
the elastic energy does not give a contribution at the contact line. The mechanical
equilibrium away from the contact line can be obtained by combining the integrals in
(2.5), giving

σn(x)= γSLκSLΘ(R− x)+ γSVκSVΘ(x− R)≡ γs(x)
h′′(

1+ h′2
)3/2 , (2.8)

where Θ(x) is the Heaviside step function and γs(x) is the solid surface tension on
the respective domain. This expression is not defined at x = R, where instead it is
replaced by a boundary condition (2.7). For x 6=R, the stress σn balances the Laplace
pressure due to the curvature κSL (κSV) of the wet (dry) solid interface.

We now consider variations δR of the contact-line position. This variation has
contributions from the integration limits in Fc, from the contact-line constraints
(terms involving λSL + λSV), but once again not from the elastic energy contribution
Fel. The total variation (to be evaluated at x= R) gives

δFtot = δR{γ (1+H′2)1/2 + γSL(1+ h′2SL)
1/2 − γSV(1+ h′2SV)

1/2

+ (λSV + λSL)H′ − λSLh′SL − λSVh′SV}

= δR

{
γ(

1+H′2
)1/2 +

γSL(
1+ h′2SL

)1/2 −
γSV(

1+ h′2SV

)1/2

}
, (2.9)

where we inserted the values for λSL and λSV obtained previously. In terms of the
angles indicated in figure 1, this expression gives the horizontal Neumann condition,

γ cos θ + γSL cos θSL = γSV cos θSV . (2.10)

To summarize, we recover the usual Laplace pressure condition for the liquid interface
H(x). The solid interface shape h(x) follows from the balance (2.8) of elastic stress
σn and solid Laplace pressure. The problem is closed by the vertical and horizontal
Neumann conditions (2.7), (2.10), serving as boundary conditions for the angles at the
contact line.
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2.1.2. A two-dimensional drop
We now consider a two-dimensional drop with contact lines at x= R and x=−R.

The expression for the free energy is similar to that for a single contact line, except
that we have to consider two dry domains, x> R and x<−R, and one wet domain,
−R< x<R. In addition, minimization is carried out at constant drop volume V . This
constraint is enforced by adding the Lagrange multiplier term

FV = P
[

V −
∫ R

−R
dx (H(x)− h(x))

]
(2.11)

to the total energy. Since H(x) = h(x) at x = ±R, the volume constraint does not
contribute to the boundary conditions, and we recover (2.7) and (2.10). It does,
however, introduce a contribution to the equilibrium equations for H(x) and h(x),
namely

− γ κ = P, σn(x)=−PΘ(R− |x|)+ γs(x)
h′′(

1+ h′2
)3/2 . (2.12a,b)

The first relation requires the liquid interface to have a constant curvature,
corresponding to the Laplace pressure P = γ sin θ/R. The second equation shows
that P also acts as an external stress on the boundary of the elastic medium below
the drop. It is instructive to incorporate the vertical boundary condition (2.7) in the
elastic stress, as

σn = γ sin θ fn(x)+
(

γs(x)h′(
1+ h′2

)1/2

)′
, (2.13)

where fn(x) is the distribution of normal stress due to the capillary forces,

fn(x)= δ(x− R)+ δ(x+ R)− 1
R
Θ(R− |x|). (2.14)

This corresponds to the classical mechanical view of two localized forces pulling
upwards at the contact line and a Laplace pressure pushing downward below the
drop (figure 1b).

2.2. Microscopic theory of capillarity
In the limit of perfectly rigid solids one would expect to recover Young’s law.
However, the macroscopic theory derived above shows that the wetting angles
are given by the Neumann conditions regardless of the stiffness, which is clearly
unphysical. Also, the elastic stress was found to be singular at the contact line. These
artefacts are due to the assumption of localized line forces represented by δ-functions
in (2.14). Because the interface is diffuse at the molecular level and due to the finite
range of van der Waals interactions, capillary forces are in reality spread out over a
finite width a, typically a few nanometres. This is illustrated in figure 1(c), showing
the normal stress exerted by a nanodroplet on an elastic substrate as measured in a
Molecular Dynamics simulation (Weijs et al. 2013).

The finite width of the interface can be taken into account in a truly microscopic
description, using a disjoining pressure (White 2003) or density functional theory (Das
et al. 2011; Marchand et al. 2012b). Here, we propose a simplified model which
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captures the essence of these microscopic models, but still allows for a numerical
solution with realistic separation of the microscopic scale (a∼ nm) and macroscopic
scale (R∼mm). The approach consists of retaining the boundary condition (2.10), but
representing the line forces in (2.14) by a function g of finite width

fn(x)= 1
a

g
(

x− R
a

)
+ 1

a
g
(

x+ R
a

)
− 1

R
Θ(R− |x|). (2.15)

In our numerical solutions, g is chosen as a normalized Gaussian, but other choices
give similar results. With this approach, the contact angles display two distinct
transitions which are governed by the parameters γ /(Ea) and γ /(ER).

2.3. Dimensionless equations and solution strategy
It is challenging to solve for h(x) from (2.13) due to the integral nature of σn, the
discontinuity in γs(x) and the presence of nonlinear terms. We simplify the problem
by considering the case γSV = γSL = γs and assume h′2� 1 to linearize the last term
in (2.13); the latter condition is enforced by choosing moderate values of γ /γs. We
then solve the resulting equation by Fourier transform. In the following we rescale
all lengths by R and the pressure by γ /R. The macroscopic model depends on two
dimensionless parameters, γ /(ER) and γ /γs. The microscopic model has an additional
parameter, ã= a/R, or equivalently γ /(Ea). Solving for the profile in Fourier space,
ĥ(q), (2.13) gives

ĥ(q)= γ

ER
sin θ

 f̂n(q, ã) ˆK (q)

1+ γ

ER
γs

γ
q2 ˆK (q)

 , (2.16)

where

f̂ (q, ã)= 2
(

e−1/2(ãq)2 cos q− sin q
q

)
and K̂ (q)≡ Q̂−1(q)= 3

2|q| . (2.17a,b)

The macroscopic theory corresponds to ã= 0. Numerical solutions for h(x) that satisfy
(2.10) are obtained iteratively, by adjusting θ . Typical results are shown in figure 2.
The assumption γSV =γSL makes the contact line left–right symmetric in the rigid limit.
For γSV 6= γSL this symmetry is broken, but the results will be qualitatively the same.

3. Numerical results

3.1. Microscopic and macroscopic contact angles: two transitions
We now describe how the wetting angles depend on the stiffness of the substrate. It
is important to distinguish between the microscopic wetting angles, θS, θSL and θSV
(figure 3), and the macroscopic angle, θ (figure 1a). The former angles reveal the
microscopic geometry of the contact-line region, while the latter is the apparent angle
of the spherical cap with respect to the undeformed substrate. The results presented
in figure 3 are obtained for γ /γs = 0.1, ã= 10−5 and Young’s angle θY = 90◦ (since
γSV = γSL).

Our key finding is that the wetting angles undergo two transitions on changing
the softness parameter: (i) the microscopic angles evolve continuously from Young’s
law (rigid limit) to Neumann’s law (soft limit), controlled by the parameter γ /(Ea);
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(a)

(b)

FIGURE 2. Simulated shapes of the drop (dark blue) and of the solid substrate (light
orange) for different values of γ /(ER), γ /γs = 0.3 and ã= 0. (a) As the solid becomes
softer (increasing γ /(ER)) the drop sinks increasingly deeper into the substrate. (b) Zoom
near the contact-line region, with the vertical scale stretched 40 times. The elevation at
the contact line initially increases for increasing softness, but on further increasing the
softness the elevation subsequently decreases.

(ii) the macroscopic apparent contact angle θ evolves continuously from Young’s law
(rigid limit) to Neumann’s law (soft limit), controlled by the parameter γ /(ER). As
discussed in more detail below, these soft and rigid limits are known analytically,
while for the transition regions described in figure 3 we rely on numerical solution
of (2.16) and (2.10).

For γ /(Ea) � 1, in the perfectly rigid limit, the microscopic solid angle is
unchanged, i.e. θS = 180◦, while the liquid angle θ = θY is equal to Young’s angle.
At the first transition, γ /(Ea)∼ 1, the solid angle changes and the geometry evolves
towards a Neumann cusp. This transition is quantified in the plot in figure 3, where
the solid line on the left measures the solid deflection π− θS= θSV + θSL for different
values of the softness. In this regime the macroscopic angle θ = θY = 90◦ does not
change, and hence the geometry is fully characterized by the single angle θS. The
Neumann cusp, unlike what is predicted by macroscopic theory, is not present for all
values of the stiffness and is only recovered for γ /(Ea)� 1.

The second transition does involve the apparent contact angle θ . As long as
γ /(ER)� 1, this angle is unaffected by elastic deformations, as these deformations
are localized only in a narrow zone near the contact line. The macroscopic angle
changes only when the scale of the deformation γ /E becomes comparable to the
drop size R, i.e. when γ /(ER)∼ 1. In the very soft limit the angle saturates, reaching
the value expected for a liquid lens. As is visible in the sketches in figure 3, the
solid–vapour angle θSV = 0 in this limit, consistent with previous predictions (Limat
2012; Style & Dufresne 2012). Microscopically, the geometry of the contact angles is
completely specified by the amount of rotation of the Neumann angles, as is indicated
by the angle ε (figure 3a). The transition is quantified by the solid line in the plot
of figure 3(b), where we observe how the rotation angle ε evolves from the limits
corresponding to Young and to that of Neumann. Indeed, the crossover is observed
around γ /(ER)∼ 1.

For completeness, we also carried out the macroscopic analysis for three-
dimensional axisymmetric drops. The analysis is analogous to that in the two-
dimensional case, except that we use the Hankel transform (Style & Dufresne
2012). As we here self-consistently determine the value of the angle θ , we are
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FIGURE 3. Double transition of contact-line angles, for 2D drops (solid curve) and 3D
drops (dashed curve). The stiffness is varied by the softness parameter γ /(ER), at fixed
γ /γs = 0.1 and ã = 10−5. The left-hand curve gives the deviation of the solid angle,
π − θS, showing the onset of the cusp. The right-hand curves give the cusp rotation
angle ε, defined from the microscopic wetting angles (panel (a), scale a). Panel (c) shows
the corresponding macroscopic drop shapes. This shows that (i) the microsocopic geometry
of the contact line develops a Neumann-like cusp when γ /E is much larger than the
microscopic scale a and (ii) the macroscopic angle of the drop is altered only when γ /E
reaches the size of the drop R.

for the first time able to assess the validity of the ‘elastic line tension’ argument
(White 2003; Style & Dufresne 2012). The result for the deflection angle ε is shown
as the dash-dotted curve in figure 3, from which it is apparent that this angle is almost
indistinguishable from that obtained in the two-dimensional case. The trend for θ ,
decreasing when reducing the stiffness, is opposite to that predicted by considering a
positive line tension, but is in agreement with recent experiments (figure 3a of Style
et al. (2013a)).

3.2. Elevation of the contact line and total energy versus softness
While varying γ /(ER) we observe that the elevation of the contact line for the
macroscopic model (ã= 0) evolves non-monotonically (cf. figure 2). This is quantified
in figure 4, showing the contact-line elevation h(x/R = 1) as a function of γ /(ER).
The contact-line elevation h(1) has a maximum for γ /(ER) ∼ 0.1. In the stiff limit
(E → ∞) the solid opposes any stress without deforming while in the soft limit
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FIGURE 4. (a) Elevation at the contact line as a function of γ /(ER) for γ /γs = 0.1.
The solid curve is the result from 2-D theory and the dash-dotted curve is from 3-D
theory. The deformations at the contact line are non-monotonic, as also seen in figure 2.
(b) Elastic energy Fel, capillary solid energy FS and capillary liquid energy Fγ as
a function of γ /(ER) for γ /γS = 0.5. The total free energy decreases as the softness
increases. The reference energy (E= 0) is a drop on a rigid solid.

(E→ 0) the geometry of the drop–substrate interface is identical to that of a floating
liquid lens. From the numerical results we find that the contact-line height fits closely
to

h(x/R= 1)∼
( γ

ER

)
ln (γ /ER) and h(x/R= 1)∼

( γ
ER

)−1
ln (ER/γ ) , (3.1a,b)

for small and large γ /(ER), respectively. The rigid limit was previously found
by Limat (2012), who showed that for weak deformations the solid surface tension
provides a natural regularization of the logarithmic divergence at the contact line. The
dash-dotted curve (three-dimensional drop), suggests an h ∼ (γ /(ER))−1 dependence
for γ /(ER)� 1.

Another characteristic of the deformation is the central deflection, h(x/R = 0). As
seen in figure 2, this deflection increases monotonically with the softness, starting
from zero (drop on rigid solid) and saturating at the value for a floating lens. The
crossover between these limits is again governed by the macroscopic length, and lies
around γ /(ER)∼ 0.1.

Finally, we calculate the elastic energy (Fel), the solid capillary energy (FS) and
the liquid capillary energy (Fγ ) for a droplet on a substrate of varying stiffness (see
figure 4b). In these calculations, the droplet volume is kept constant. This allows for
a direct comparison with recent experiments by Style et al. (2013b), where droplets
were found to move to softer regions on a substrate with a stiffness gradient. Our
calculations, which predict a lower total energy Ftot≡Fel+FS+Fγ for droplets on
softer substrates, provide an explanation for this observation. The energies Fel and
FS actually increase for softer surfaces, but by a smaller amount than the gain in the
liquid–vapour energy (Fγ ).

4. Discussion

In this work, we have calculated the shapes of drops on soft substrates by
minimization of the elastic and capillary energies. We found that in addition to
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the drop size R and the elastocapillary length γ /E, a third length scale is required
in order to fully describe the elastocapillary interactions, the molecular scale a. This
extra length scale is crucial for the description of the Young to non-Young transition
that occurs for sessile droplets on progressively softer substrates. In addition, the
regularization is necessary to avoid a singularity of the elastic stress at the contact
line. Such a singular tendency implies that, generically, the substrates will be deformed
beyond the linear elastic regime – one expects strain hardening and even plasticity
(Limat 2012) – which to date has never been taken into account. In addition, the
elastic free energy posed in (2.1) is strictly speaking only valid for small slopes
of the solid substrate; this is why our numerical results in figure 2 were chosen at
moderate γ /γs. For larger slopes one, in principle, has to deal with this ‘geometric’
nonlinearity, even if one assumes that the rheology of the elastic solid remains linear.
It is not clear a priori whether this would lead to an elastic contribution to the
Neumann boundary condition for soft solids.

In order to derive the present results, we have left out the second difficulty of
the problem, namely the strain dependence of the surface free energies (Shuttleworth
effect). Such a strain dependence has been shown to lead to significant tangential
elastic stress (Weijs et al. 2013). Generically, this induces tangential displacements
that are comparable in magnitude to the normal deflection of the substrate, hence
changing the energetics of the problem. We emphasize again that this effect is of
primary importance for quantitative comparison with experiments, the more so since
tangential stresses are expected to give an elastic contribution to the contact-angle
boundary condition (Marchand et al. 2012b). Qualitatively, however, the present
model does capture two key experimental observations: a softer substrate leads to a
decrease of the macroscopic contact angle and to a decrease in the total free energy.
The derivation of the contact-angle selection and substrate deformation including all
difficulties mentioned above (nonlinearities and Shuttleworth effect) is the next major
challenge for the field.
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