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Velocity oscillations and stop-go cycles: The trajectory of an object settling in a
cornstarch suspension
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We present results for objects settling in a cornstarch suspension. Two surprising phenomena can be found in
concentrated suspensions. First, the settling object does not attain a terminal velocity but exhibits oscillations
around a terminal velocity when traveling through the bulk of the liquid. Second, close to the bottom, the object
comes to a full stop but then reaccelerates before coming to another stop. This cycle can be repeated up to 6 or 7
times before the object reaches the bottom to come to a final stop. For the bulk, we show that shear-thickening
models are insufficient to account for the observed oscillations and that the history of the suspension needs
to be taken into account. A hysteretic model, that goes beyond the traditional viscoelastic ones, describes the
experiments quite well but still misses some details. The behavior at the bottom can be modeled with a minimal
jamming model.
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I. INTRODUCTION

A suspension is a heterogeneous fluid that contains dis-
persed solid particles which are large enough to sediment over
time when undisturbed. They are literally found all around
us and the flow of dense suspensions is important in nature
(mud slides), industry (paint), and even health care (blood
flow) [1]. In spite of their significance, the flow of these dense
suspensions remains far from understood. In previous studies,
people have used methods inspired by classical rheology
and typically characterized these materials in terms of a
constitutive relation of stress versus shear rate [2–7]. A
general result is that, when increasing the shear rate, dense
suspensions first tend to become less viscous (shear thinning)
and subsequently shear thicken.

At very high strain rates the particles inside a dense
suspension may jam, i.e., particles may form force networks
that temporarily inhibit (part of) the suspension to flow. The
concept of jamming—which will play a major role in the
interpretation of the experiments discussed in this paper—is
well known from the statics and dynamics of dry granular
materials [8,9], where it was shown to be connected to the
concepts of random loose and close packing [10]. When
particles go away from a spherical shape, their random close
packing fractions go down from approximately 0.64 for hard
spheres [11] to around 0.45 for various starches [12] and even
lower for more irregularly shaped particles [13].

Probably the most conspicuous example of a dense suspen-
sion is formed by a high concentration of cornstarch in water,
also known as oobleck or ooze. In earlier work, rheology
experiments with cornstarch suspensions have revealed the
existence of a mesoscopic length scale [6,14], a shear-thinning
regime that terminates in a sudden shear thickening [15],
a dynamic jamming point [4], and fracturing [16]. In an
experiment that goes beyond the classical rheological ones,
Merkt et al. [17] observed that stable oscillating holes can be
formed in a thin layer of cornstarch suspension when shaken
vertically at certain frequencies and amplitudes [17]. These
holes were subsequently described using a phenomenological
model based on a hysteretic constitutive equation [18]. In other

dense suspensions, Ebata et al. found growing and splitting
holes [19,20], where the first are contributed to a convection-
like flow and the latter are still not understood. Another set of
remarkable observations were made for settling objects. These
displayed nonmonotonic settling [21] and jamming between
the object and container bottom was found [21,22]. At present
we are, thus, still far from a detailed understanding of dense
suspensions and why different suspensions behave differently.

The current paper will provide a full exposition and
expansion of the work presented in Ref. [21]: We subject
a cornstarch suspension to a basic experiment, in which we
observe and describe the settling of objects in a deep bath
of suspension. The settling dynamics exhibits two remarkable
features that are not observed in other types of liquids but
also not in other dense suspensions. In the bulk, we find
that the object velocity is oscillating in addition to going
towards a terminal value. Near the bottom we observe a
second phenomenon: The object comes to a full stop before
the bottom but then accelerates again, and this stop-go cycle
can repeat up to 7 times. Although nonmonotonic settling
has been observed in various other systems, like stratified
[23] and (visco-)elastic [24,25] liquids, we will show that
both bulk and bottom behavior in cornstarch fundamentally
differ. We study a wide range of experimental parameters and
suspensions to get detailed insight in these phenomena, discuss
several candidates for the (phenomenological) modeling of the
observed phenomena, and evaluate their appropriateness.

This paper is organized as follows. In Sec. II we discuss
the experimental setup and some data analysis tools. Sub-
sequently, the main experimental observations are presented
in Sec. III, where the influence of various parameters such
as the concentration of the cornstarch suspension, the object
mass, the object shape, and the container size are discussed.
Section IV focuses on the bulk oscillations by presenting its
particular experimental characteristics and by subsequently
discussing the validity of several modeling approaches. The
stop-go cycles at the bottom obtain a similar treatment in
Sec. V, a large part of which is devoted to the comparison of a
jamming model and the experiments, expanding the material
presented in Ref. [21]. Finally, in Sec. VI, we briefly discuss the
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settling dynamics in other particulate suspensions and Sec. VII
concludes the paper.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1(a). Objects
were dropped into either a vertical perspex container of size
12 × 12 × 30 cm3 or a cylindrical glass container with a
diameter of 5.0 cm, containing a dense mixture of particles
and liquid. For the latter, we use either demineralized water
or an aqueous solution of cesium chloride (CsCl) with a
density of ∼1600 kg/m3, which matches the density of the
cornstarch particles. Experimental results actually showed
negligible differences between the density matched and the
unmatched liquid, provided that the latter has to be stirred
well prior to the experiment to counteract sedimentation. The
cornstarch particles [Fig. 1(b)] are irregularly shaped and have
an approximately flat size distribution in the range of 5–20 μm,
i.e., small and large particles are present in approximately
equal numbers.

The settling objects that were used in this study are stainless
steel balls (ρ = 8000 kg/m3), with diameters of 1.6 and
4.0 cm, a 4.0-cm ping-pong ball, and a 1.5-cm diameter
hollow cylinder with a flat bottom and a length longer than
the liquid bath depth. The latter two can be filled with
bronze beads to vary their mass: For the ping-pong ball, the
buoyancy-corrected mass (μ = msphere − ρSV of the objects,
where ρS is the suspension density and V is the submersed
volume) could be varied from 0 to 137 g and the actual mass
m of the cylinder was varied from 40 (empty cylinder) to

FIG. 1. (Color online) (a) Schematic view of the setup with, from
left to right, a light source and diffusing plate, the container filled
with suspension, above that the object with tracers attached, and a
high-speed camera. (b) Microscopic picture of the cornstarch, used
in the experiments.
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FIG. 2. (Color online) The velocity ẋ of the settling object versus
time t , determined by two different methods, namely (i) using a
local quadratic fit and (ii) employing a first-order difference. The
two methods are shown for different time intervals of the fitting
procedures, namely 4.0, 12, and 20 ms, to illustrate the trade-off
when choosing between higher spatial or temporal resolution.

120 g. For the cylinder, the buoyancy-corrected mass is not
constant over time: The buoyancy increases when the cylinder
penetrates deeper into the cornstarch, such that μ decreases
over time. The results for the cylinder will therefore be given
in terms of the actual mass.

To measure the trajectory of the objects inside the opaque
suspension, we follow tracers on a thin, rigid metal wire that
is attached to the top of the object (as in Ref. [26]) with a
high-speed camera imaging at 5000 frames per second. The
mass of the wire and the resulting buoyancy of the immersed
wire are negligible compared to the larger object to which
it is attached. Namely, the mass of the wire is less than 1 g
and the immersed tail volume is smaller than 0.1 times the
volume of the smallest object that was used. The velocity and
acceleration are determined from the trajectories at each time
t , using either (i) a local quadratic fit around t or (ii) a direct
first- and second-order difference, both determined over a time
interval of 12 ms (corresponding to 60 measurement points).
The difference between both methods and the influence of the
interval are illustrated in Fig. 2, where we show the results
of both procedures for the velocity of the object during a
particularly sensitive part of the trajectory with abrupt jumps in
the velocity. Clearly, when an interval of 4.0 ms (corresponding
to 20 measurement points) is used, the signal suffers from pixel
noise due to the limited spatial resolution of our camera. For
an interval of 20 ms (100 points) we observe that a lot of
information is lost: The abrupt decreases in velocity flatten
out, and the maximum and minimum velocities are resolved
insufficiently. For the above reasons, the time interval was
fixed to 12 ms, as it showed the best trade-off when choosing
between losing pixel noise due to limits in spatial resolution
and losing temporal resolution. In addition, the local quadratic
fit leads to a more accurate determination of the acceleration
than the method using the second-order difference.

III. EXPERIMENTAL OBSERVATIONS

In this section we will present the main experimental
observations. We will start by comparing the settling in
a viscous Newtonian liquid to the settling in a cornstarch
suspension and show that the behavior of the latter is highly
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ẋ
(m

/s
)

Cornstarch
Glycerin

0.2 0.25 0.3 0.35 0.4
0

0.005

0.01

0.015

0.02

t (s)

|x|
(m

)freefall

impact

FIG. 3. (Color online) The settling velocities ẋ of a steel sphere
with a diameter of 0.5 cm in glycerine [blue (gray) line] and a steel
sphere of diameter 1.6 cm in a cornstarch suspension with φ = 0.41
(black line) as a function of time t . The inset shows the last part of the
actual trajectory, clearly showing the stop-go cycles near the bottom
in cornstarch in the position versus time curve.

non-Newtonian. This will be followed by a discussion of the
effects that various parameters have on the experiment.

A. General observations

In Fig. 3 we plot the time evolution of the velocity of
a steel sphere for two different impact experiments: one
on glycerin and the other on a cornstarch suspension. The
sphere is released and accelerates up to t = 0, which is
the moment of impact. For glycerin [blue (gray) line], a
Newtonian liquid, we find the expected behavior for such a
liquid: The sphere gradually decelerates and exponentially
decays towards a terminal velocity, which is determined by
the object and the liquid properties. The experiment ends
when the object stops at the container bottom. When looking
at the dense cornstarch suspension (black line), we observe
some remarkable phenomena: On impact, we first see an
abrupt decrease towards a lower velocity, which in recent
experiments by Waitukaitis et al. [27] was explained to be
caused by jamming of the suspension on impact. Subsequently,
instead of monotonously approaching a terminal velocity, there
appear velocity oscillations around this terminal value: The
object alternately goes through periods of acceleration and
deceleration. The oscillations show no sign of damping out in
the time span that is available to us experimentally. These
extraordinary oscillations are quite unlike oscillations that
have, e.g., been observed in viscoelastic fluids, for which the
amplitude rapidly decays. We refer to the oscillations in our
experiment as bulk oscillations, to distinguish them from the
second phenomenon: Instead of stopping at the bottom, the
object actually comes to a sudden, full stop at about 10 mm
above the bottom. Surprisingly, instead of just staying there,
the object subsequently reaccelerates, only to come to another
stop a little closer to the bottom. This process repeats itself
several times until the bottom is reached. From here onward,
we will call these phenomena stop-go-cycles.

As the density matching of such a large bath requires a
forbiddingly large amount of salt, we repeated the experi-
ment in an unmatched suspension. Although the cornstarch
particles are heavier than the liquid, the settling of particles
is negligible for at least several minutes, as we were able to

ascertain by performing experiments after different waiting
times after stirring, which showed identical behavior. Most of
the experiments presented in the current work are, therefore,
performed after stirring well but without density matching.

Before taking a more detailed look at the origin of both
effects, we will first discuss how these bulk oscillations and
stop-go cycles are influenced by changing the experimental
parameters of the liquid bath and the settling object. We find
only minor changes when varying the impact velocity and the
bath depth. The onset of the bulk oscillations is depending on
the impact velocity and may sometimes not occur in shallower
layers, as the necessary mean velocity is not reached. The
stop-go cycles are independent on these parameters; only for
shallower layers will the first stop be closer to the surface
of the suspension. The response of a thin layer of cornstarch
suspension in between an object and a substrate is covered in
Liu et al. [22] and is consistent with our findings.

B. Packing fraction

To determine the influence of the packing fraction, we
focus on results of a 1.6-cm stainless steel ball settling in
suspensions of different packing fractions (φ), where φ is the
volume occupied by the particles over the total volume of the
suspension. The velocity of the ball for different concentrations
is plotted in Fig. 4 as a function of time. In the plots, t = 0
coincides with the moment of impact on the suspension.

First, we observe that the velocity of the sphere within
the suspension has none of the particular characteristics for
cornstarch concentrations up to volume fractions of φ = 0.38.
The behavior is similar to what is observed for a Newtonian
liquid and the only difference is the way the fluid responds on
impact, where we observe a sudden decrease of the velocity.
This may well be connected to compaction on impact as
discussed in Ref. [27]. While increasing the concentration of
cornstarch we see the velocity drop become more pronounced,
which is an indication of a larger jammed region created on
impact, consistent with the observations in Ref. [27]. Another
observation is that the terminal velocity is smaller and appears
to be reached at an earlier point in time for higher φ, which
can be explained from an overall increase of the apparent (or
average) viscosity of the suspension.
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FIG. 4. (Color online) Settling velocity ẋ of a stainless steel
sphere (diameter 1.6 cm) in a cornstarch suspension as a function
of time t and for different cornstarch packing fractions φ varying
from 0.35 to 0.41.
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When reaching φ = 0.39, we start to observe the non-
monotonic settling behavior that was discussed in the previous
subsection: After impact, we first observe velocity oscillations
in the bulk and, afterward, when the sphere approaches the
bottom, the stop-go cycles. For increasing cornstarch concen-
tration, we observe a significant increase of the amplitude
of the bulk oscillations, on the one hand, and of the amplitude,
the duration, and the number of stop-go cycles on the other.
The frequency of the bulk oscillations seems to be less affected
by φ.

Clearly, both phenomena are most pronounced for high φ,
which is why for the remainder of this study we will will fix
our bath concentration at the particularly high value φ = 0.44,
unless specified differently.

C. Container size

We performed identical impact experiments with the 1.6-cm
steel sphere in two different containers (one with a circular
cross section of 5 cm and the other with a square cross section
of 12 × 12 cm2) containing a single batch of suspension (φ =
0.42) and compared the results to see whether the proximity of
the side walls influences, or maybe even causes, the observed
phenomena. The results are shown in Fig. 5.

Already immediately after impact the behavior deviates for
the different containers: The ball decelerates in both cases but
for the smaller container even comes to an almost full stop.
This is likely to be caused by jamming of the suspension in a
cone-shaped region below the sphere, as observed in Ref. [27].
Whereas this jammed region may move along with the sphere
in the larger container, this region may extend all the way up
to the wall of the smaller container, such that the sphere is not
able to move down in that case.

After this initial velocity drop, both experiments reach a
terminal velocity that is a bit lower for the smaller container.
This can be attributed to the proximity of the container wall
as well, which will increase the drag in a similar way as it
would in a viscous Newtonian liquid. The bulk oscillations are
discernible in both containers but are much less pronounced in
the smaller one. This leads to the important conclusion that the
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FIG. 5. (Color online) The settling velocity ẋ versus time t in
a 12 × 12 cm2 square container and a cylindrical container with a
diameter of 5.0 cm for a ball of 1.6 cm diameter impacting with a
velocity of 1.5 m/s on a cornstarch suspension with a concentration
of φ = 0.42. For comparison, the result of a cylindrical disk settling
in a quasi-2D setup is added.

bulk oscillations are truly a bulk effect, i.e., they are weakened
by the proximity of the side walls rather than being reinforced.

By contrast, the stop-go cycles at the bottom are quali-
tatively the same, and only the maximum velocities that are
reached during the reacceleration phase differ slightly. The
smaller container again reaches somewhat lower velocities.
This may, however, well be connected to the fact that the
terminal velocity is smaller for the small container.

In addition to varying the container size, we repeated the
experiment in a quasi-two-dimensional setup, in a rectangular
container with a cross section of 100 × 5 mm2 and a depth of
50 mm, using a cylindrical disk with a diameter of 1.5 cm and
a thickness of 4 mm as a settling object. In this experiment,
we hoped to be able to discern variations in suspension
concentration below the settling object. What we observed,
however, was that all effects actually fully disappeared due to
the large friction between the object and the lateral container
walls. We added this quasi-2D experiment to Fig. 5, where it
can be appreciated that the (terminal) settling velocity is only
a few centimeters per second.

D. Object mass

Whereas in the previous subsections we discussed the
influence of the bath properties on the observed phenomena,
we now turn to the settling object itself. First, we consider
the effect of the buoyancy-corrected mass (μ = msphere −
4/3πr3ρS with ρS the density of the suspension) by using
a hollow ping-pong ball, with a radius r = 2.0 cm, that can
be filled with bronze beads to a mass msphere. This allows us
to vary the difference in density between the impactor and
the suspension while keeping all other parameters constant.
By completely filling the ball we can reach a maximum
density of 5.4 × 103 kg/m3, which is around 3.5 times the
suspension density but lower than the density of the steel
sphere used before (ρsteel ≈ 8.0 × 103 kg/m3). The resulting
velocity versus time curves for these measurements can be
found in Fig. 6.
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FIG. 6. (Color online) Time evolution of the velocity ẋ of a hollow
ping-pong ball filled with different masses settling in a cornstarch
suspension with φ = 0.44. The buoyancy-corrected mass varies from
μ = 10 to μ = 132 g. Also added is an experiment with a steel sphere
of μ = 217 g, with the same diameter (4.0 cm) as the ping-pong
ball. The inset shows the frequency of the bulk oscillations for the
ping-pong ball.
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We observe no pronounced bulk oscillations (and even
something that looks like an exponential decay) for the
experiments with lighter spheres (up to 90 g, corresponding
to μ = 47 g). When we keep increasing the object’s mass, the
bulk oscillations appear. These start out at very small ampli-
tude but increase with increasing mass. Another remarkable
observation is that the oscillation period varies only slightly
over the entire range of masses where the bulk oscillations
are visible: While the buoyancy-corrected mass grows over a
factor 2, the oscillation frequency only shows a slight decrease
of around 20% (Fig. 6, inset).

In contrast to the bulk oscillations, the stop-go cycles are
observed for all masses, even for the smallest buoyancy-
corrected mass of μ = 10 g which corresponds to a density
difference between object and suspension of only 23%. The
magnitude of the stop-go cycles, i.e., both the maximum
velocity and the number of cycles, is found to increase with
the mass of the object.

For comparison, we also used a massive steel sphere, with
r = 2.0 cm and μ = 217 g. Thus, we obtain an even higher
density contrast but at the expense of changing the surface of
the object. During settling of this sphere, we observe the same
phenomena as for the ping-pong ball. The increasing trend
we found for the amplitude of the bulk oscillations and the
maximum velocity and number of stop-go cycles is continued.
The main difference is the fact that we measure a frequency
which is a factor 1.5 lower for the bulk oscillations. This may be
connected to the different structure of the surface of the object.

E. Object shape

Besides changing the mass of the object, we also varied
its shape. We used a hollow cylinder with a diameter of 1.5
cm and a height that exceeds the depth of the cornstarch bath.
This changes two aspects: First, the object has a larger contact
area with the liquid, and, second, we have a flat bottom rather
than a curved one. The fact that the cylinder is longer than the
depth of the bath allows us to keep it aligned vertically while
it is settling towards the bottom. However, this implies that the
buoyancy-corrected mass changes with the object’s position.
Finally, due to the fact that the cylinder is hollow, we can vary
the mass in the same way as we have done for the ping-pong
ball, namely by filling it with bronze particles.

All the phenomena observed for the sphere are also present
for the settling cylinder (Fig. 7): We observe both the bulk
oscillations and the stop-go cycles near the bottom. A few dif-
ferences are clearly visible as well: First, the bulk oscillations
are significantly larger in amplitude, which could be either
due to the increase in contact surface or to the flatness of the
bottom of the cylinder. The frequency is again independent of
the mass of the object; however, it is approximately a factor
2 lower than that observed for the sphere. Although only a
few oscillations are visible, they appear undamped for the
higher masses but seem to be damped for the lowest mass.
This is most likely due to the change in the buoyancy-corrected
mass, which for this lightest case decreases from 35 to 20 g
between impact and the first stop-go-cycle. Second, we see
that the number of consecutive stop-go cycles is larger than
for the sphere. We observe up to seven cycles, while for the
sphere this was limited to only two or three cycles. In addition,
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FIG. 7. (Color online) Time evolution of the velocity ẋ of a
settling cylinder in a cornstarch suspension (φ = 0.44) for different
cylinder masses mcyl, varying from 40 to 120 g. A buoyancy-corrected
mass cannot be used here since it changes along the trajectory of the
cylinder.

we observe that the first stop appears at a larger distance from
the bottom, namely several centimeters, as compared to
typically 1 cm for the sphere. Finally, the drop in maximum
velocity between consecutive stops is smaller for the cylinder.

IV. BULK OSCILLATIONS

When an object is settling in a fluid it can be described by
the following equation:

mẍ = μg + D(x,ẋ,t), (1)

in which x(t) is the trajectory of the object, where x = 0
has been chosen to coincide with the bottom of the container
and x increases in the downward direction. Furthermore, g =
9.81 m/s2 is the acceleration of gravity, μ is the previously in-
troduced buoyancy-corrected mass, and m = mobject + madded

is the sum of the mass of the object and the added mass. For
a sphere, we use the traditional result for Newtonian liquids
madded = 0.5ρSVsphere with Vsphere the volume of the sphere
and ρS the density of the suspension. Finally, D is the drag
force which, in general, is a function of the object’s velocity
ẋ and position x. The drag force could even be a functional of
x(t) if the history of the objects trajectory is important (which
will indeed be argued to be the case). The aim of the next two
sections is to find an appropriate model for the drag force D.

In the present section, we will start with the bulk oscil-
lations. We will attempt to describe this phenomenon using
various models and discuss their appropriateness. As we
are using a shear-thickening suspension, we start off with
traditional shear-thickening models that have a monotonic
stress-strain curve. We then consider several viscoelastic
models, which are appropriate for the description of the
position oscillations that have been observed in viscoelastic
liquids. Finally, we investigate a hysteresis model based on
a model proposed by Deegan [18] in the context of holes in
vibrated cornstarch layers [17].

A. Shear-thickening model

As cornstarch is well known for its shear-thickening be-
havior, the most logical first model to try is a shear-thickening
model, i.e., a model in which the viscosity increases with
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FIG. 8. (Color online) The drag D = mẍ − μg on a ping-pong
ball with buoyancy-corrected mass μ = 122 g versus its velocity
ẋ, calculated from the object’s trajectory x(t) during a settling
experiment in a cornstarch suspension with φ = 0.44.

increasing shear rate. Or, as an alternative, one could think of
a model that combines a shear rate region where the viscosity
is decreasing with a region where it is increasing to model
the shear-thinning-to-shear-thickening transition that has been
observed in rheometer experiments in both cornstarch and
other suspensions [2–7]. All these models have in common
that the stress increases monotonically with the strain rate,
which will lead to a monotonically increasing drag D as a
function of the magnitude of the objects settling velocity ẋ.

We use Eq. (1) to determine the drag force from the
experimental trajectory, i.e., when we compute D ≡ mẍ − μg

for the measured acceleration ẍ and plot the result as a
function of the velocity ẋ we obtain Fig. 8. Clearly, during
the bulk oscillations, the drag D is not a monotonic function
of ẋ. Therefore, we can immediately discard shear-thinning
and shear-thickening models where the drag (stress) is a
monotonically increasing function of the velocity (strain rate).
We therefore necessarily need to turn to a model in which the
object’s history is important.

B. Viscoelastic model

One of the most conspicuous candidates to model the
oscillatory behavior is to try a (linear) viscoelastic model.
Although it is known that such models do not describe
shear-thickening fluids in general, we still consider these
because similar oscillations in the position and velocity of
settling objects have been observed in viscoelastic liquids [24]
and modeled by such models [25]. The simplest of such
models is the Maxwell fluid, in which the total deformation
is decomposed into an elastic term in series with a viscous
term. For the elastic part, stress is proportional to strain
and the proportionality constant is an elastic modulus or the
viscous part stress is proportional to strain rate with (dynamic)
viscosity as a proportionality constant. This translates into the
following model for the drag D in Eq. (1):

− ẋ = Ḋ

E
+ D

η
, (2)

where E corresponds to the elastic part of the drag term and
has the dimensions of a spring constant (elastic modulus times
a length scale) and η corresponds to the viscous part and
has the dimensions of viscosity times length. The minus sign

reflects the fact that the direction drag force will generally be
opposite to the velocity of the object. The above equation can
be integrated to obtain an expression for the drag in terms of
ẋ(t),

D = −E

∫ t

t ′=0
exp

[
−E (t − t ′)

η

]
ẋ(t ′) dt ′. (3)

As is shown in Sec. IV A, the equation we obtain when we
insert this expression into Eq. (1) can be solved exactly using
Laplace transformations, leading to

ẋ(t) = uT + e−αt

[
v0 cos ωt +

(
μg

ωm
+ Ev0

2ωη

)
sin ωt

]
,

(4)

in which the damping rate α, angular frequency ω, the terminal
velocity uT , and v0 are given by

α = E

2η
; ω =

√
ω2

0 − α2 =
√

E

m
−

(
E

2η

)2

;

(5)
uT = μg

η
; and v0 = ẋ(0) − μg

η
.

Indeed, this solution displays oscillatory behavior as the
object approaches its terminal velocity. However, the terminal
velocity is directly coupled to the damping factor α =
E/(2η), which in turn is coupled to the (minimum) amplitude
μg/(ωm) � μg/(ω0m) = μg/

√
mE ≡ A, which is obtained

by setting v0 = 0 in Eq. (4). So when we divide the amplitude
over the terminal velocity we obtain

A

uT

= μg√
mE

η

μg
= 1

2

2η/E√
E/m

= 1

2

ω0

α
= π

τ

T
, (6)

in which τ = α−1 is the damping time and T = 2πω−1
0 is

the period of the oscillation. This implies that in order to
have an amplitude (much) smaller than the terminal velocity,
τ/T needs to be (much) smaller than 1, i.e., the damping
time should be smaller than the oscillation period. Conversely,
to obtain oscillations that do not damp for several periods,
one needs an amplitude which is several times larger than the
terminal velocity. Therefore, we conclude that it is impossible
to describe the bulk oscillations observed in cornstarch within
the context of a Maxwell fluid.

It is possible to extend the Maxwell fluid to more
complicated linear viscoelastic models, like the extended
Maxwell fluid and the modified Kelvin-Voigt solid discussed
in Sec. IV A, that contain additional dissipative elements in
the hope that this would decouple terminal velocity, damping
constant, and oscillation amplitude. However, as shown in
Sec. IV A all of these models have a coupling similar to the
one expressed in Eq. (6), which makes them unsuitable for
the description of the observed phenomena. The conclusion is
that the bulk oscillations in cornstarch cannot be described by
a simple linear viscoelastic model like the ones we considered
here. Clearly, one could think of turning to complicated
viscoelastic models with multiple length and time scales.
However, such an approach would not teach us much about
the system.
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C. Hysteresis model

We therefore now turn to a model that has been proposed
for the behavior of a cornstarch suspension in a different
setting, namely a vertically shaken one. As mentioned in the
introduction, Merkt et al. [17] have observed long-living stable
holes in a vertically shaken cornstarch suspension, which
they attributed tentatively to the shear-thickening properties
of cornstarch. In a later paper, Deegan proposed a model
to describe this behavior based on a hysteretic rheology
[18]. More specifically, he proposed a coexistence of two
branches in the stress versus strain rate diagram of the
cornstarch suspension, the existence of which was backed up
by oscillatory shear measurements in a cone-plate rheometer.
This phenomenological model is able to predict the existence
of growing holes in a cornstarch suspension. The history-
dependent coexistence of the low- and high-viscosity branch
is crucial for Deegan’s model and sets it aside from a model
with a simplified stress-strain-rate curve with a low viscosity
for low shear rates and a higher one for high shear rates. We
once more stress that such a simplified model is not able to
describe the observed oscillations.

We now apply this idea for our experiment of an object
settling in a deep bath of cornstarch, using Eq. (1) with a
hysteretic model for the drag force. More specifically,

D(ẋ) = −B(ẋ)ẋ, (7)

where

B(ẋ) =
{
B1 when ẋ falls below u1,

B2 when ẋ rises above u2.
(8)

Here, u1 and u2 (with u2 > u1) are the turnover velocities of the
system and the drag coefficients B1 and B2 (with B2 > B1) are
the slopes of the two branches, namely one corresponding to
a low viscosity (B1) and the other to a high one (B2). Between
u1 and u2 the system can be in either of the two branches, as
illustrated in Fig. 9(a).

How this model for D is able to produce oscillations in
the context of Eq. (1) is illustrated schematically in Fig. 9(b).
After impact, the object will be in the higher branch with drag
coefficient B2 and will decelerate until it reaches the lower
boundary u1. The system then will switch to the lower branch
and its drag coefficient will decrease to B1. As this results
in a drag force smaller than the downwards acceleration of
gravity, the object will accelerate again towards the terminal
velocity ẋ1 = μg/B1, which is the steady state of Eq. (1)
when the system is in the lower branch, i.e., D = −B1ẋ.
Before reaching ẋ1, however, the object will hit the velocity
u2, where the drag coefficient jumps to B2. Now the object
will decelerate again towards a second terminal velocity
ẋ2 = μg/B2 [corresponding to Eq. (1) in the higher branch
D = −B2ẋ], but before arriving there, u1 will be reached
again. This restarts the cycle that will now repeat over and
over again.

To relate B1 and B2 to experimental observables, we solve
Eq. (1) for ẋ in each of the two branches, starting at an arbitrary
time t = t0 at one of the boundaries u1 or u2 of the hysteresis
loop. This leads to

ẋ = ẋi + (ui − ẋi) exp

[−μBi

m
(t − t0)

]
, (9)

FIG. 9. (Color online) (a) Schematic of the drag force D defined
by Eq. (7) as a function of the velocity ẋ, with the hysteresis loop
between ẋ = u1 and ẋ = u2. (b) Schematic of the oscillatory solution
of Eq. (1) using the drag force of (a): For suitable values of B1, B2, u1,
and u2 the system alternately switches from the low to the high branch
in the hysteresis loop and back. In these schematics, all quantities are
in arbitrary units.

for i = 1,2. Here, ẋi ≡ μg/Bi are the terminal velocities
introduced above.

Now we linearize this equation in t between u1 and u2. This
leads to the following expression for B1:

B1 =
(−u2 + u1

	t1

m

μ
+ g

)
1

u1
(10)

and similarly for B2 with the indices 1 and 2 interchanged.
Here, 	t1 and 	t2 are the time intervals it takes for the object
to accelerate or decelerate from the one switching velocity
to the other. By determining 	t1, 	t2, u1, and u2 from our
experiments we can now calculate B1 and B2.

The next step is to compare the model to the experiments.
First, we assumed that the drag coefficients B1 and B2 are
determined by fluid properties, i.e., that they are independent
of the object mass or velocity. We thus calculated the drag
coefficients for the experiment with the highest mass and
applied them to the other masses. Here, we do have to adjust the
turnover velocities u1 and u2 to obtain an oscillation between
the observed velocity boundaries. The result is shown as the
solid lines in Fig. 10(a). We apply the model after all impact
related effects have disappeared and clear fluctuations around
a terminal velocity are visible. For the four measurements
between μ = 62 and μ = 132 g in Fig. 10(a), we see that the
model fits nicely for the heaviest balls, and quite well for the
lighter balls, from which we conclude that the assumption of
constant B1 and B2 is reasonable. This can also be checked
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FIG. 10. (Color online) Comparison of the experimental results
to the hysteresis model. (a) In the region where bulk oscillations are
observed, the velocity of the sphere is plotted versus time for four
different buoyancy-corrected masses (μ = 62, 82, 102, and 132 g)
for both the experiment (colored symbols) and the model (black
lines), where the values for B1 and B2 have been obtained from
the experiment with the highest mass. (b) The corresponding drag
D = mẍ − μg versus velocity ẋ plots also for both the experiment
(colored symbols) and the model (black lines).

by calculating B1 and B2 for every experiment separately, the
results of which are shown in Fig. 11. We observe that both B1

and B2 vary only slightly for all masses.
For further comparison, we plot the hysteresis loop in a drag

versus velocity plot for both the experiment and the model in
Fig. 10(b). It is clear that the modeled loop is a very simplified
representation of the actual loop, and that, especially for the
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FIG. 11. (Color online) The drag coefficients B1 and B2 as a
function of buoyancy-corrected mass μ, now calculated from the
experiment using Eq. (10) separately for each value of μ. Below μ =
62 g no bulk oscillations could be discerned. The different symbols
correspond to two different series of experiments.
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FIG. 12. (Color online) Comparison of the experimental results to
the hysteresis model for a cylindrical object in the region where bulk
oscillations are observed. The velocity of the cylinder is plotted versus
time for three different masses (mcyl = 40, 80, and 120 g) for both the
experiment (colored symbols) and the model (black lines), where the
values for B1 and B2 have been obtained from the experiment with
the highest mass.

lower masses, the variations in the observed accelerations are
considerably smaller than those of the model.

We compared the experiments with a spherical object to
those with a cylinder (discussed in Sec. III E). The cylinder
diameter is 1.5 cm, which is smaller than the ball, and also
we now have a flat bottom instead of a round one. Due to the
length of the cylinder we expect more interaction between the
liquid and the object, but we also have to keep in mind that
we now have a buoyancy that increases during sedimentation.
Again, we calculate B1 and B2 from the measurements with
the heaviest mass, where the effect is most pronounced, and
adjust u1 and u2 for each mass. The results are shown in
Fig. 12 where we see that (as expected) the fit is very nice
for the highest mass and that there are larger discrepancies
for the lower masses. The used values for B1 and B2 for the
cylinder are respectively approximately a factor 2 lower and
higher compared to the values used for the sphere, 3 and 35
for the cylinder vs. 7 and 18 for the sphere.

Concluding this section, we found that traditional shear-
thinning and shear-thickening models are not able to describe
the bulk oscillations due to the presence of history dependence
(hysteresis) in the experiments. In addition, we found that
simple linear viscoelastic models fail to describe the observed
oscillations due to an intrinsic coupling between the terminal
velocity and the oscillation amplitude in these models that
is inconsistent with the experiments. The best candidate is a
description in terms of a hysteretic drag term inspired by the
work of Robert Deegan [18]. One could say that the major
drawback of the model is that it is entirely phenomenological,
i.e., a physical mechanism to relate its parameters to the
physics of the system is still lacking.

The experiments point to a physical mechanism where
the origin of the oscillations is a modulation on top of the
terminal velocity, due to periodically changing properties in the
liquid. More specifically, one could imagine a jammed region
around the object which grows when it moves fast, through
which the drag increases causing the object to decelerate. The
object would than obtain a lower velocity which would allow
relaxation and shrinking of the jammed layer, i.e., a decrease
of the drag and an acceleration of the object. For the bulk
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oscillations there are many open questions to propose such a
model, but for the stop-go cycles at the bottom the formulation
of such a model is feasible, as we will show in the next section.

V. STOP-GO CYCLES

As was shown in Sec. III, we always observe stop-go cycles
near the bottom at cornstarch concentrations higher than φ =
0.38. Here, the object suddenly stops one or a few centimeters
above the bottom of the container. It then accelerates again
and comes to another abrupt stop a little closer to the bottom.
This cycle repeats itself several times.

As explained in Ref. [21], we interpret these stop-go
cycles as follows: While the object is moving down, the
cornstarch below it is slowly being compressed such that at a
certain moment a jammed network of particles forms between
the object and the container bottom. This jammed layer is
responsible for the large force that brings the object to a full
stop. Stresses build up in the network and therefore also within
the interstitial fluid, which triggers a Darcy’s flow in the porous
medium formed by the cornstarch grains, allowing the network
to relax through (small) particle rearrangements. This causes
the jammed region to unjam and the object will start moving
again. Such hardening of a cornstarch suspension has also been
reported in Ref. [22], where a ball was pushed towards the
bottom, leaving an indent on a clay layer on the bottom. This
was attributed to forces being transmitted through a hardened
layer beneath the ball.

In Fig. 13 we compare the stop-go cycles for the settling
ping-pong ball (which we previously presented in Ref. [21])
with those for the settling cylinder, both for three different
values of the buoyancy-corrected mass μ. Clearly, for the
cylinder there are more stop-go cycles than there are for the
ping-pong ball. To further quantify the stop-go cycles, we
measure the distance from the bottom at which the object
stops for the first time (|x0|), Fig. 14(a), the maximum velocity
it reaches after the first stop (ẋmax), Fig. 14(b), and the time
it needs to reach this velocity (tacc), Fig. 14(c), for both the
ping-pong ball and the hollow cylinder. Although in general
the cylinder has a variable buoyancy-corrected mass during
its trajectory, due to the proximity of the bottom we could
define a meaningful buoyancy-corrected mass here. Namely,
we choose the cylinder mass minus the buoyancy the cylinder
would experience when it would be at the bottom.

We see that the cylinder stops several centimeters above
the bottom, i.e., several centimeters above the first stop of
the ping-pong ball. Furthermore, in comparison with the ball,
it reaches higher velocities after the first jump but requires
approximately the same time to get there. The earlier stop can
be explained by a relatively larger jammed region due to the flat
bottom of the cylinder, which might also give a more confined
region as compared to that below the curved surface of the
ball. The fact that the cylinder accelerates to a higher velocity
is presumably due to the first stop being at a larger distance
from the bottom, such that it takes longer for the material to
jam again.

We model this process by coupling the equation of motion
Eq. (1) to an equation for an order parameter which indicates
whether the cornstarch suspension layer between the object
and the bottom is jammed. For this, we will use the local
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FIG. 13. (Color online) Time evolution of the velocity during
the stop-go cycles for the settling ping-pong ball for three different
(buoyancy-corrected) masses, μ = 17, 77, and 132 g, and for the
settling cylinder, also for three different buoyancy-corrected masses,
μ = 97, 57, and 17 g. The noisy lines represent the experimental
results and the dashed blue lines correspond to the model of Eq. (11).

particle volume fraction φ. More specifically, we assume that
when φ exceeds a critical value φcr the layer is jammed and
the drag force D is assumed to become infinitely large until
the sphere comes to a standstill. This leads to the following
modification of the freefall equation:{

mẍ = μg + D when φ < φcr

ẋ = 0 when φ � φcr

}
. (11)

Due to the comparatively low velocities in this regime
compared to those of the bulk-oscillations regime, we can take
D = −Bẋ. Since the cornstarch layer below the object jams
through compression, the equation for the time rate of change
of the packing fraction φ should contain a term that increases
φ proportional to the compression rate −ẋ/x of this layer. In
addition, there should be a term that decreases φ through a
relaxation process towards its equilibrium value φeq, which
is taken to be equal to the value that it has in the quiescent
cornstarch suspension. This yields

φ̇ = −c
ẋ

x
− κ(φ − φeq), (12)

in which c and κ are the proportionality constants of the
compression and relaxation processes, respectively. Note that
c is dimensionless, while κ is a relaxation time.

The critical packing fraction φcr is the value at which the
cornstarch suspension dynamically jams. It must lie between
the static, sedimented (0.44) and the maximally compacted
(0.57) value [12]. In our laboratory we tried to create the
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FIG. 14. (Color online) Three quantities that characterize the
first stop-go cycle as a function of buoyancy-corrected mass for the
cylinder (blue crosses) and pingpong ball (red circles): (a) Distance
x0 to the bottom at which the first stop takes place. (b) The maximum
velocity reached in the relaxation period after the first stop. (c) The
time needed to reach the maximum velocity after the first stop. The
solid lines in (b) and (c) represent the results obtained with the model
of Eq. (11).

densest, still flowing cornstarch suspension from which we
estimate that φcr = 0.46 at most. As a result, φ only varies
marginally during the process, in agreement with recent
research where, during jamming of a cornstarch suspension
in a Couette cell, no density differences were measured
within experimental accuracy (0.01) of the MRI device
used [15].

To obtain the time evolution of x(t), ẋ(t), and φ(t) this set
of equations needs to be solved with the initial conditions the
system has reached just after the first stop: x(0) = −x0, the
position of the object at the first stop (with x0 > 0), ẋ(0) = 0
and φ(0) = φcr. This immediately points to a convenient way
of nondimensionalizing the equations, namely by using x0 and√

x0/g as the appropriate length and time scales. With the
nondimensional variables x̃ ≡ x/x0, t̃ ≡ t/

√
x0/g, and δϕ̃ ≡

[φ(t) − φeq]/(φcr − φeq), the set of equations becomes

¨̃x = μ/m − B̃ ˙̃x when δϕ̃ < 1,

˙̃x = 0 when δϕ̃ � 1, (13)

δ ˙̃ϕ = −c̃
˙̃x

x̃
− κ̃δϕ̃,

with initial conditions x̃(0) = −1, ˙̃x(0) = 0, and δϕ̃(0) = 1.
The dimensionless model parameters are now μ/m, B̃ ≡
(B/m)

√
x0/g, c̃ = c/(φcr − φeq), and κ̃ = κ

√
x0/g, which is

the ratio between the gravitational time scale and the relaxation
time scale.

What can we say about the parameters in these equations
with respect to our experiments? First, μ/m is expected to
be of order unity. Second, for most of our experiments the
acceleration phase in a cycle appears to be dominated by
gravity, such that the second term in Eq. (11) is much smaller
than the first, implying that B̃ � 1. Third, since x and changes
in x during a single cycle are of the same order, we expect by
neglecting the last term in the last equation for that δϕ̃ ∼ c̃.
Since, on the other hand, δϕ̃ ≈ 1, because the compression is
expected to change φ from its bulk value φeq to the critical
value φcr, we expect c̃ to be of order 1.

If we fit our model to the experimental data of the ping-pong
ball we find a best fit for c = 0.025, which with φcr − φeq ≈
0.02 implies that c̃ ≈ 1.3, in agreement with our expectation.

Finally, for the last parameter of our model, κ , some more
extensive analysis is necessary. To this end, let us note that the
last equation of Eq. (13) can be immediately solved implicitly
using the integrating factor method. We then find that exp(̃κt)
is the integrating factor for this equation leading to

δϕ̃( t̃ ) = e−κ̃ t̃

[
1 + c̃

∫ t̃

t̃
′=0

˙̃x (̃t ′)
x̃ (̃t ′)

eκ̃t̃
′
dt̃

′
]

, (14)

where we have used the initial condition δϕ̃(0) = 1. Of course,
the solution x̃( t̃ ) of the first equation still needs to be inserted
in this equation. Since B̃ � 1, we now neglect the second
term in the first equation of Eq. (13) we simply find that x̃ (̃t ) =
−1 + 1

2 (μ/m)̃t 2. Using this approximation with μ/m = 1 and
setting c̃ = 1 in Eq. (14), we can calculate the duration 	̃t of
and the traveled distance 	x̃ during the cycle.

These quantities are plotted as a function of the relaxation
parameter κ̃ in Fig. 15. For very small values of κ̃ (<0.1) we
have very small durations and traveled distance. This happens
because now the relaxation time scale is much larger than
the gravitational time scale, which implies that as soon as the
jammed layer starts to relax, the system quickly reaccelerates
and jams again. δφ̃ will never move far from 1, i.e., φ

will always be close to φcr. Here the object effectively gets
stuck inside the cornstarch suspension (at the observable,
gravitational time scales). On the other hand, for very large
values of κ̃ (>10) the opposite happens: we have a duration
close to

√
2 corresponding to a traveled distance of 	x̃ ≈ 1,

which means that in this single cycle the object moves all the
way to the bottom and only jams when it very quickly squeezes
the very last thin layer of suspension. Here, the relaxation time
scale is much smaller than the gravitational time scale, which
implies that the system very quickly relaxes to the quiescent
state φ ≈ φeq and the gravitational acceleration is not fast
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FIG. 15. (Color online) The duration 	̃t (dashed blue curve) of
and the traveled distance 	x̃ (solid red curve) during a stop-go cycle
as a function of the logarithm of the relaxation parameter κ̃ . Modeled
with Eq. (14), using B̃ � 1 and c = 1.

enough to jam the material. Here the object effectively never
jams and never goes into a stop-go cycle.

Now, when we fit our model to the experimental data of
the ping-pong ball we find a best fit for κ ≈ 40 s−1, which
corresponds to a relaxation time scale of 1/κ ≈ 0.025 s. Since
for x0 ≈ 1 cm the gravitational time scale is

√
x0/g ≈ 0.032 s,

this leads to κ̃ ≈ 1.3. In Ref. [21] we found the value of
κ ≈ 40 s−1 to be connected to a Darcy’s flow on a scale
of 100 cornstarch particle diameters, which is consistent
with mesoscopic length scales that have been found in these
suspensions [14]. With this model we also understand why we
do not see the stop-go cycles for lower packing fractions, as
κ will be larger and c will be smaller. As a result, the effect
will move closer to the bottom, such that it is not measurable
within our experimental resolution.

Above, and in Ref. [21], we observed that the model works
quite well for the first stop-go cycle of the spherical object
but fails for the subsequent cycles which we attributed to the
curved surface of the sphere. However, we expect the model
to work better for a cylinder, which has a flat bottom and,
therefore, the jammed cornstarch suspension layer is expected
to be closer to the modeled cylindrical shape than for the
sphere. When we compare the model to the experiments, see
Fig. 13, we indeed see that now the second stop-go cycle also
matches the experiment quite well, and the experimentally
observed number of cycles comes closer to the number we see
in the model. Another important point to make is that we kept
the same value for κ = 40 s−1 as for modeling the ping-pong
ball, which indeed should be just dependent on the suspension.
We did increase the compression factor from 0.025 for the
sphere to 0.07 for the cylinder, which also stands to reason
given the different geometry.

To quantify this difference between the ball and the cylinder,
we plot the maximal velocities in the successive stop-go cycles
in Fig. 16, normalized by the average bulk velocity, for both the
experiments and the model. Clearly, the experiments of the ball
and those of the cylinder follow two different paths: In the case
of the ping-pong ball the cycles damp out very fast, whereas
the cylinder has a more gradual decrease in maximal velocities.
The model follows both sets quite well, but overpredicts the
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FIG. 16. (Color online) The maximum velocities reached during
the stop-go cycles in the experiments (circles) and the model (lines)
per jump, normalized by the mean bulk velocity, positioned at cycle
0.

number of cycles for the ball to a larger extent than for the
cylinder, consistent with the above arguments.

VI. OTHER SUSPENSIONS

It is known that different suspensions can behave quite
differently, which is presumably connected to particle shape
and size distribution. An example of this is their behavior
when shaken vertically [17–20], where for comparable solid
fractions one may, e.g., observe stable holes, growing or
even splitting holes, or closing holes, depending on the
suspension that was used. We therefore repeated our settling
experiments in a variety of other suspensions. Although dense
suspensions of particles are all shear thickening [2], both the
bulk oscillations and the stop-go cycles observed in cornstarch
are absent in the other suspensions we studied. This can be seen
in Fig. 17, where we present settling velocities for suspensions
containing quartz flour, glass beads, polystyrene beads, and
compare these with a cornstarch suspension.

More specifically, as alternatives to cornstarch, we used
monodisperse spherical particles made of polystyrene with a
diameter of 20 μm, polydisperse glass spheres with diameters
between 0 and 20 μm, and quartz flour of 0–50 μm, in which
the particles have edgy, irregular shapes.
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FIG. 17. (Color online) Time evolution of the velocity of a steel
sphere with a diameter of 1.6 cm in three different suspensions: quartz
flower, polystyrene beads, glass beads, and cornstarch. Clearly, both
the bulk oscillations and the stop-go cycles are only observable in the
cornstarch suspension.
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For the glass and quartz flour particles, only thin layers were
used without full density matching and with a very high solid
fraction. In these thin layers, we hoped to encounter stop-go
cycles but these were not observable. It is possible that the
absence of the stop-go cycles is caused by the size distribution
of these particles, because in both cases there is a large amount
of small particles that can get between the fewer larger ones.
This causes that no sudden rearrangements of particles can
happen, which we believe to be the cause of the phenomena
we see. For the monodisperse spherical polystyrene beads
(d = 20 μm, φ ∼ 0.6) we did use a deep bath of suspension.
However, also in this case no bulk oscillations or stop-go cycles
were observed. Another difference is that the instant velocity
drop after impact on a cornstarch suspension [27] is far less
abrupt for the other suspensions we used, which suggests that
a much smaller jammed region is created below the impacting
object compared to cornstarch.

The remaining questions is what sets aside cornstarch to
these particles. If the origin is geometrical, it is most likely a
combination of size, size distribution, and shape. It would be
interesting if there would exist an alternative to cornstarch, i.e.,
a rather monodisperse sample of edgy, cubelike particles with
diameters of 20 μm or somewhat larger, that could be produced
in large enough quantities to perform settling experiments. To
our knowledge such an alternative is not available.

VII. CONCLUSIONS

In conclusion, we presented experiments of objects settling
into a dense bath of a cornstarch suspension, which revealed
pronounced non-Newtonian behavior: Instead of reaching a
terminal velocity and monotonously stopping at the bottom,
the object’s velocity oscillates within the bulk and goes through
a series of stop-go cycles at the bottom. These effects are not
observed in a wide range of other dense suspensions, leading us
to believe that cornstarch particles have some unique property.
We were not able to pinpoint this property, but suggest that it
may be connected to the particular shape and size distribution
of the particles.

We studied the influence of several parameters on the
observed phenomena and found that both disappear if the
solid fraction of cornstarch particles is below φ ≈ 0.38. This
suggests that contact forces must play an important role in
creating the observed behavior. If the density ratio between the
object and the cornstarch suspension (which always is larger
than 1) becomes low, the bulk oscillations disappear, but the
stop-go cycles are still clearly observable. Other parameters
that were studied are the object shape and the container size.

We discussed several models in the context of the bulk
oscillations and concluded that common shear-thickening and
linear viscoelastic models fail to account for the observed
phenomena. A hysteretic drag model captures the basic
phenomenology in the bulk. However, the model is entirely
phenomenological, and a link between the model parameters
and the physical properties of the system still needs to be
established.

We proposed a jamming model that describes the stop-go
cycles near the bottom and discuss its properties and its
plausibility. The model is capable of describing both our
experiments with spheres and cylinders of variable mass

and works particularly well for the experiments done with
a cylinder. This stands to reason because the geometry of the
cylinder is closest to the geometry assumed in the model.
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APPENDIX: LINEAR VISCOELASTIC MODELS

In this Appendix we will first discuss a model for the drag
a sphere experiences based on the Maxwell fluid rheology.
Subsequently, we will solve the equation of motion for
a settling sphere [Eq. (1)] in such a fluid using Laplace
transformations, and, finally, we will discuss extensions to
the Maxwell fluid, namely the extended Maxwell model
and the modified Kelvin-Voigt solid, that contain additional
dissipative elements.

Linear viscoelastic models for the drag force D (just like
the constitutive stress-strain (rate) relations for a viscoelastic
fluid) are equations composed of elastic and viscous terms
which provide a relation between drag and displacement for
the first and drag and velocity for the second or

Ḋ = −Eẋ ; D = −ηẋ , (A1)

in which we have taken the time derivative of the first relation
for practical reasons. The proportionality constant E has the
dimensions of a spring constant and η has the dimensions of
viscosity times length.

A Maxwell fluid consists of an elastic and a viscous term
in series [Fig. 18(a)], such that ẋ is the sum of an elastic and a
viscous part that both are subject to the same force such that

− ẋ = Ḋ

E
+ D

η
. (A2)

Writing D = ∫ t

0 ψ(t − t ′)ẋ(t ′)dt ′ and inserting this into
Eq. (A2) impliess that ψ(t) should be the solution of that
equation with ẋ = δ(t), the Dirac δ function. This can be solved
by first finding the solution to the homogeneous problem
[inserting ẋ ≡ 0 in Eq. (A2)] and subsequently integrating
the full equation [with ẋ = δ(t)] over a short interval around

(a) (b) (c)

FIG. 18. Schematics of the three linear viscoelastic models
discussed in this Appendix: (a) Maxwell fluid, (b) extended Maxwell
fluid, and (c) modified Kelvin-Voigt solid.
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t = 0. This yields

ψ(t) = −E exp

[
−E t

η

]
, (A3)

leading to the drag of Eq. (3) and by insertion into the equation
of motion Eq. (1) we obtain

mẍ = μg − E

∫ t

t ′=0
exp

[
−E (t − t ′)

η

]
ẋ(t ′)dt ′. (A4)

Introducing the Laplace transforms of the velocity u = ẋ

and the function ψ , namely ũ(s) ≡ ∫ ∞
0 exp (−st)ẋ(t)dt and

ψ̃(s) ≡ ∫ ∞
0 exp (−st)ψ(t)dt , respectively, we obtain by trans-

forming Eq. (A4) using standard Laplace techniques

msũ(s) − mu(0) = μg

s
+ ψ̃(s) ũ(s) . (A5)

Also, we obtain from Eq. (A3) that ψ̃(s) = −E/(s + E/η)
with which(

ms + E

s + E/η

)
ũ(s) = μg

s
+ mu(0). (A6)

The limit t → ∞ corresponds to the limit s ↓ 0 of the
Laplace transform, which when applied to Eq. (A6) leads
to lims↓0 ũ(s) = μg/(ηs) or limt→∞ u(t) = μg/η. Therefore,
there is a terminal velocity uT = μg/η. Subtracting this termi-
nal velocity by introducing a new variable ṽ = ũ − μg/(ηs)
[or, equivalently, v(t) = u(t) − μg/η] we obtain after some
algebraical manipulation of Eq. (A6)

ṽ(s) = v0
s + α

(s + α)2 + ω2
+

(
μg

ωm
+ Ev0

2ωη

)
ω

(s + α)2 + ω2
,

(A7)

with α = E/(2η), ω =
√

E/m − α2, and v0 = u(0) − μg/η.
The (standard) inverse transform of this equation directly leads
to Eq. (4),

ẋ(t) = uT + e−αt

[
v0 cos ωt +

(
μg

ωm
+ Ev0

2ωη

)
sin ωt

]
.

(A8)

The slightly more complicated extended Maxwell fluid
[Fig. 18(b)] and modified Kelvin-Voigt solid [Fig. 18(c)] are
defined by

D = DL + DR
(A9)

−ẋ = ḊR/E + DR/η = DL/η∗ ,

for the extended Maxwell fluid, and

D = DL + DR
(A10)

−ẋ = D/η + DR/η∗ = D/η + ḊL/E ,

for the modified Kelvin-Voigt solid. Along a similar path
leading to Eq. (A3), this leads to the following equation for
the extended Maxwell fluid (eM) kernel ψeM(t)

ψeM(t) = − [
E exp ( − (E/η)t) + η∗δ(t)

]
, (A11)

which leads directly to its Laplace transform

ψ̃eM(s) = −
[

E

s + E/η
+ η∗

]
. (A12)

For the modified Kelvin-Voigt solid (mKV) the situation is
slightly more complicated because the analysis leads to an
integral equation for D and ẋ that appears hard to solve for D,∫ t

0
[(1 + η∗/η)δ(t − t ′) + E/η]D(t ′)dt ′

= −
∫ t

0
[E + η∗δ(t − t ′)]ẋ(t ′)dt ′. (A13)

However, we only are interested in the Laplace transform
ψ̃mKV(s) which is readily obtained from the Laplace transform
of the above equation realizing that ψ̃mKV(s) ≡ D̃(s)/ũ(s),

ψ̃mKV(s) = − E/s + η∗

(1 + η∗/η) + E/(ηs)
. (A14)

Actually, both kernels are equivalent, which can be seen
by introducing a set of new parameters, namely for eM:
Ē ≡ E(1 + η∗/η), η̄ ≡ η(1 + η∗/η), and η̄∗ ≡ η∗, and for
mKV: Ē ≡ E/(1 + η∗/η), η̄ ≡ η, and η̄∗ = η∗/(1 + η∗/η).
With this, both kernels become

ψ̃(s) = − Ē + η̄∗s
s + Ē/η̄

. (A15)

Inserting this ψ(s) into the equation of motion Eq. (A5) gives(
ms + Ē + η̄∗s

s + Ē/η̄

)
ũ(s) = μg

s
+ mu(0) . (A16)

Again, the limit t → ∞ teaches us that there is a terminal
velocity uT = μg/η̄ and introducing a new variable ṽ = ũ −
μg/(η̄s) some algebraical manipulation leads to

ṽ(s) = v0
s + α

(s + α)2 + ω2
+

[
(1 − η̄∗/η̄)

μg

ωm

+
(

Ē

η̄
− η̄∗

m

)
v0

2ω

]
ω

(s + α)2 + ω2
, (A17)

with α ≡ (Ē/η̄ + η̄∗/m)/2, ω =
√

Ē/m − α2, and v0 =
u(0) − μg/η̄. The above equation can be instantly transformed
back into the time domain leading to a similar expression as
Eq. (A8). The particular case v0 = 0 of this inverse transform
reads

ẋ(t) = uT + e−αt

[(
1 − η̄∗

η̄

)
μg

ωm

]
sin ωt . (A18)

Note that now the oscillational term has its smallest amplitude
A. When we follow a similar line of reasoning as we did in
Sec. IV B and compute the ratio of amplitude and terminal
velocity we obtain

A

uT

=
(

1 − η̄∗

η̄

)
μg

mω

η̄

μg
= η̄ − η̄∗

mω
≈ η̄ − η̄∗

mω0
. (A19)

This ratio can be small if η̄∗ ≈ η̄, which equation for both
eM and mKV lead to η∗ ≈ η∗ + η, which means that η and η∗
both need to be small (compared to mω0). What does this imply
for the ratio of the damping time τ = 1/α and the oscillation
period T = 2π/ω? We have

2π
τ

T
= ω

α
= 2ω

(Ē/η̄ + η̄∗/m)
≈ 2ωη̄

Ē
= 2ωη̄

mω2
0

≈ 2η̄

mω0
,

(A20)
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where, for the first approximate equality, we used that η̄ and
η̄∗ are both small and, for the second one, that ω is of the same
order as ω0 =

√
Ē/m. Now both A/uT and τ/T are of order

η̄/(mω0). So if A/uT is small (as it should be in order to have
the oscillations with amplitude smaller than drift velocity we

observe), then so should τ/T . And if τ/T is small, this means
that the oscillation will damp out well within a single period,
which contradicts the observations. Therefore, also the eM and
mKV models are not capable of describing the observed bulk
oscillations.
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[26] D. Lohse, R. Rauhé, R. Bergmann, and D. van der Meer, Nature

432, 689 (2004).
[27] S. Waitukaitis and H. Jaeger, Nature 487, 205 (2012).

042301-14

http://dx.doi.org/10.1063/1.3248476
http://dx.doi.org/10.1122/1.550017
http://dx.doi.org/10.1103/PhysRevLett.100.018301
http://dx.doi.org/10.1103/PhysRevLett.100.018301
http://dx.doi.org/10.1103/PhysRevLett.103.086001
http://dx.doi.org/10.1122/1.3258076
http://dx.doi.org/10.1122/1.3258076
http://dx.doi.org/10.1122/1.4709423
http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1088/0953-8984/22/3/033101
http://dx.doi.org/10.1103/PhysRevLett.84.2064
http://dx.doi.org/10.1103/PhysRevLett.84.2064
http://dx.doi.org/10.1103/PhysRevE.67.051301
http://dx.doi.org/10.1103/PhysRevE.67.051301
http://dx.doi.org/10.1094/CCHEM.2001.78.1.64
http://dx.doi.org/10.1016/j.matchar.2009.02.012
http://dx.doi.org/10.1016/j.matchar.2009.02.012
http://dx.doi.org/10.1103/PhysRevLett.105.108302
http://dx.doi.org/10.1103/PhysRevLett.105.108302
http://dx.doi.org/10.1122/1.3696875
http://dx.doi.org/10.1122/1.3696875
http://dx.doi.org/10.1007/s00397-009-0415-3
http://dx.doi.org/10.1007/s00397-009-0415-3
http://dx.doi.org/10.1103/PhysRevLett.92.184501
http://dx.doi.org/10.1103/PhysRevE.81.036319
http://dx.doi.org/10.1103/PhysRevE.79.066308
http://dx.doi.org/10.1103/PhysRevE.79.066308
http://dx.doi.org/10.1103/PhysRevLett.107.088301
http://dx.doi.org/10.1103/PhysRevE.84.060401
http://dx.doi.org/10.1103/PhysRevLett.105.188301
http://dx.doi.org/10.1103/PhysRevLett.105.188301
http://dx.doi.org/10.1063/1.1687685
http://dx.doi.org/10.1016/j.jnnfm.2006.01.004
http://dx.doi.org/10.1016/j.jnnfm.2006.01.004
http://dx.doi.org/10.1122/1.550803
http://dx.doi.org/10.1038/432689a
http://dx.doi.org/10.1038/432689a
http://dx.doi.org/10.1038/nature11187



