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Abstract

The speed at which a liquid can move over a solid surface is strongly limited
when a three-phase contact line is present, separating wet from dry regions.
When enforcing large contact line speeds, this leads to the entrainment of
drops, films, or air bubbles. In this review, we discuss experimental and the-
oretical progress revealing the physical mechanisms behind these dynamical
wetting transitions. In this context, we discuss microscopic processes that
have been proposed to resolve the moving–contact line paradox and identify
the different dynamical regimes of contact line motion.
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Multiscale: indicates
that physical processes
at very different length
scales are intimately
coupled and cannot be
separated

1. INTRODUCTION

Those who have examined the slow motion of droplets on the window of a fast train are aware that a
macroscopic flow can be strongly affected by interactions at molecular scales. Namely, the droplets
are governed by the wetting dynamics of the contact line, which is the line that separates wet regions
from dry regions. This contact line motion is ultimately determined by the physicochemical
interactions with the substrate (Figure 1): The hydrophobicity of an impacting sphere, which
can be altered by a coating of a few nanometers thick, controls the outcome of a macroscopic
splash. In the past few decades, understanding and modeling this wetting dynamics have been the
subject of intense activity at the forefront of fluid mechanics, chemistry, and engineering. In recent
years, the main progress has been on the multiscale nature of the flow and how this gives rise to
dynamical transitions such as that shown for the splash in Figure 1. In addition, the increasing
control over surface properties has led to a wealth of new phenomena, such as superhydrophobicity,
whereas the complexity of liquids and their solutes can give rise to intricate patterning and self-
assembly (Figure 2). In many cases, research is motivated by numerous applications encountered
in industrial processes, ranging from oil recovery to imbibition of powders, microfluidics and
inkjet printing, to the deposition of pesticides on plant leaves.

In this review, we focus on a single fundamental problem of wetting dynamics: the motion
of a contact line over a smooth substrate. We do not touch on other contemporary issues such
as superhydrophobic substrates, Marangoni-driven flows, evaporation, and electrowetting, which
involve dynamic contact lines in relatively complex situations (for reviews, see Bonn et al. 2009,
Craster & Matar 2009, Mugele & Baret 2005, Roach et al. 2008). Rather, we focus on the nature
of dynamical wetting transitions that occur at large driving velocities: These transitions lead to
the entrainment of films, drops, or air bubbles (Figure 1). In many applications (such as coating,
painting, and immersion lithography), these entrainment phenomena are crucial limiting factors
for industrial processes. From a fundamental perspective, the dynamical wetting transition forms
an ideal testing ground for the various models of contact line motion: It provides more complete
information than the dynamic contact angle, for example, which is classically used to compare
different models.
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Figure 1
Impact of two spheres differing only in wettability via a nanometric coating on their surface: (a) hydrophilic, θe = 15◦, and
(b) hydrophobic, θe = 100◦. (c) The threshold capillary number, Ca, for air entrainment is shown as a function of the advancing contact
angle θa of the impacting body. Data correspond to various sphere diameters (colors) and various viscosities (symbols). Figure adapted by
permission from Macmillan Publishers Ltd: Nature Physics (Duez et al. 2007), copyright 2007.
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Figure 2
(a) The evaporative flux for a drop of volatile liquid, which is strongest near the contact line (Deegan et al.
1997). The mass transport inside the drop arises from competition between the evaporative flux (inducing
mass flux to the left) and the receding velocity of the contact line (inducing mass flux to the right). The
contact angle is indicated by θ , and x is the distance to the contact line. Panel a adapted from Berteloot et al.
(2008). (b) Magnified image of a stripe pattern left by the moving contact line of a dilute suspension of silica
spheres (diameter 123 nm). A multilayer close-packed array of particles can be observed. Panel b reprinted
with permission from Watanabe et al. (2009). Copyright 2009 American Chemical Society. (c) Photograph
of a solid surface after the evaporation of dilute suspension of TiO2 nanoparticles in ethanol. Rings of
accumulated particles correspond to the sticking phase of a stick-slip cycle. Panel c reprinted with permission
from Moffat et al. (2009). Copyright 2009 American Chemical Society.

Laplace pressure:
difference in pressure
�p = γ κ across an
interface of curvature
κ , induced by capillary
forces

Capillary length:
length scale arising
from the balance of
surface tension and
gravity, determining
the rise of a static
meniscus

We first introduce the basic concepts of static and dynamic contact lines in Section 2, and
Section 3 highlights the multiscale nature of the moving–contact line problem. We then extensively
review experimental and theoretical work on dynamical wetting transitions in Section 4 and discuss
the influence of molecular processes on contact line motion in Section 5. We close with a summary
of the different regimes of contact line motion and list some future issues in Section 6.

2. STATIC VERSUS DYNAMIC CONTACT LINES

2.1. Basic Concepts

From a thermodynamic point of view, the molecular forces give rise to a surface tension defined as
the Gibbs free energy per surface area of an interface separating two phases (de Gennes et al. 2002,
Rowlinson & Widom 1982). Equivalently, from a mechanical point of view, surface tension is the
resultant force per unit length due to a normal stress anisotropy in the vicinity of the interface
(Kirkwood & Buff 1949). For curved interfaces, this gives rise to a pressure jump, also called the
Laplace pressure. The equilibrium shape of a meniscus climbing a wall, or of a puddle of liquid
on a surface, results from the balance between this surface tension γ and gravity g. The balance
is governed by a characteristic length scale given by the capillary length �γ = √

γ /ρg, which is
typically 1 mm (with ρ the liquid density).

At the three-phase contact line, the wettability of the surface determines the equilibrium
contact angle θe of the liquid on the solid. Minimization of the Gibbs free energy shows that θe

is determined by a balance of solid-vapor, solid-liquid, and liquid-vapor surface tensions:

cos θe = γSV − γSL

γ
, (1)

which is known as Young’s (1805) law. Throughout, we use γ for the surface tension of a
liquid-vapor (or liquid-gas) interface. In practice, even the cleanest surfaces are not perfectly
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Contact angle
hysteresis: even the
cleanest substrates
allow for a finite range
of static contact
angles, rather than a
single equilibrium
contact angle

homogeneous and exhibit chemical or geometrical heterogeneities (de Gennes 1985). This
unavoidably leads to contact angle hysteresis, in which static contact angles can be achieved in
the range θr < θ < θa . Here θa,r are called advancing and receding contact angles, respectively.
This emphasizes that the contact angle is selected at the molecular scale (Snoeijer & Andreotti
2008), and it therefore acts as a boundary condition for the macroscopic interface.

2.2. The Singular Flow Geometry Near a Contact Line

The situation is completely different when the contact line moves with respect to the substrate,
in which case the system is no longer at equilibrium. Even for an infinitesimal velocity U, the
six decades separating the molecular size (nanometer scale) from the capillary length (millimeter
scale) are the locus of a force absent from the static problem: viscosity. The hydrodynamics is
in essence described by a corner flow (Huh & Scriven 1971), which has no intrinsic length scale
(Figure 3). We can draw a few general conclusions from this. First, the lack of intrinsic length
scale of the flow means that one can define only a local Reynolds number, based on the distance to
the contact line r. As this distance can become arbitrarily small, the Reynolds number is typically
very small, and inertia can often be neglected. Second, the viscous stress near the contact line
scales as ∼ηU/r , where η denotes the dynamical viscosity of the liquid. Hence the shear stress
diverges upon approaching the contact line at r = 0. It is instructive to rephrase this in terms

a b ca b c

θap

θ

Φ
h(x)

UU

U

x
r

θe

Figure 3
Streamlines in a wedge with planar interfaces (Huh & Scriven 1971) of angle θ for (a) a receding contact line
(one-phase flow, with θ close to zero) and (b) an advancing contact line (two-phase flow, with θ close to π ).
In the advancing case, the viscous dissipation in the gas phase can dominate over the liquid phase because of
the strongly confined circulation in the gas wedge. (c) Interface profile h(x) for a plunging plate under partial
wetting conditions. The interface near the contact line is highly curved so that the apparent contact angle
θap on the macroscopic scale is much larger than the true contact angle θe at the nanoscopic scale. The
intermediate close-up represents the hydrodynamic regime governed by viscosity and surface tension.
Panel c adapted from Bonn et al. (2009).
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Dip coating:
common geometry to
study wetting and
coating, in which a
solid surface is
plunged into or
withdrawn from a bath

of the rate of energy dissipation Ė (per unit contact line), which between a distance r and r + dr
scales as (Bonn et al. 2009, de Gennes 1985)

d Ė ∼ ηU 2 dr
r

∼ ηU 2 (d ln r). (2)

This implies that the total dissipation is not integrable at r = 0 nor at ∞, and one requires a
cutoff at both small and large scales (Dussan & Davis 1974, Huh & Scriven 1971). Typically,
these cutoffs appear at the molecular scale (∼10−9 m) and at the scale of the capillary length �γ

(∼10−3 m). Each decade between the microscopic scale and the macroscopic scale contributes a
comparable amount to the viscous dissipation, revealing the multiscale character of wetting flows.

These features of moving contact lines were first appreciated by Huh & Scriven (1971),
who analytically solved the flow in a wedge assuming a perfectly planar liquid-vapor interface,
using similarity solutions (Figure 3). The viscosity-dominated flow is described by Stokes
equations, which in two dimensions can be reduced to the biharmonic equation ∇4ψ = 0. Here
ψ(r, φ) is the stream function expressed in polar coordinates (r, φ). Using a no-slip boundary
condition at the wall, ur = −U , one derives the similarity solution for flow in a corner,
ψ(r, φ) = Ur(Acos φ + B sin φ + Cφ cos φ + Dφ sin φ). The coefficients are determined by the
four boundary conditions: The solid is impermeable and allows no slip, whereas the free surface
is impermeable and has no shear stress. The corresponding streamlines are sketched in Figure 3
for one-phase and two-phase flows. The solutions by Huh & Scriven also reveal that there is a
viscosity-induced pressure on the free surface. This pressure must be balanced by the capillary
pressure and hence requires a curvature of the interface. In this sense, the wedge with a planar
liquid-vapor interface is not a full solution of the moving–contact line problem: The free surface
will be strongly curved close to the contact line (Dussan 1979). The dimensionless number that
describes this viscocapillary balance is the capillary number,

Ca = Uη

γ
, (3)

which is the key parameter for moving contact lines.

3. COUPLING OF MOLECULAR AND MACROSCOPIC SCALES

The interplay between the different length scales is illustrated using the paradigmatic example of
dip coating, which has obvious importance in coating applications. As sketched in Figure 3c, a

EVAPORATION

A similar corner singularity is encountered when liquid drops evaporate on a surface (Figure 2) (Deegan et al.
1997). When evaporation is controlled by vapor diffusion and for small contact angles, the evaporative flux diverges
as j = J0/

√
x, where x is the distance to the contact line and J0 is a constant. Inside the liquid, this induces a flow

U evap ∼ J0/θ
√

x, oriented toward the contact line. Interestingly, an evaporative contact line usually recedes over
the substrate, in the direction opposite to U evap (Cazabat & Guena 2010). Comparing the receding velocity U with
U evap , one obtains a length scale �evap = (J0/θU )2 that can be as large as 100 μm (Berteloot et al. 2008). This length
separates regions where mass transport is toward or directed away from the contact line (Figure 2a). When the liquid
contains colloidal particles or polymers, the evaporation leads to self-assembly and pattern formation (Abkarian
2004). A well-known example is provided by the dark edge of a coffee stain, consisting of particles transported by
U evap . Figure 2c shows a case in which this has induced a stick-slip motion of the contact line, leaving various
deposits.
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partially wetting solid substrate is plunged into a liquid reservoir at a velocity U. The successive
close-ups near the contact line illustrate the physics at different scales. On the macroscopic scale of
the capillary length �γ , the shape of the meniscus is governed by the balance of gravity and surface
tension; at smaller scales, one encounters a viscocapillary regime characterized by the capillary
number Ca. This section addresses the physics of these regimes and how they are coupled. The
ultimate close-up in Figure 3c is on the molecular scale, which we treat separately in Section 5.

3.1. Macroscopic Scales: Apparent Contact Angle

When plunging the plate at moderate velocities, the meniscus attains a steady shape in the frame
of the reservoir. Figure 4a shows experimental measurements of the meniscus shape by Ramé &
Garoff (1996). The lower data set is the shape at Ca = 0, which is accurately fitted by the analytical
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Figure 4
(a) Shape of a dynamic interface measured by Ramé & Garoff (1996) for a cylinder plunged in a bath of silicon oil (θe ∼ 35◦). The dots
represent the local angle of the meniscus with respect to the substrate, θ , as a function of the horizontal distance to the contact line:
(blue dots) static meniscus, Ca = 0, and (red dots) dynamical meniscus, Ca = 0.1. The green solid lines are the analytical solutions for an
equilibrium profile. (Inset) Same data on a logarithmic scale. The blue solid line is the hydrodynamic prediction in the viscocapillary
regime. Experimental points do not reach below distances of approximately 10 μm from the contact line, but the interface is curved
down to nanometer scales. The green line is the fit of the macroscopic shape of the interface (θ → 90◦ at the bath) by the static
solution. Extrapolation to 120◦ defines the apparent contact angle θap . Data taken from Ramé & Garoff (1996). (b) Partially wetting
plate withdrawn from a silicon oil bath at capillary number Ca, forming a dynamic contact line at height z (Ca). The thick gray line is
derived from the multiscale lubrication theory. The colored data sets correspond to different experimental realizations. The maximum
capillary number is reached close to zc = √

2�γ , which corresponds to θap = 0. Data taken from Delon et al. (2008). (c) A liquid film is
entrained above the critical capillary number Cac . The film consists of two parts of incompatible thickness joined by a shock. Panel c
adapted with permission from Snoeijer et al. (2006). Copyright 2006 by the American Physical Society.
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Apparent contact
angle: an extrapolated
angle based on the
large-scale meniscus
profile (not the true
angle of the interface)

Lubrication
approximation:
systematic method to
simplify the
hydrodynamic
equations, which is
valid for a
quasi-parallel flow (for
small contact angles)

Viscous bending:
viscosity-induced
curvature of the
interface, with a local
contact angle that
varies logarithmically
with the distance to
the contact line

solution for an equilibrium profile. The upper data set is the dynamical meniscus shape at Ca =
0.1. Here the variation of the angle θ is nonmonotonic: It first increases with distance to the
contact line, whereas it decreases to connect to the bath at 90◦. Again the large-scale solution can
be accurately fitted by the formula for a static meniscus solution. On smaller scales, one observes
the onset of the viscosity-dominated hydrodynamic regime (Kavehpour et al. 2003, Ramé & Garoff
1996).

Extrapolating the static outer solution toward the contact line leads to an apparent macroscopic
contact angle θap , which in this case is approximately 120◦. A simple way to extract θap from the
experiment is to measure the elevation of the contact line over the bath, z, using the static meniscus
solution (Landau & Lifshitz 1984):

z = �γ

√
2(1 − sin θap ). (4)

Clearly, the apparent contact angle of a meniscus depends on Ca, as it determines how far the
system is pushed from equilibrium. For advancing contact lines θap is greater than θe (as in
Figure 4a), whereas θap < θe in the receding case. In many flow situations, where Ca is small, the
apparent contact angle completely describes the dynamics. Examples are drop spreading (Hocking
1983), drops sliding down a window at low velocities (Ben Amar et al. 2003, Rio et al. 2005), and
the relaxation of contact line perturbations (Golestanian & Raphaël 2001, Nikolayev & Beysens
2003, Snoeijer et al. 2007b).

3.2. Mesoscopic Scales: Hydrodynamic Regime

We now turn to a detailed description of the hydrodynamic regime. This refers to the distances to
the contact line that are smaller than the capillary length, at which the meniscus shape is influenced
by viscous effects.

3.2.1. The viscocapillary balance. The balance between viscosity and surface tension is most
easily captured using the lubrication approximation, for which the angles are assumed small (Oron
et al. 1997). The Stokes flow then reduces to a third-order differential equation for the interface
profile h (x), as defined in Figure 3c,

d 3h
d x3

= −σ 3Ca
h2

, (5)

which expresses the balance between the capillary and the viscous stresses. Here σ is +1 for
advancing contact lines and −1 for receding contact lines. With this convention, Ca is considered
positive for both advancing and receding cases.

3.2.2. The Voinov solution. Remarkably, the highly nonlinear Equation 5 has an exact solution
(Duffy & Wilson 1997). In some specific asymptotic limits, the exact solution reduces to the form
proposed by Voinov (1976),

h′(x) ≈ θ (x) 	 [9 Ca ln(x/c )]1/3. (6)

This relation reveals the viscous bending of the interface: The contact angle varies logarithmically
with the distance to the contact line. This asymptotic solution by Voinov is valid up to large
distances x → ∞ for advancing contact lines (σ = 1 in Equation 5) but not for receding contact
lines (σ = −1). The solution has the convenient property that the macroscopic curvature h′′(∞)
is zero, which can thus be imposed as a macroscopic matching condition for advancing contact
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Matching: term
borrowed from
matched asymptotic
expansion; often
loosely used to
indicate the coupling
of solutions at different
scales

lines. For receding contact lines, the matching to macroscopic scales is more intricate (Eggers
2004, 2005b).

Equation 6 can be generalized to flows with large contact angles, i.e., beyond the assumptions
of the lubrication approximation (Cox 1986, Snoeijer 2006, Voinov 1976), by a perturbation
expansion around the Huh & Scriven solutions. Surprisingly, the generalized result for θ (x) is
almost identical to Equation 6, to within a few percent, up to angles as large as 150◦. This means
that Equation 6 is applicable to the experimental data for θ (x) shown in Figure 4. Indeed, the
Voinov solution accurately describes the onset of the viscous regime and bridges the gap between
molecular and macroscopic scales.

3.3. Matching

The matching of the equilibrium solution to the mesoscopic/hydrodynamic solution provides
the relation between θap and Ca (Cox 1986, Hocking 1983, Voinov 1976). In cases in which
Equation 6 represents the correct asymptotics, the matching reduces to the Cox-Voinov law

θ3
ap = θ3

e + 9σ Ca ln
(

α�o

�i

)
. (7)

Here �o is an outer (macroscopic) length (i.e., the capillary length or the size of a spreading
drop), whereas �i is an inner (microscopic) length that represents the molecular processes that
regularize the viscous singularity (which relates to c in Equation 6). The numerical constant α

is nonuniversal and depends on details of the microscopic and macroscopic boundary conditions
(Cox 1986, Eggers & Stone 2004).

We emphasize that Equations 6 and 7 correspond to a particular solution of the hydrodynamic
problem, and hence they are not universally applicable. A prime example that is not described
by the Cox-Voinov relation is dip coating with a reversed plate velocity, i.e., where the plate
is withdrawn from the bath (Eggers 2004, 2005b). In this case, Equation 5 does not admit any
solutions with h′′(∞) = 0, and the matching requires the full analytical solution by Duffy & Wilson
(1997). Figure 4b shows the bifurcation diagram for steady-state solutions for plate withdrawal
(Delon et al. 2008, Snoeijer et al. 2007b). The menisci are represented by the meniscus rise z,
related to θap according to Equation 4, for various plate velocities Ca. The maximum possible
plate velocity, or critical capillary number Cac , is typically of the order of 0.01, or even less for
small contact angles. The critical speed is achieved at zc ≈ �γ

√
2. This means that at the maximum

speed, the apparent contact angle vanishes, θap ≈ 0 (Chan et al. 2011, Maleki et al. 2007, Sedev &
Petrov 1991, Snoeijer et al. 2007b), consistent with the conjecture by Deryaguin & Levi (1964) and
with the matched asymptotic expansion by Eggers (2004). Interestingly, the steady-state solutions
continue beyond this critical meniscus rise, on to a higher branch of meniscus solutions. It is
impossible to attribute an apparent contact angle to these meniscus shapes based on Equation 4
(Chan et al. 2012).

Figure 4b illustrates that the menisci for plate withdrawal are governed by a nontrivial bifur-
cation scenario, which is predicted by hydrodynamics, but which reaches beyond a simple picture
based on an apparent contact angle. How quantitative is the hydrodynamic prediction, e.g., for
the critical speed Cac ? The lubrication model leading to the solid line in Figure 4b accounts only
for the viscous dissipation between the microscopic scale, here characterized by a slip length of
two molecular sizes, and the capillary length. The microscopic contact angle was assumed equal
to the receding equilibrium angle θr . We emphasize that the hydrodynamic prediction is quite
sensitive to the microscopic contact angle, as can be expected for small Ca: The few degrees of
uncertainty related to contact angle hysteresis induce variations of the critical Cac by as much as
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20%. This is the level of quantitative agreement typically achieved by the hydrodynamic theory.
The precise value of the slip length only weakly (logarithmically) affects the results. We return to
this important point in Section 5 in which we review molecular process in detail. However, as any
other source of dissipation would add up to viscous dissipation, this quantitative agreement with
experiments suggests that most of the dissipation takes place in the hydrodynamic scales (roughly
from 10 nm to 1 mm).

4. DYNAMICAL WETTING TRANSITIONS

An interesting situation arises when a liquid is forced to flow over a surface that it does not sponta-
neously wet in thermodynamic equilibrium. In such partial wetting conditions, it is energetically
favorable for the liquid to leave most of the surface dry. However, an external driving of the flow
can push the system sufficiently far from equilibrium such that it undergoes a dynamical wetting
transition. In practical terms, this means that the contact line motion cannot exceed a maximum
speed: Enforcing larger velocities leads, for example, to the deposition of liquid films, breakup of
liquid drops, or entrainment of air bubbles. In this section we summarize recent experimental and
theoretical progress on the nature of these dynamical wetting transitions.

4.1. Entrainment of Liquid Films

One of the simplest ways to deposit a thin film of liquid is by withdrawing a solid from a reservoir
(Figure 4b) such that the contact line is receding. Under complete wetting conditions, this dip
coating gives a uniform film of thickness that is controlled by the speed of withdrawal. This goes
back to the pioneering work by Landau & Levich (1942) and Deryaguin (1943), who demonstrated
that the thickness hLLD ∼ �γ Ca2/3.

The situation is much more complex when the liquid is partially wetting the solid. Figure 4b
shows that the contact line can rise to a steady position without leaving a film when the speed of
withdrawal is sufficiently small (Snoeijer et al. 2007b). Above a critical Cac, however, steady-state
solutions cease to exist, and a dynamical wetting transition occurs (Blake & Ruschak 1979, Eggers
2004, Quéré 1991, Sedev & Petrov 1991, Snoeijer et al. 2006). The physics of this dynamical
wetting transition is such that above the critical speed, the capillary forces can no longer compete
with the large viscous forces that develop inside the flow (de Gennes 1985).

Above the critical speed, one observes the dynamical evolution of a liquid film that is very
different from the smooth Landau-Levich film (Figure 4c). The dynamical film solution splits into
two parts because of a mismatch of microscopic and macroscopic boundary conditions (Snoeijer
et al. 2006). Immediately behind the contact line, there is a thick film of thickness hf , which is
determined by the microscopic boundary conditions imposed at the contact line. At the side of
the reservoir, one observes the Landau-Levich-Derjaguin film. The two solutions are connected
by a shock that travels upward with respect to the reservoir, at a velocity described accurately by
lubrication theory (Snoeijer et al. 2006). In terms of the capillary number, the thickness in front
of the shock scales as h f ∼ �γ Ca1/2, which at small Ca is indeed thicker than hLLD ∼ �γ Ca2/3.

4.2. V-Shaped Contact Lines

Stability analysis has shown that an infinitely extended, straight contact line is linearly stable for
all capillary numbers, all the way up to the critical point (Golestanian & Raphaël 2001, Snoeijer
et al. 2007b). Experimentally, however, the finite lateral extension of the contact line has major
practical consequences. This can be seen in Figure 4c: No entrainment occurs at the sharp edge
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Figure 5
V-shapes appearing at the dynamical wetting transition: (a) dip coating (Delon et al. 2008); (b) sphere plunging in a bath, as in Figure 1
(Duez et al. 2007); (c) silicon oil drop moving down an inclined plane (Podgorski et al. 2001); and (d ) radius of curvature R of the
rounded edge of a cornered drop as a function of Ca. The solid green line is the prediction by hydrodynamic theory. Panel a adapted
from Delon et al. (2008), reproduced with permission from Cambridge University Press. Panel b courtesy of Lyderic Bocquet and panel
c courtesy of Laurent Limat.

of the wafer, inducing a sharp kink in the contact line higher up the solid. Indeed, such corners,
or V-shapes, are a generic feature of advancing and receding contact lines near a transition.

4.2.1. Reducing the contact line normal speed. Figure 5 represents a broad collection of
contact lines that spontaneously develop a V-shape (Blake & Ruschak 1979, Delon et al. 2008,
Duez et al. 2007, Le Grand et al. 2005, Peters et al. 2009, Podgorski et al. 2001, Winkels et al.
2011). In all experiments, the corners start to emit little droplets (receding contact lines) or bubbles
(advancing contact lines) when moving at even higher speeds. Note that advancing corners appear
at much higher velocities than receding corners. The ratio of advancing to receding speeds is
about 10 for water (Duez et al. 2007, Podgorski et al. 2001) but can be even larger than 100 for
very viscous liquids (Benkreira & Khan 2008).

The formation of a corner is an elegant way to delay the dynamical wetting transition. The
physical mechanism, first described by Blake & Ruschak (1979), is that the inclination of the contact
line reduces the normal velocity, U ⊥ ∼ U sin φ. Here φ is the top-view angle of the corner. As
the local fluid velocity near the contact line is equal to U ⊥ (Rio et al. 2005), the effective driving is
reduced by a factor sin φ. In analogy to the Mach cone for supersonic flows, it was proposed that the
top-view angle evolves according to sin φ ∼ U c /U to maintain a normal velocity below the critical
speed Uc (Blake & Ruschak 1979, Podgorski et al. 2001). Although this argument provides a good
description for large top-view angles, it does not capture the pearling transition, i.e., the dynamical
wetting transition at which small droplets are emitted from the corner tip (Snoeijer et al. 2007a).

4.2.2. The case of sliding drops. The dewetting corners appearing at the rear of sliding drops
can be understood from a model that considers the tip of the corner to be infinitely sharp. By
assuming a perfect conical geometry of the interface, Limat & Stone (2004) identified a similarity
solution that describes the three-dimensional shape of the interface. Defining the coordinates
(x, y) as in Figure 5d, these solutions are of the form h(x, y) = x� Ca1/3H(y/x), where � is the
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side-view angle and H is the cross-sectional similarity profile of the cone. The cone solution has a
vanishing interface curvature along the central axis in the direction of the flow, i.e., ∂2h/∂x2 = 0.
This is fundamentally different from straight contact lines because, for the corners, the side-view
angle ∂h/∂x = � no longer varies with x. Instead, the driving capillary forces inside a corner
originate from the transverse curvature, ∂2h/∂y2 ∼ Ca1/3

/x. This three-dimensional feature is
not captured by the Mach-cone argument and is crucial for explaining the pearling transition
(Snoeijer et al. 2007a).

The fine structure of the corner tip can be characterized by the curvature 1/R of the contact
line. Figure 5d shows the tip curvature for different speeds before the pearling transition (Peters
et al. 2009). Whereas at small velocities 1/R is approximately constant, the tip curvature increases
dramatically near the transition. This can be understood quantitatively from a variation of the
Cox-Voinov relation (Equation 7). At a small distance from the tip (much smaller than R), the
contact line is effectively straight. In this regime, one expects the usual contact line dynamics
characterized by an inner microscopic scale �i . The behavior changes at distances of order R, at
which the geometry becomes truly three dimensional and the transverse curvature provides the
dominant capillary driving force. Interpreting Equation 7 as an equation for R, one obtains

R = α−1�i exp

(
θ3

e − θ3
ap

9Ca

)
≈ α−1�i exp

(
θ3

e

9Ca

)
. (8)

This relation is shown as the prediction by hydrodynamic theory in Figure 5d. It accurately
describes the experimental data, upon fitting a microscopic length α−1�i = 7 nm.

4.3. Dewetting Holes

Another class of dewetting transitions is encountered after a partially wetting surface is covered
by a macroscopic liquid film. Thermodynamically, such a film is metastable because the surface
free energy can be reduced by collecting the film into liquid drops. There are two mechanisms
that lead to such dewetting. The first is encountered when the thickness falls within the range of
microscopic interactions (typically 2–10 nm). This induces a linear instability (spinodal dewetting)
that is characterized by a well-defined wavelength (Reiter 1992, Saulnier et al. 2002, Seemann et al.
2001, Thiele 2003). A second mechanism is induced by large-amplitude perturbations: Once a
small hole is nucleated inside the film and a contact line appears, the hole will rapidly grow and
dewet the surface (Brochard-Wyart et al. 1987, de Gennes et al. 2002, Redon et al. 1991). Here we
consider the second mechanism, which involves a moving contact line. Figure 6 shows a snapshot
of a hole for the dewetting of an air film (Figure 6a) and for a liquid film (Figure 6b). As the
contact line bordering the film retracts over the solid, the liquid or air inside the film is collected
into a rim, which grows slowly in time. It is found experimentally that the speed of retraction of
a viscous film is constant (Redon et al. 1991).

The problem consists essentially of a receding front at the contact line forming the front
of the rim, coupled to an advancing front forming the back of the rim. The dewetting speed
is determined by equating θap for the advancing front to θap of the receding front (de Gennes
et al. 2002). This viewpoint was confirmed recently by matched asymptotic expansion of the
lubrication equations (Flitton & King 2004, Snoeijer & Eggers 2010). The receding front shown in
Figure 6d represents an exact solution of Equation 5, which is matched to the advancing front. As
a result, it was found that the appropriate law for θap (Ca) was not the classical result by de Gennes
(1986), as was previously assumed (de Gennes et al. 2002), but was instead the Cox-Voinov relation.
The advancing front is described by Equation 7, with θe = 0, and involves the rim width w and
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Figure 6
Dewetting holes. (a) Image and schematic of a rewetting hole observed when a film of air is entrained
dynamically into a silicon oil bath. (b) Image and schematic of a dewetting hole observed for a film of silicon
oil on a fluorinated substrate. (c) Dewetting capillary number as a function of the receding contact angle θr . L
is the logarithmic factor appearing in Equation 9. Different colors represent different molecular weights of
the liquid. The error bars mainly reflect the uncertainty on the contact angle. Panel c data taken from Redon
et al. (1991). The solid line corresponds to the hydrodynamic theory (Equation 9). (d ) Cross section of the
solution obtained by asymptotic matching of the receding front ( gray solid line) and the advancing front
(dashed red line). Panel d adapted from Snoeijer & Eggers (2010).

film thickness h f as relevant length scales. The receding contact line (σ = −1) involves a ratio
w/�s , where �s is the slip length. Equating the advancing and receding θap , Snoeijer & Eggers
(2010) found the velocity

Ca = θ3
e

9

[
ln

(
4aθe Ca1/3

3e
w2

�s h f

)]−1

, (9)

where a is the numerical constant a = 1.094 . . . . Figure 6c replots the dewetting speeds for
different liquids and wettabilities obtained by Redon et al. (1991). Here the factor L represents
the logarithmic factor in Equation 9, in which the slip length �s was estimated as 2

√
N a , where

the N is the number of monomers and a the monomer size (see Section 5.1). All experimental data
are consistent with the hydrodynamic prediction of Equation 9.

4.4. Entrainment of Air

The dynamical wetting transition for advancing contact lines results in the entrainment of air.
The splash in Figure 1 arises when the contact line cannot advance sufficiently fast over the solid
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to close the cavity in the wake of the sphere (Duez et al. 2007). Once again, the entrainment
of air occurs at much larger speeds than the dynamical wetting transition for receding contact
lines. Typical values for the critical Ca are of order 1 for advancing contact lines (Benkreira &
Khan 2008, Marchand et al. 2012) instead of 0.01 as observed for receding contact lines. For
very hydrophobic surfaces, the splashing threshold scales as Ca ∼ (π − θe )3 (Figure 1a). This
is strongly reminiscent of the θ3

e dependence characteristic for receding contact lines (see, e.g.,
Equation 9). This suggests that the critical speed is governed by the gas phase, which consists of
a wedge of angle π − θe and which is receding over the solid (Figure 3b). A similar dependency
on θe was found for drop emission by liquid filaments and in simulations (Do-Quang & Amberg
2009, Ledesma-Aguilar et al. 2011).

The mutual influence of the liquid and gas phases on air entrainment was mostly investigated
in the context of dip coating (Benkreira & Ikin 2010, Benkreira & Khan 2008, Blake & Ruschak
1979, Burley & Kennedy 1976, Marchand et al. 2012, Simpkins & Kuck 2000). These experiments
typically vary the dynamical viscosity of the liquid phase η: The critical speed decreases for more
viscous liquids, suggesting that dissipation in the liquid is important. However, the dependence
is much less than the expected ∼1/η. Marchand et al. (2012) showed that this can be attributed
to the gas viscosity: The dissipation in the air becomes significant because of the confinement
of the wedge of air (Figure 3b). Another striking effect is that the critical speed increases when
the air pressure is reduced to approximately 1–10% atm. Because such a pressure change does
not affect the gas viscosity, this effect must result from inertia in the gas or from the increase of
the mean free path. The latter would imply a larger slip length, which reduces the dissipation in
the gas and leads to a larger critical speed (Marchand et al. 2012). Similar effects of the gas phase
were observed in drop splashing (De Ruiter et al. 2012, Mandre et al. 2009, Tsai et al. 2010, Xu
et al. 2005). A definitive description of the role of the air in dip coating and in splashing is still
lacking.

5. MOLECULAR PROCESSES

An important conclusion reached in nanofluidics is that the Navier-Stokes equations remain valid
down to the nanometer scale for simple fluids such as water under normal conditions (Bocquet
& Charlaix 2010). This means that from ∼10 nm from the contact line up to macroscopic scales,
the shape of a moving interface can be described by continuum hydrodynamics. In this section,
we review different processes that become relevant at the scale at which hydrodynamics breaks
down. We anticipate that all descriptions require two physical quantities: (a) a length scale that
measures at what scale microscopic processes start to play a role and (b) an energy scale that
expresses the strength of the interaction with the solid (i.e., the wettability). We first concentrate
on mechanisms that are commonly used in combination with continuum hydrodynamics, for
example, in the context of numerical simulations involving moving contact lines (Section 5.1).
We then turn to thermally activated processes (Section 5.2), for which we point out similarities
and differences with the hydrodynamic theory.

5.1. Slip Length, Disjoining Pressure, and Diffuse Interface Models

Any description of wetting hydrodynamics requires a microscopic model to release the moving–
contact line singularity. Here we discuss three different physical mechanisms, namely slip,
molecular interactions, and diffusion, and comment on how these affect the motion of contact
lines.
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5.1.1. Slip length. It is now well established that motion of the first few molecular layers above
a solid substrate can be described by the Navier slip boundary condition:

uz=0 = �s
∂u
∂z

, (10)

where �s is called the slip length, and z = 0 denotes the position of the wall. For gases, the
existence of velocity slip was first predicted by Maxwell (1878), who argued that the slip length
must be proportional to the mean free path �mf p . This proportionality �s ∼ �mf p was demonstrated
experimentally (Andrew & Harris 1995), numerically (Morris et al. 1992), and analytically (Bocquet
1993), with a proportionality constant of 2.4 in experiments. For liquids, a fully microscopic
prediction for the slip length was derived from the statistical physical theory of liquids (Huang
et al. 2008):

�s ∼ ηDa kB T
[γ a2(1 + cos θe )]2

a . (11)

This expression contains the molecular size a, the self-diffusion coefficient D, and a wettability
factor γ (1 + cos θe ) that arises from the tangential forces on the liquid near the wall. Indeed, the
dependence (1 + cos θe )−2 is approximately verified in experiments and in numerical simulations
(Bocquet & Charlaix 2010, Huang et al. 2008). Moreover, for simple liquids, the Stokes-Einstein
relation is approximately valid and leads to ηDa ∼ kB T . As a consequence, the slip length �s

is not expected to depend on the liquid viscosity for simple liquids. Polymer solutions typically
exhibit much larger slip lengths of the order of the molecule size, 2

√
N a , where N is the number

of monomers and a the monomer size.

5.1.2. Slip and moving contact lines. For moving contact lines, the Navier slip condition leads
to a regularization of the viscous stress divergence discussed in Section 2.2 (Dussan & Davis
1974). In the lubrication approximation, the viscous stress applied to the solid by a flowing film
of thickness h is 3ηU /(h + 3�s ), and the rate of dissipation per unit contact line becomes

Ė = 1
2
ηU 2

∫
3h

(h + 3�s )2
d x. (12)

This is now a convergent integral as the layer thickness h → 0.
The Navier slip boundary condition is a popular treatment to remove the moving–contact line

singularity: It is well established experimentally and theoretically, and it is easily incorporated
into a continuum description. However, we wish to point out a couple limitations of the method.
The main problem is that the slip condition introduces only a length scale, and not an energy
scale, to express the interaction with the solid wall. In practice, this means that the hydrodynamic
equations still lack a boundary condition for the microscopic contact angle, which is necessary to
close the problem. Moreover, the introduction of slip regularizes the divergence of shear stress
and energy dissipation, but it still leads to a logarithmically divergent pressure p ∼ ηU /�s ln(h/�s )
(Buckingham et al. 2003).

5.1.3. Disjoining pressure. This interaction with the solid substrate can be introduced using an
effective interface potential (de Feijter 1988). A common approximation is to write the interfacial
free-energy functional (per unit contact line) as

F [h(x)] =
∫

d x[γ (
√

1 + h′2) + ω(h)]. (13)

The first term represents the capillary energy of the liquid-vapor interface, whereas ω(h) is an
effective potential due to the finite thickness of the layer h. Taking the functional derivative of
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Thermal activation:
motion toward a lower
energy state across an
energy barrier,
induced by a rare
thermal fluctuation

Equation 13, one obtains the pressure discontinuity across the interface, δF/δh(x) = −γ κ +�(h).
The first term is the Laplace pressure due to interface curvature κ . The second is the disjoining
pressure (or internal energy per unit volume), defined as �(h) = dω/dh. Descriptions beyond
Equation 13 lead to more complex nonlocal equations for the capillary pressure (Getta & Dietrich
1998, Merchant & Keller 1992, Snoeijer & Andreotti 2008).

By itself, the introduction of a disjoining pressure does not remove the contact line singularity
(Dussan & Davis 1974). However, a common treatment involving a disjoining pressure is the
introduction of a functional form for ω(h) that exhibits a minimum ω′(h = h∗) = 0. Then the
liquid interface tends to a precursor film of thickness h∗, for which the disjoining pressure �(h∗) = 0
(Eggers 2005a, Pismen 2001, Pismen & Eggers 2008, Pismen & Pomeau 2000, Schwartz et al.
2005, Thiele et al. 2002). This method has the convenient property that it leads both to a selection
of the microscopic contact angle and to regularization of the viscous stress because the liquid
thickness is always nonzero, even without explicitly using the Navier boundary condition. The
introduction of such a disjoining pressure avoids the caveats of the slip model. From a physical
perspective, the drawback is that precursor films are usually not encountered under partially
wetting conditions. It has been argued, however, that it is possible to include a �(h) that does not
lead to precursor films (Colinet & Rednikov 2011, de Gennes et al. 1990).

5.1.4. Diffuse interface models. Above we implicitly assumed that the liquid-vapor interface is
characterized by a mathematically sharp profile h (x). One should bear in mind that the interface
has a finite width, typically a few molecular sizes (Rowlinson & Widom 1982). This can be
characterized by a variation in the (coarse-grained) density field φ(�r), which smoothly connects
the high-density liquid phase to the low-density vapor phase. The jump in density occurs over
a scale ζ , the interface width. From the perspective of continuum hydrodynamics, the capillary
forces inside the diffuse interface are described by a force per unit volume ∼ ∇φ, which has to be
incorporated in the Navier-Stokes equation ( Jacqmin 2000; Qian et al. 2004, 2006; Yue & Feng
2011).

The diffuse interface framework is popular for numerical simulations, in particular when the
flow geometry does not allow for a lubrication approximation. Even if the no-slip boundary con-
dition is applied, the contact line can move through phase transition (for a liquid-vapor interface)
or by diffusion (for two immiscible liquids). The characteristic length scale over which the phase
transformation or diffusion occurs is determined by the diffusion length �D, which is a priori in-
dependent from the interface width ζ (Qian et al. 2006, Ren & E 2007). If a Navier slip boundary
condition is imposed, the effective slip observed on a macroscopic scale is determined by the larger
of the two lengths �s or �D. In addition, generalizations of the Navier slip boundary conditions
have been proposed to account for the stresses inside the diffuse interface (Carlson et al. 2009, Qian
et al. 2006, Ren & E 2007). In the simplest version, slip velocity is dominated by the unbalanced
Young stress, leading to a law for the microscopic contact angle:

cos θ − cos θe ∼ Ca
ζ

�s
. (14)

Note that for typical fluids, the lengths ζ , �D, and �s are expected to be of comparable magnitude.

5.2. Thermally Activated Processes

A rather different perspective on the dynamics of wetting is to consider that contact line motion
is a thermally activated process (Blake 2006, Blake & De Coninck 2011, Blake & Haynes 1969,
Seveno et al. 2009). The key idea of this molecular kinetic theory (MKT) is that a contact line
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moves by small jumps induced by thermal fluctuations. Indeed, thermal noise leads to a stochastic
stress inside the liquid that can compete with viscous and capillary stresses. For example, the
thermal length �T = √

kB T /γ is the scale below which thermal activation can dominate capillary
forces, inducing a roughening of the surface (Flekkoy & Rothman 1996). At room temperature,
this thermal length is typically a few angstroms.

Below we first discuss the original interpretation of MKT, in which the size of elementary jumps
is determined by the molecular structure of the liquid and of the nearly homogeneous substrate.
In this case, the jump size is comparable to the thermal length �T , and we point out the relation
to Eyring’s model for viscosity. We then consider MKT as a description of contact lines moving
on heterogeneous substrates. This corresponds to the limit in which the size of elementary jumps
is much larger than the thermal length, and in which case MKT provides a detailed perspective
on contact angle hysteresis.

5.2.1. Molecular kinetic theory for contact line motion. A full derivation of contact line hy-
drodynamics including thermal fluctuations has not yet been attempted. However, MKT provides
a phenomenological description that treats contact line motion as a single mode of propagation,
characterized by a length scale ξ and by an energy barrier for the activated process E∗ (Blake 2006).
On (nearly) homogeneous substrates, the activation length ξ is subnanometric (Seveno 2010), and
the energy barrier is of the order of the solid-liquid interaction, E∗ ∼ γ ξ 2(1 + cos θe ). Using the
reaction rate theory for thermal activation (Hanggi et al. 1990), the frequency at which the barrier
is crossed is ν = ν0 exp (− E∗

kB T ), where ν0 is the attempt frequency. For molecular motion, the
attempt frequency is typically the thermal frequency ν0 ∼ kB T /h ∼ 1013 Hz, where h is Planck’s
constant.

If the system is submitted to a driving force F, a quantity of energy ±Fξ/2 is imparted to the
particle in the form of work during an elementary contact line movement. The plus (minus) sign
arises when the motion is in (opposite to) the direction of the force. As a consequence, the contact
line moves with an average velocity U = ξ (ν+ − ν−), determined by the net frequency of forward
and reverse jumps ν± = ν0 exp( −E∗±Fξ/2

kB T ). For a contact line with nonequilibrium angle θ , the
unbalanced capillary force reads F = γ ξ (cos θe − cos θ ). This leads to the central result of MKT
(Blake & Haynes 1969):

U = 2ν0ξ exp
(

− E∗

kB T

)
sinh

[
γ ξ 2(cos θe − cos θ )

2kB T

]
. (15)

This relation predicts the contact line speed as a function of the driving force cos θe − cos θ . We
emphasize that θ must be interpreted as a truly microscopic contact angle, defined on a molecular
scale ξ , which is fundamentally different from the apparent (macroscopic) contact angle θap . In the
hierarchy of scales in Figure 3c, the angle θ applies to the close-up on molecular scales, whereas
θap applies to the largest-scale meniscus profile.

The arguments of the Boltzmann factors in Equation 15 scale with γ ξ 2/kB T = (ξ/�T )2. In
the original interpretation of MKT, this ratio of length scales is of order unity. Hence one can
approximate sinh(x) 	 x and recover a linear relation between the speed and driving force (Seveno
et al. 2009). In this interpretation, MKT does not represent any contact angle hysteresis: The limit
of vanishing velocity gives the same value for θe both for advancing contact lines (U ↓ 0) and for
receding contact lines (U ↑ 0).

5.2.2. Relation to Eyring’s viscosity. MKT is based on the same principles as Eyring’s phe-
nomenological theory for the viscosity of liquids (Blake & De Coninck 2011). In a bulk liquid, ξ is
interpreted as the size of a molecular rearrangement, induced by a shear stress τ . Taking F = τξ 2,
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and following the steps of the preceding paragraph, one obtains Eyring’s formula for the liquid
viscosity:

η = kB T
ν0ξ 3

exp
(

Eη

kB T

)
. (16)

The activation energy Eη results from liquid-liquid interactions and can be estimated by the
liquid-liquid adhesion energy Eη ∼ 2γ ξ 2. This phenomenological description provides a realistic
estimate for the viscosity of simple liquids (Monnery et al. 1995). Note that the polymeric liquids
standardly used in labs to reach high viscosities (e.g., glycerol) cannot be described by Eyring’s
viscosity model as they present a glassy dynamics.

Combining the Eyring viscosity with the linearized MKT, Equation 15 gives

U = γ

η
exp

(
Eη − E∗

kB T

)
(cos θe − cos θ ). (17)

The energy Eη − E∗ appearing in the Boltzmann factor is typically of the order of γ ξ 2(1 − cos θe )
such that the Boltzmann factors are once more of order unity. As the viscosity appears explicitly
in Equation 17, MKT can be interpreted in a hydrodynamic framework. On the scale of the first
molecular layers, the balance of viscous stress and capillary force would induce a bending of the
surface by an amount cos θe − cos θ ∼ Ca. This relation is of the same form as Equation 14, except
that the ratio ζ/�s is replaced by a Boltzmann factor of order unity. From this perspective, MKT
should not be considered as an alternative to the hydrodynamical description, but as a particular
slip model for the molecular-scale boundary condition.

5.2.3. Dissipation induced by surface heterogeneities. Substrates generically present hetero-
geneities of chemical or geometrical origin. These heterogeneities can be modeled as effective
energy barriers, which have a characteristic width ξ and height E∗. Although not designed for
that purpose, the MKT model turns out to provide an effective description of contact line motion
due to activated processes in the presence of substrate heterogeneities (Prevost et al. 1999, Rolley
& Guthmann 2007). Figure 7a shows the velocity of a moving contact line as a function of the
apparent contact angle in the vicinity of the threshold of depinning. Over a very small range of
apparent contact angles (approximately 2◦), one observes an exponential increase of the velocity.
This is consistent with the thermal activation model of Equation 15, provided that ξ/�T � 1. A
fit of the experimental data reveals an activation length scale ξ of typically 10 nm, which is at least
one order of magnitude larger than �T . Introducing the dimensionless number H = E∗/γ ξ 2, one
can write the MKT as

U 	 2ν0ξ exp
(

− ξ 2

�2
T

[H + cos θe − cos θ ]
)

. (18)

Bearing in mind that (ξ/�T )2 	 103, this expression predicts a quasi-discontinuity of the micro-
scopic contact angle across Ca = 0: The contact line velocity can become significant only when
the energy barriers disappear, for cos θ 	 cos θe ± H . Therefore, H is naturally interpreted as
the contact angle hysteresis: H = 1

2 (cos θr − cos θa ), where θa,r are the advancing and receding
contact angles. Because the length scale of the activation is now much larger than �T , one can
no longer interpret ν0 as the thermal attempt frequency. Following Kramers’s analysis (Hanggi
et al. 1990, Kramers 1940), the attempt frequency ν0 is given by the well oscillation frequency
ν0 ∼

√
γ H /ρξ 3 in the underdamped regime and by the dissipative frequency ν0 ∼ H γ /ηξ in the

overdamped regime. Both estimates are approximately 109 Hz for typical experiments.

www.annualreviews.org • Moving Contact Lines 285

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
3.

45
:2

69
-2

92
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ite

it 
T

w
en

te
 o

n 
01

/0
3/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



FL45CH12-Snoeijer ARI 16 November 2012 14:26

6. DYNAMICAL WETTING REGIMES

In this concluding section we propose an organization of the different regimes of contact line
motion.

6.1. Hydrodynamic Versus Thermally Activated Regime

The motion of contact lines can be deduced from a balance between the power generated by
capillary forces and the total energy dissipation taking place at different scales. There is substantial
direct evidence that, beyond the threshold of contact angle hysteresis, the motion is dominated by
viscous dissipation. (a) The predicted logarithmic variation of the interface slope with distance to
the contact line is observed over one decade (Figure 4a). (b) The phenomenology of dynamical
wetting transitions can, and can only, be recovered using hydrodynamics (Figure 4b). (c) The
radius of curvature at the back of a V-shaped drop is observed to vary exponentially with the
capillary number over one decade (Figure 5). (d ) At low Reynolds numbers, the hydrodynamics
describes quantitatively all experimental results, within an uncertainty that is comparable to the
hysteresis (Figures 4–6). This implies that the dominant dissipation is spread over six decades of
length scales (from 1 nm to macroscopic distances to the contact line) and that molecular processes
essentially appear as cutoffs to the dissipation. The tests cited above are much more delicate than
the classical measurement of θap versus speed: The dynamic contact angle can usually be fitted
accurately by more than one model (Le Grand et al. 2005, Seveno et al. 2009).

At low capillary numbers, close to the threshold of depinning, molecular-scale processes generi-
cally become dominant owing to surface heterogeneities. Indeed, even for the best physicochemical
coating that can be realized, the hysteresis is still approximately 1% so that the Boltzmann factor
appearing in Equation 18 is always much larger than unity. In this limit, the contact line motion
occurs by thermal activation (Figure 7a). It is accurately described by MKT, provided that the

0

0.884

0.882

0.880

0.878

0.876

0.874

0.872

0.870
10–9 10–8 10–7 10–6 10–5 5 × 10–3 –5 × 10–3 –10–2

60

40

20

0

a b

Ca

cos θap

Ca

θap

Figure 7
(a) Relation between the apparent contact angle θap and the capillary number Ca in a dip-coating experiment performed with liquid
hydrogen on a cesium substrate. The exponential dependence on velocity is the signature of a thermally activated regime below Ca =
10−5. Data taken from Rolley & Guthmann (2007). (b) Same as in panel a but for silicon oil on a fluorinated substrate (blue symbols;
Delon et al. 2008) and for a drop of the same fluid flowing down an inclined plane (red, orange, and gray symbols; Rio et al. 2005). The
quantitative agreement with the multiscale lubrication theory (Figure 4b) points to a hydrodynamic regime above Ca = 10−4.
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ratio of jump size and thermal length ξ/�T is much larger than unity. There are two noticeable
exceptions for which ξ/�T could be of order unity such that there is no hysteresis: liquid lenses,
for which the substrate is not solid but consists of a liquid layer, or nearly perfectly homogeneous
substrates in molecular dynamics simulations.

The crossover between the thermally activated regime and the hydrodynamic regime takes
place around the depinning transition (cos θ 	 cos θe ± H ) at which the energy barriers vanish.
Figure 7b shows experimental measurements of apparent contact angles in the hydrodynamic
regime. One can clearly see the hysteretic gap in θap at very small Ca, which is the range in
which contact line motion is thermally activated. For future work, it will be interesting to observe
thermally activated–contact line motion and the hydrodynamic regime in a single experimental
setup—comparing the data in Figure 7a,b, the crossover is expected between Ca ∼ 10−5 and 10−4.

6.2. Inertial Effects

Another transition takes place when inertial effects become comparable to viscous effects. Figure 8
shows an extreme situation—the initial phase of the spreading of a water drop—which is totally
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Winkels et al. (2012) 
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Winkels et al. (2012) 
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15 nm

Figure 8
(a) Inertial spreading of water drops of radius R = 0.82 mm on different surfaces. Panel a adapted with permission from Bird et al.
(2008). Copyright 2008 by the American Physical Society. (b) Contact radius r as a function of time t for different equilibrium contact
angles. Different colors correspond to different drop sizes. Data taken from Biance et al. (2004) (diamonds), Bird et al. (2008) (squares),
and Winkels et al. (2012) (circles and triangles correspond to experiments and molecular dynamics, respectively). The time is rescaled by
the inertial time

√
ρR3/γ based on density ρ and surface tension. The red triangle shows the scaling exponent 1/2. (Insets) Initial stages

of drop spreading for a water drop (top) and for a simulated Lennard-Jones drop (bottom). Figure adapted with permission from Winkels
et al. (2012). Copyright 2012 by the American Physical Society.
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controlled by inertia (Biance et al. 2004, Bird et al. 2008, Winkels et al. 2012). Moreover, the splash-
ing in Figure 1 clearly involves inertial effects. To address the crossover between viscous and iner-
tial regimes, one can add perturbatively the inertial effect to the lubrication equation, which can be
interpreted as a depth-averaged (Saint-Venant) equation. This method was previously used in the
context of Landau-Levich films (Koulago et al. 1995) and shows that inertia provides additional dis-
sipation when a plate is withdrawn. Cox (1998) followed another approach using a perturbation ex-
pansion, which was qualitatively (not quantitatively) confirmed experimentally (Stoev et al. 1999).
It remains to be investigated whether the effect of inertia could explain the differences when com-
paring low-viscosity fluids such as water to silicon oils (Podgorski et al. 2001, Winkels et al. 2011).

FUTURE ISSUES

1. The systematic procedure to capture the hydrodynamic and thermally activated regimes
in a single description is to solve fluctuating hydrodynamics (Flekkoy & Rothman 1996).
Is this feasible in the context of moving contact lines?

2. The activated–contact line motion involves an activation length ξ of approximately
10 nm. What determines the activation surface ξ 2? How is it correlated with the surface
roughness, density of defects, and/or with collective effects (Le Doussal et al. 2009)?

3. New challenges for moving contact lines emerge from the influence of additional mech-
anisms, such as the inclusion of liquid inertia.

4. Strong evaporation can affect the contact line motion. In particular, if the liquid contains
a solute such as polymers or colloids, this leads to stick slip and patterning (Figure 2).

5. Another type of complexity is related to the substrates. Contact line motion can be greatly
influenced, e.g., by patterns on superhydrophobic surfaces (Roach et al. 2008).

6. If the substrate is a soft solid that can be deformed by capillarity, dissipation can be
dominated by the viscoelastic behavior of the solid (Carre et al. 1996). How is the contact
line motion influenced if the substrate is swelling, such as a gel or elastomer?
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