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Oscillating and star-shaped drops levitated by an airflow
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We investigate the spontaneous oscillations of drops levitated above an air cushion, eventually inducing a
breaking of axisymmetry and the appearance of “star drops”. This is strongly reminiscent of the Leidenfrost stars
that are observed for drops floating above a hot substrate. The key advantage of this work is that we inject the
airflow at a constant rate below the drop, thus eliminating thermal effects and allowing for a better control of the
flow rate. We perform experiments with drops of different viscosities and observe stable states, oscillations, and
chimney instabilities. We find that for a given drop size the instability appears above a critical flow rate, where
the latter is largest for small drops. All these observations are reproduced by numerical simulations, where we
treat the drop using potential flow and the gas as a viscous lubrication layer. Qualitatively, the onset of instability
agrees with the experimental results, although the typical flow rates are too large by a factor 10. Our results
demonstrate that thermal effects are not important for the formation of star drops and strongly suggest a purely
hydrodynamic mechanism for the formation of Leidenfrost stars.

DOI: 10.1103/PhysRevE.88.023017 PACS number(s): 47.55.D−

I. INTRODUCTION

Drops of water can levitate above a very hot plate due
to the so-called “Leidenfrost” effect [1,2]. In this situation,
drops float on a thin layer of water vapor that results from
evaporation between the hot substrate and the drop. The shape
and dynamics of the vapor layer can be quite complex [3]
and can be used to move liquid along a surface with the help
of unevenly textured substrates [4–6]. Under some conditions,
drops spontaneously start to oscillate and develop “star shapes”
or “faceted shapes” [7–11]. Recently it has been found that this
phenomenon occurs not only in the case of Leidenfrost drops,
but also for drops levitating on a steady and ascending uniform
airflow at room temperature [12]. Figure 1 shows examples of
levitating star drops obtained with water, taken from Ref. [12].
The origin of the oscillatory instability has remained unclear,
but the striking similarities with the Leidenfrost stars suggest
a common mechanism for both, based only on hydrodynamics
and free-surface dynamics, without invoking any thermal
effects.

Drops with faceted shapes have been observed in various
systems with a periodic forcing of frequency close to the
eigenmodes of the drop. Such drop shapes arise for drops
on vertically vibrated hydrophobic substrates [13,14], acous-
tically levitated drops with low-frequency modulated pressure
[15], liquid metal drops subjected to an oscillating magnetic
field [16], or drops on a pulsating air cushion [17,18]. Using
simple arguments [19], the appearance of these stars can be
explained by the temporal modulation of the eigenfrequency
of the drop, due to the external forcing, thus inducing a
parametric instability. This suggests the following scenario
for the formation of stars in a steady ascending airflow: A
first instability leads to a vertical oscillation of the drop,
which through a secondary, parametric instability leads to the
formation of (period doubled) oscillating stars.

Rayleigh and Lamb [20] already predicted that for small
enough deformations and for inviscid spherical drops, the

resonance frequencies of the drops are given by

fn = 1

2π

[
n(n − 1)(n + 2)γ

ρlR3

] 1
2

, (1)

where fn stands for the resonance frequency of the nth
mode of oscillation, R is the radius, and γ and ρl are the
liquid surface tension and density, respectively. When the
drop shape is different from the ideal spherical case,
the resonance frequencies are modified with much more
complex expressions, but in the case of a liquid puddle of
radius R much larger than the averaged drop height Hd , the
eigenfrequencies take the following simple expression [19]:

fn = 1

2π

[
n(n2 − 1)γ

ρlR3

] 1
2

, (2)

where n is now the number of lobes on the drop in the azimuthal
direction. Note that in practice, the frequencies predicted by
Eqs. (1) and (2) are very similar. Thus it becomes clear that
a parametric instability should occur when the drop radius
is modulated in time. The same happens when due to a
periodic external forcing, the drop stands in a time-periodic
acceleration field. In that case the height of the cylindrical
liquid puddle Hd also varies periodically, and for a nonwetting
condition (contact-angle close to 180◦) this height is simply
equal to twice the effective capillary length �c = √

γ /(ρla),
a being the instantaneous acceleration (without forcing, a is
equal to the gravity constant g). By volume conservation,
a time dependence of Hd results into an oscillation of the
radius R. Assuming small deformations, R will have the
same time periodicity as the external forcing. Then, star-
shaped oscillations by parametric forcing typically display a
frequency equal to half of the driving (vertical oscillation)
frequency [19].

In the case of a steady, nonpulsating air cushion or
Leidenfrost levitation, the key question is to identify the
origin of the vertical oscillations: What is the mechanism
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FIG. 1. Star drops levitated by a steady (i.e., nonpulsating)
airflow. Top: mode n = 3; bottom: mode n = 4. Figure from Ref. [12].
Reproduced with kind permission of the European Physical Journal
(EPJ).

that induces a time-periodic instability, which in turn gives
rise to vertical oscillations of the drop center-of-mass and
shape? Once the origin of this instability is explained, the
appearance of star drops is likely to originate from the
parametric instability as stated above. Recent experiments with
star drops levitated on a continuous flow air cushion (Fig. 1)
suggest that these star drops do not result from a temperature
gradient-induced instability, contrary to what was previously
hypothesized [21]. Apart from the oscillatory instability, a
levitated drop can develop a “chimney,” for which an air bubble
develops below the drop and pierces the center of the drop
[22]. This phenomenon has been explained theoretically from
a breakdown of steady solutions [23,24]. Interestingly, the
numerics for very viscous drops did not display any oscillatory
instability. Therefore, the determination of the mechanisms for
oscillations requires a more complex numerical scheme than
those of Refs. [23,24].

In this paper we experimentally and numerically study
drops levitated by an air cushion, focusing on the instability
to chimney formation, oscillations, and star drops. The
experiments consist of a significantly improved variant of
that in Ref. [12], where we now can determine the threshold
of instabilities with good accuracy. For the numerics, the
proximity of the cushion to the drop calls for a method capable
of accurately describing the gas-liquid interface, which leads
us to employing an inviscid Boundary Integral method for the
description of the drop. Inspired by the success of lubrication
models in providing steady solutions for the drop shape we
use a lubrication approximation for the airflow below the
drop (Fig. 2). This coupling has also been applied to simulate
the impact of liquid drops on solid plates and appeared to
be successful in the regimes of both small and large impact
velocities [25]. The numerical implementation of the drop is
completely axisymmetric and aims to explain the appearance
of up-down oscillations for the drop.

The paper is organized as follows: In Sec. II, we present
the setup we used to obtain the oscillating levitated drops
experimentally, for liquids of different viscosities. Results of
these experiments are shown in Sec. III. Then we describe the
numerical scheme in detail (Sec. IV) and show the different
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FIG. 2. (Color online) Numerical implementation of the drop
levitated by an airflow with uniform upward flow velocity Ug . The
numerics consist of a coupling between the Boundary Integral method
for the inviscid drop and the lubrication approximation for the airflow
beneath the drop. The flow inside the drop is assumed to be a potential
flow; the flow at the bottom of the drop is a viscous flow, in which
inertial effects are neglected.

regimes exhibited by the model Sec. V). In the last section, we
conclude on these results.

II. EXPERIMENTAL SETUP

It is well known that in case of Leidenfrost drops, the drops
are levitated by a vapor layer. The vapor, coming directly
from the drop, generates a cushioning layer for levitation
due to the build-up of a lubrication pressure between the
lower part of the drop and the substrate. To avoid temperature
effects and to directly control the gas flux in the layer,
another experimental method was introduced in Ref. [12].
In this experimental method the air cushion is created by an
ascending airflow (Fig. 3). The airflow is forced through a
porous glass medium (Duran Group, Filter Funnel, porosity 3,
inner diameter 56 mm) that is covered by a coarse grid. The
bronze grid is made super-hydrophobic (electroless galvanic
deposited metal [26] and humid low-surface energy molecular
deposition) to avoid imbibition of the hydrophilic porous
medium. The large pressure load on the porous medium creates
an approximately homogeneous outflow, which is assumed to
be hardly affected by the small pressure load of the drop.
Consequently, if the airflow Q is large enough, a lubricating
layer (air cushion) can emerge and support the complete weight
of the drop. There exists a threshold drop size R and gas flow
rate Q at which the drops become unstable and start to oscillate,
i.e., the instability threshold. The airflow is measured with an
Aalborg flow meter (range: 0–60 liters/min). Since the drop
is very mobile in the levitated state, it is necessary to hold it
using a needle. This fixates the drop at a constant location on
the substrate. The same needle is used to supply and subtract
liquid from the drop via a syringe. To study the drop behavior
for various flow rates Q and drop sizes R, the drop motions are
recorded from a top view, with a high-speed camera at 1000
fps (Phantom V9). Using a macro lens (Nikon Aspherical
Macro, 1:2) with extension tubes, a resolution of 42 μm/pixel
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FIG. 3. (Color online) Sketch of the experimental setup. Illumi-
nation and camera view are obtained using a beam splitter. A flow
rate Q is prescribed through a porous medium. Since the levitated
drop is very mobile, it is held in position by a needle, which also
supplies the liquid.

is obtained (see Fig. 3). Reflective illumination (IDT, LED
light source) is realized via a 45◦ tilted beam splitter.

The aim of this work is to study the instability threshold
(appearance of drop oscillations) for levitated drops. To
verify reproducibility of the experiment, each measurement
is repeated multiple times and by two different procedures.
In the first method, each measurement starts with a new
constant flow rate Q = Qt and a small drop size R. Then
the drop volume is slowly increased by pumping liquid into
it. The feeding is continued until the drop reaches a floating
state (R < Rt ) which finally becomes unstable once the drop
size equals the threshold size Rt for flow rate Qt . The volume
increase of the drop is directly stopped and subsequently,
the dynamics of the unstable drop at the threshold value are
recorded with the camera. Note that the threshold for levitation
and that for the appearance of oscillations are very close
to each other. A second method to determine the instability
threshold is measurement of Qc, obtained after drops have
turned unstable. For a drop starting in the unstable state at
Q = Qt , the airflow is slowly reduced until a value is reached
which results in a stable state: Q = Qc. This second threshold
Qc turns out to be slightly smaller than Qt . However, the
difference is comparable to the accuracy of the measurements
of Qc, so we cannot make any definite statements on whether
or not the instability is hysteretic. In what follows we therefore
plot the average threshold Qm, obtained upon increasing the
drop size and variation of the flow rate. Qm is determined as
(Qt + Qc)/2. The error bar indicates the difference between
the two measurement procedures.

After measurement of Qc the flow rate is further reduced,
which finally results in a sessile drop state again. A snapshot is
made at this zero flow rate [i.e., sessile drop Fig. 5(a)], and the
drop size R is determined as the maximum radius of the sessile
drop in top view. To reduce as much as possible the influence of

any possible airflow fluctuations coming from, e.g., variations
in the substrate or hydrophobic grid fixation, all data points
are measured at a fixed position on the substrate. To study the
influence of viscosity on the drop dynamics, two liquids are
used: water (1 mPas) and a water-glycerine mixture (60 mPas).
The resulting dynamics are characterized by liquid viscosity
ηl , drop size R, flow rate Q, and oscillation frequency f .

III. EXPERIMENTAL RESULTS

A. Low-viscosity drops

In this section we study the stability and dynamics of
levitated water drops (ηl = 1 mPas). This is reminiscent to
the classical Leidenfrost drops, levitated above a hot substrate
[22]. By varying the drop radius R and airflow rate Q, the
threshold for drop oscillations (Rt ,Qm) is determined. Results
for water are plotted in Fig. 4 as circles. The open circles
are oscillations without detachment from the needle. In these
cases the size of the drop is measured in a sessile state. The
solid circles correspond to violent oscillations or a chimney,
which can lead to the detachment from the needle. The size is
then approximated in the unstable levitated state. Clearly the
threshold drop size R decreases with flow rate. The smallest
drops investigated here are stable up to very high flow rate,
while the largest drops destabilize even at very small Q. A
chimney was, for example, observed for the smallest flow rate
and largest drop size R � 9.6 mm (top blue solid circle in
Fig. 4). This point is indeed close to the blue dashed line
that indicates the onset of the chimney instability for water
drops, as determined for thermal Leidenfrost drops by Biance
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FIG. 4. (Color online) Measured instability threshold Qm, for
levitated drops. The upper axis gives the gas velocity, estimated by
dividing the total flow rate by the area of the porous medium. Data
represent all data points for water and water-glycerine drops, in circles
( and ) and squares ( and ), respectively. Since for the smallest
flow rate the drop size could not be measured (it detaches from the
needle), R is measured in levitated state instead of sessile state. These
points are therefore indicated by a solid symbol ( and ). Note that
point corresponds to the chimney instability from Fig. 7(b). The
theoretical prediction of the critical radius for chimney instability is
indicated by the blue dashed line, and red dotted line for the used
water and water-glycerine mixture, respectively.
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FIG. 5. Examples of levitated drop instabilities. All images show
water drops, except for (b), which is a water-glycerine drop. (a) Sessile
water drop. (b) Levitating water-glycerine drop. (c) Chaotic mode
water drop oscillation. (d) Water drop, mode n = 2 (R = 4.1 mm,
f = 13.8 Hz). (e) Water drop, mode n = 3 (R = 6.1 mm, f =
14.2 Hz). (f) Water drop, mode n = 4 (R = 5.2 mm, f = 17.8 Hz).
(g) Water drop, mode n = 5 (R = 8.6 mm, f = 14.3 Hz). (h) Water
drop, mode n = 6 (R = 6.1 mm, f = 30.9 Hz).

et al. [22] (Rc � 4.0�c, where �c is the capillary length).
Interestingly the chimney instability was predicted to occur
even at vanishing flow rate [24]. However, constraints in the
control of extreme small flow rates limited measurements in
this range of parameters.

For all levitated drops, the oscillating motion is recorded
at the threshold flow rate Qt . Typical images obtained in the
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FIG. 6. (Color online) The frequency measured for faceted drops
as shown in the images of Fig. 5. Each data point ◦, corresponds to
one water drop measurement. The red solid line is the prediction from
the corresponding eigenmode for a puddle, given by Eq. (2).

experiments are shown in Fig. 5. Figure 5(a) is a sessile water
drop, with Q = 0, while snapshots [Fig. 5(c)–5(h) correspond
to oscillating drops at nonzero flow rates. Once the water drops
are unstable, the oscillations appear to be rather chaotic, i.e.,
a combination of modes [Fig. 5(c)]. However, in a few cases
as well one distinct mode was observed ranging from mode
n = 2 to n = 6, as is shown in Fig. 5(d)–5(h).

In case of these well-defined modes, the oscillation fre-
quency can be determined and compared to the prediction
of Eq. (2). The results are shown in Fig. 6. For mode
n = 3, frequencies are measured for seven different drop sizes
R = 3.2–6.1 mm. Rescaling from Eq. (2) indeed collapses
the data. Additionally the magnitude and trend are in quite
good agreement with the inviscid theory (red solid line) for all
modes.

B. High-viscosity drops

The viscosity of the drop is increased to investigate
whether damping of the inner drop flow indeed suppresses star
oscillations. Experiments shown in this section are carried out
with liquid drops of a water-glycerine mixture (ηl = 60 mPas).
Again the drop size R and flow rate Q are varied to determine
the instability threshold for drop oscillations. The results are
included in Fig. 4. The data points for large liquid viscosity
are indicated with red squares ( , ). For the solid red squared
data points, a chimney instability is observed, for which an
air bubble pierces the center of the drop. Such a chimney is
shown in Fig. 7(b). The size of the drop could therefore be
determined only from a drop in levitated state.

Comparing the threshold of high-viscosity drops with water
drops, we observe a clear increase of the threshold. However,
the dependence on viscosity is relatively weak, given that
the liquid viscosity was increased by a factor of about 60.
By contrast, the dynamics are strongly affected by the liquid
viscosity. While the oscillations of water drops at threshold
is chaotic and nonaxisymmetric, the viscous drops display
only axisymmetric oscillations: we observe clear “breathing”
modes [symbol with error bars in Fig. 5(b)], for which the
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FIG. 7. (a) Top row: an image sequence of the breathing mode oscillation of a large-viscosity drop (water glycerine, 60 mPas). As the
oscillation amplitude is rather small, a space-time diagram is shown as well, which is built from slices similar to the white boxes indicated in
the images. (b) For larger drop sizes we observe the formation of a chimney.

levitated drop remains circular in top view while oscillating.
The large viscosity of the liquid drop apparently damps all
higher mode oscillations, and the formation of star drops is
completely suppressed. A more detailed picture illustrating
this dynamics is shown in Fig. 7(a). Consecutive snapshots
(top row) all depict circular drops and a space-time diagram
of the drop edge illustrates the radial oscillating motion. This
regular dynamics make it relatively easy to measure the main
oscillation frequency for all data along the threshold curve (see
Fig. 8). Note that in this measurement the frequency therefore
is a function of R(Qt ). Hence, a small radius in this figure
automatically also means a relative large flow rate Qt and vice
versa (see Fig. 4).

Apart from this large contrast in shape deformations, also
the measured oscillation frequencies are different from those
measured with low-viscosity water drops. Frequencies for
high-viscosity drops are considerably higher, by a factor
two or more, than the lowest mode (n = 2) of the inviscid
Rayleigh and Lamb frequency for a drop of the same size, but
compare rather well with numerical results for axisymmetric
oscillations of an (inviscid) drop on an air cushion (see
Secs. IV and V). One possible interpretation is that the gas
flow and the liquid flow act as a coupled dynamic system that
oscillates. In the case of water this oscillation, acting as a
parametric forcing, directly leads to star oscillations which
are well described by Eq. (1). However, viscosity affects
or even suppresses star oscillations in high-viscosity drops.
As a result one essentially observes the frequency of this
axisymmetric oscillation of the coupled system, which in
contrast to that of the star oscillations only weakly depends
on drop size. In summary, due to the suppression of star
oscillations viscous drops reveal the underlying axisymmetric
oscillation from which the stars originate. It is this axisym-
metric oscillation that we will study numerically in the next
sections.

Finally, we again observe chimneys when the drop size
becomes too large, R ≈ 8 mm (see right panel of Fig. 7).
Since the capillary length for the used water-glycerine mixture
is �c ∼ 2.3 mm, the chimney occurs at about 3.5�c. This is
consistent with earlier experiments on water drops [22] and
theory [24] for which the critical radius Rc ≈ 4.0�c (Rc for the
water-glycerine mixture is indicated by the red dotted line in
Fig. 4).
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FIG. 8. (Color online) Measured oscillation frequency at thresh-
old for high-viscosity drops (see Fig. 4) (blue dots with error bars),
combined with numerical results. For the numerics, the measured
oscillation frequency (excitation frequency) as a function of the drop
top view radius with airflow velocity 1 and 5 m/s, at three different
liquid viscosities is shown. In the numerics, the frequency appears
to be independent of liquid viscosity, decreases with increasing drop
radius, and decreases with increasing airflow velocity.
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IV. NUMERICAL METHOD

We now investigate the dynamics of drops on an air cushion
by numerical simulations. Since previous work, where drops
were modeled by Stokes flow, did not result into any oscillation
[24], inertia inside the drop must be important, and we now
consider the opposite limit: potential flow. The latter is coupled
to a viscous airflow, modeled in the lubrication approximation.
The model is similar to that in Ref. [25], where it was used for
simulating drop impact.

A. Parameters and dimensional analysis

Similar to the experiments, the main parameters that will be
varied are the drop volume V and the gas flow, here denoted
by the upward gas velocity Ug . Other parameters are the
gas viscosity ηg (lubrication approximation), liquid density
ρl (potential flow), and the surface tension γ . These can be
combined into three dimensionless numbers. A measure for
defining the drop size is the Bond number, Bo, taking into
account gravity influence against surface tension influence:

Bo =
√

ρlR
2
0g

γ
= R0

�c

, (3)

where R0 = ( 3V
4π

)
1
3 is the radius of the unperturbed spherical

drop with volume V , and g is the acceleration of gravity. �c

is the capillary length, as defined in the Introduction. Second,
we define the capillary number

Ca = ηgUg

γ
, (4)

in which Ug is a constant if we assume a uniform upward
flow beneath the drop. Ca measures the influence of gas
viscosity against surface tension and can be interpreted as
the dimensionless gas velocity.

By setting a balance between the viscous forces of the gas
flow and the square root of the inertial forces induced by
the drop times the surface tension force, we finally introduce
a dimensionless quantity which we will call the Ohnesorge
number:

Oh = ηg√
ρlγ �c

. (5)

Note that this definition of Oh deviates from the standard
definition, since it combines the viscosity of the gas and the
density of the liquid.

Then, using �c, γ

ηg
, and γ

�c
as the relevant length, velocity,

and pressure scales, the radial positions r , vertical positions h,
velocities u, times t , and pressures P are nondimensionalized
as, respectively,

r̃ = r

�c

, h̃ = h

�c

, ũ = ηg

γ
u,

t̃ = γ

�cηg

t, P̃ = �c

ηg

ηg

γ
P = �c

γ
P .

From now on we will drop the tildes and all variables will be
dimensionless, unless stated otherwise.

B. Boundary Integral method coupled to lubricating gas layer

The drop is assumed to consist of an incompressible and
irrotational fluid, and can therefore be described by potential
flow. The velocity field inside the drop is the gradient of a
scalar velocity potential φ. The Laplace equation,

∇2φ = 0, (6)

is valid throughout the whole drop including its surface
contours. The Boundary Integral method is a way to solve this
equation for φ, with the proper boundary conditions [27–29].
For the levitated drop setup, the entire drop surface is a free
surface, and the dynamic boundary condition for that surface
is the unsteady Bernoulli equation:

1

Oh2

(
∂φ

∂t
+ 1

2
|∇φ|2

)
= −z − κ − Pg, (7)

where t is time, z is the absolute height, and κ is the
local curvature at a point of the drop surface. The left-hand
side describes the inertial effects of the drop, balanced by
gravitational effects, the Young-Laplace pressure, and the
influences by the airflow on the right-hand side. Pg is the
external pressure which is varying over the lower drop
surface after introducing the gas flow. For this, the drop surface
has been divided into two parts: the top of the drop where the
surrounding pressure is atmospheric; and the bottom of the
drop, where we deal with the lubrication pressure induced by
the gas flow. The separation point between these two parts is
taken at r = R, where R is the top view radius, but results
are unaffected by the precise location of the division [23,24].
The gas flow is mainly determined by the viscosity of the gas
(Stokes flow). We assume that R � h. Note that the gas is
defined to flow upwards from z = 0 with uniform gas flow
velocity Ca, which will result in a predominantly radialgas
flow below the drop with velocity u(r,z). For deriving the
axisymmetric lubrication approximation, we start with mass
conservation of the incompressible gas flow

∇ · u = 0. (8)

Boundary conditions are

uz|z=0 = Ca, uz|z=h = ḣ,

where ḣ is the vertical velocity of the drop surface. Further-
more, at the free fluid-air-interface, z(r) = h(r), there is a
kinematic boundary condition

∂h

∂t
= uz|z=h − ∂h

∂r
ur |z=h,

which is the unsteady part of the problem setting. Integrating
the continuity equation (8) along z (between 0 and h), applying
Leibniz integral rule, substituting the boundary conditions,
defining the average (radial) flow velocity u = 1

h

∫ h

0 ur dz, and
multiplying the equation with r gives [24]

∂

∂r
(rhu) + rḣ = rCa. (9)

Applying the Stokes equation for this axisymmetric lubri-
cation flow with zero velocity boundary conditions at z = 0
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and z = h gives

u = 6u

(
z

h
− z2

h2

)
⇒ ∂Pg

∂r
= −12u

h2
, (10)

in which Pg is the pressure in the gas layer. Combining (10)
and (9) and performing one integration leads to

∂Pg

∂r
= 12

rh3

(
− 


2π
+

∫ r

0
r̂ ḣdr̂

)
, (11)

where


 = 2π

∫ r

0
r̂Cadr̂ = πCar2 (12)

is the radius-dependent volume air flux. The first term on
the right-hand side of (11) is the gas flow term; the second
term concerns the motion of the drop interface. 
 is radially
increasing, since the gas is accumulating beneath the drop.

C. “Artificial” viscous damping

Since viscous effects inside the drop are neglected, all
motions (waves, oscillations, vertical translations, . . .) will
be undamped, as long as we do not apply any form of
damping. Indeed, simulations with realistic input parameters
(radius and airflow velocity) lead to a quick blow-up of
surface wave amplitudes or the drop receiving a pressure pulse
from below (when h becomes too small at some point). In
particular, we were unable to produce any steady solutions
without the implementation of damping. We therefore need to
introduce a damping term in Eq. (7). We opted to follow a
physically motivated way using viscous potential flow (VPF)
[30]. Applying VPF to a free surface generally leads to an
additional term in the unsteady Bernoulli equation valid on
this surface, operating as pure damping term. The additional
term is the local normal stress, 2ηl

∂2φ

∂n2 [31], ηl being the liquid
viscosity, such that (7) transforms into

1

Oh2

(
∂φ

∂t
+ 1

2
|∇φ|2

)
= −z − κ − Pg + 2�

∂2φ

∂n2
, (13)

where

� = ηl

ηg

. (14)

We have to make some remarks on this “artificial” damping
method. First, it is unclear to what extent the model represents
a true viscous drop, since viscosity in general induces vorticity
in the flow, which, of course, is absent in the simulation.
It turned out that the liquid viscosity required to obtain
stable numerical solutions is quite large, about 100 times
the viscosity of water. Consequently we will treat � as a
numerical damping constant, rather than a physical viscous
effect of the liquid. Second, for too large damping, this method
amplifies numerical deviations in the code: the normal stress
term contains numerical approximations to derivatives, which
are now multiplied by a large factor. Summarizing, both
requirements together set a narrow window for our liquid
viscosity:

0.10 Pa s � ηl � 0.30 Pa s.

Outside this range we were unable to generate reliable and
stable numerical results.

D. Numerical details

In the numerical process, the Laplace equation is solved
every time step, similar to Ref. [29]. The size of a time step
varies over the simulation and depends on the instantaneous
drop dynamics. The time step is small enough to prevent
neighboring nodes from crossing each other. For a steady drop,
or a falling drop, the time step may be of order 0.001 time units
(typically of order 1 × 10−2 ms), while an oscillatory scenario,
with strong curvatures and large nodal velocities, could end up
with time steps of order 1 × 10−5 ms.

In general, the simulation is initiated by a spherical
drop falling from small starting height in the order of 0.10
capillary length. However, close to the chimney instability
(see Sec. V A), it is necessary to start with a more “gentle”
initial shape (i.e., closer to the expected “Leidenfrost” shape
for these kind of drop sizes), such that the drop does
not get unstable due to the impact of the drop after the
free fall.

The drop contour is characterized by r and z for r > 0.
For the initial spherical drop (in the first time steps of the
simulation), this surface line consists of about 60 nodes,
depending on the size of the drop (a smaller drop results
in a smaller number of nodes). The number of nodes will
vary during the simulation, set by the (maximum) local
curvatures on the line and the closeness to the symmetry
axis r = 0; the largest node density is set around the bottom
and top center of the drop. It has been checked that further
increasing the number of nodes does not change the results
significantly.

V. NUMERICAL RESULTS

To easily compare with experiments, the figures in this
section are in SI units.

A. Steady shapes and chimneys

The numerical scheme described above can indeed lead
to steady levitated drops, chimneys, or oscillatory states,
depending on the model parameters. Here we first focus on
steady shapes, an example of which is shown in Fig. 9. For
two different initial conditions (top left panel), the drop relaxes
to the same final shape (bottom right panel). In all cases, the
drop shape depends only on Bo and Ca, and is independent of
Oh and �.

The pressure profile at the bottom of the drop has a similar
shape for every drop size and airflow velocity, from the moment
the steady shape has been reached. An example is shown in
Fig. 10. The largest pressure is at r = 0, and it decreases
to atmospheric pressure for r → R. The pressure gradient is
largest at the neck radius, r = rn, such that the pressure profile
resembles a plateau. The minimal gap height in this example
is of the order of 100 μm.

Figure 11 shows an example of a chimney instability. The
respective volumes of the red and blue curves differ by a small
amount. Yet the bigger drop develops a chimney instability,
while the smaller one exhibits a steady state. The limit of
drop size for the chimney instability agrees with expectations
from Ref. [24]. We deduce from Fig. 11 a threshold neck
radius of about 2.7�c for a gas flow velocity of 0.1 m/s.
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FIG. 9. (Color online) Two different initial drop shapes (one
spherical, one elliptical) of equal volume, converging to the same
steady end shape. Bo = 1, Ca = 2.5 × 10−4, � = 11 × 103. See
Fig. 10 for the corresponding pressure profile.

The dimensionless airflux χ which is introduced in Ref. [24]

is in our case χ = 6
(rn)
πrn

= 6π Ca r2
n

πrn
∼ 6π0.1(2.7�c)2

π(2.7�c) = 4.42 ×
10−3. Extrapolation in Fig. 12 of Ref. [24] shows that this
2.7�c agrees with the theoretical prediction coming from
the lubrication approximation. The threshold for chimneys
is at smaller drop size than the experimentally observed
threshold (Fig. 4), which can be explained by the smaller
incoming airflow velocity in the experiments, compared to
numerics. According to Ref. [24], for increasing χ , the
threshold for chimneys is at smaller drop size, and χ in
the numerics is indeed large with respect to χ in the
experiments.
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FIG. 10. (Color online) Pressure profile (Pg) at the bottom of a
steady levitated drop. The largest pressure gradient is typically at
the neck, r = rn, such that the profile resembles a plateau. Bo = 1,
Ca = 2.5 × 10−4, � = 11 × 103.
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FIG. 11. (Color online) Chimney instability. Shown is the evo-
lution of two drops, with almost equal volumes. The largest drop
apparently has a radius just above the chimney threshold, which
appears to be about 2.7�c, or 7.3 mm, while the smallest has a radius
just below. The large drop does not remain stable, due to the gas pocket
breaking through; the small drop keeps its steady shape. Bo = 2.25
and 2.5, Ca = 2.5 × 10−5, � = 11 × 103.

B. Drop oscillations

1. Observations

The second scenario of interest we studied is drop instability
leading to oscillations. An example is shown in Fig. 12, show-
ing the drop contours during the evolution of the oscillations
for an unstable scenario. The first three panels (top row) show
the process of the drop converging towards the “Leidenfrost”
shape. It takes about 75 ms for the drop to adopt a nearly steady
shape (top-right), but in the next phase surface oscillations with
increasing magnitude are visible (bottom sequence). The drop
oscillates in both radial and vertical direction. The two states
between which the drop “bounces” are clearly visualized in the
last two frames of Fig. 12, and in Fig. 13, supplemented with
velocity profiles. The velocity profiles show that the liquid
velocity, and therefore the oscillations and momentary liquid
flows are mainly in the vertical direction. Air is released from
the gas pocket at the bottom of the drop around one of the
extremes and is gathered again towards the other: the system
“breathes.”

Similarly to experiments, there exists a drop size threshold
and a gas flux threshold above which the surface oscillations
appear. In Fig. 14(a) no drop oscillations are visible. In Fig. 14
we plot the time dynamics R(t) for different parameters. In
Fig. 14(b) the oscillation amplitude visibly saturates at some
small level. The threshold for oscillations is determined for the
smallest asymptotically detectable oscillation. In Fig. 14(c)
the oscillation amplitude starts to grow after some time,
and the drop does not reach any asymptotic state, which
is clearly an unstable situation. This explosive scenario is
observed at some distance beyond the oscillatory threshold.
The growth rate of the instability depends on the gas flux and
the drop size, but especially on the damping coefficient �.

2. Stability diagram

We investigated the threshold for obtaining surface oscil-
lations by varying the drop size and the gas flow velocity
for ηl = 0.20 Pa s, resulting in the stability diagram shown
in Fig. 15. We observe a decreasing transition line, similar to
the experimental results in Fig. 4 with larger drops becoming
unstable at smaller airflow velocity. An important observation
is that the threshold is at much larger values (approximately a
factor of 10 larger) for the ascending airflow velocity (factor
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FIG. 12. (Color online) Time sequence from the evolution of the oscillatory instability of a levitated drop. The simulation is initiated by
a spherical drop, released from small height (0.27 mm) (top-left). The top panel row shows the process from the spherical drop shape to an
intermediate steady shape. The bottom panel row shows the oscillatory behavior of the drop at a later point in time. Bo = 1, Ca = 2.5 × 10−4,
� = 8.2 × 103.

of about 10), compared to the experiments (see Fig. 4).
The relative shape of the transition line is similar in all
numerical stability diagrams obtained for different ηl and ρl ,
but for decreasing damping factor and/or increasing liquid
density, the line moves in both the left and the downward
direction. In experiments, the influence of the liquid viscosity
on the threshold of the instability turned out to be very
small. Obviously our artificial implementation of damping is a
plausible reason for the discrepancy between experiments and
numerics concerning the threshold.
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FIG. 13. (Color online) Drop contours during the final stages of
the simulation in an unstable scenario (see Fig. 12). Blue contours are
the two extremes, red lines are intermediate. The bottom two plots
show the velocity profile inside the drop for the extremes. Note that
the liquid velocities, and therefore the oscillations as well, are mainly
in the vertical direction. Bo = 1, Ca = 2.5 × 10−4, � = 8.2 × 103.

3. Frequency analysis

In Fig. 8 we show the measured drop oscillation frequencies
from the simulations against the drop radius, for different ηl

and Ug , and compare them to the experimental values for
a water-glycerine drop. The oscillation frequencies decrease
with increasing drop size and decrease slightly with increasing
gas flow velocity. The observed frequencies appear to be
independent of the damping factor.

The frequencies extracted from numerics are compared to
those measured experimentally on axisymmetric oscillations
for highly viscous drops: The agreement is good for the large
radii (R from 5 to 7 mm), but there are some discrepancies
for smaller drop radius. To understand this overestimation
from numerics, it should be pointed out that the magnitude
of oscillations can be much larger in experiments than in
numerics. Nonlinear effects at finite amplitude generally lead
to a decrease of the response frequency of drops [32], which
is especially prevalent for small drops.

VI. DISCUSSION

In this paper we investigated the dynamics of drops levitated
by a gas cushion with constant and uniform influx. Various
dynamics are observed, in both experiments and numerics:
Drops either exhibit stable shapes, oscillate, or undergo a
“chimney” instability in which the gas pocket breaks through
the center of the drop.

Our experimental results show that for both high-viscosity
and low-viscosity drops, the threshold flow rate for oscillatory
instability continuously increases when decreasing the drop
size. At very low Q, we do not reach the oscillatory state,
since there is a maximum drop size beyond which the chimney
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FIG. 14. (Color online) Top view radius as a function of time for (a) a stable drop, (b) a case around the transition, and (c) an unstable
drop. In the first part of each plot (up to about 100 ms) the initial, spherical shape of the drop stabilizes towards the “Leidenfrost” state. After
this stabilization the oscillations become visible which typically have a much larger frequency (see insets). (a) Bo = 0.75, Ca = 2.5 × 10−5;
(b) Bo = 0.80, Ca = 5 × 10−5; (c) Bo = 0.80, Ca = 5 × 10−4. � = 5.5 × 103 in all three cases.

instability sets in, as predicted by Snoeijer et al. [24]. The
trends are very similar for both viscosities, but the threshold is
slightly higher at high viscosity. This dependence on viscosity
is relatively weak in our experiments; whereas the viscosity
was increased by a factor 60, the threshold flow rate only
increased by less than 50%. By contrast, the drop dynamics
are strongly influenced by viscosity. Nonaxisymmetric modes
and chaotic oscillations could be observed near the threshold in
oscillating water drops, while in the high-viscosity case, only
the “breathing” mode is observed. From this observation we
infer that axisymmetric modes rather than the breaking of the
azimuthal symmetry constitute the origin of the spontaneous
appearance of oscillations.

All these features have been reproduced numerically,
by coupling inviscid Boundary Integral code for the drop
to a viscous lubrication model for the gas flow. Because
potential flow without any damping was unstable in the
interesting time range for the evolution of drop oscillations, an
artificial damping needed to be introduced, which enabled the
observation of both stable drop shapes and oscillations. The
idea of a coupling between potential flow liquid and Stokes gas
flow proved to be very useful to study the equilibrium shapes of
Leidenfrost drops and deforming dynamics of these drops, or
(the dimple formation of) impacting drops at room temperature
[25] and impacting evaporating drops. Interestingly, for the
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FIG. 15. Top view radius R versus airflow velocity Ug stability
diagram for � = 11 × 103. Black dots point out stable configurations:
the drop has no tendency to oscillate; white squares indicate
oscillating drops.

impacting drop simulations, no damping needed to be involved
(because the time range in which we are interested was much
shorter).

In the numerical simulations of Leidenfrost drops it is
observed that, within a certain range of the parameter space,
initially stable (steady) drop shapes gradually start to oscillate.
Frequencies of the oscillations are in reasonable agreement
with experimental results, especially for large drops. The most
important difference between our numerics and the experi-
ments is that the threshold strongly depends on the amount
of damping, and that the threshold velocity lies an order
of magnitude away from the experimental one. Therefore, a
more realistic way of damping needs to be implemented to
investigate the position of the threshold.

In both experiments and simulations, the air is injected
from below. This is different from Leidenfrost drops, which
float on their own vapor, but their dynamics are very similar.
Hence, it is verified that the phenomenon of star oscillations
does not require any thermal driving, contrarily to previous
suggestions [21]. This confirms the preliminary experimental
observation [12] that the origin of drop oscillations are purely
governed by fluid dynamics. The picture that emerges is that
the oscillations appear due to an instability of the coupled
system of the lubricating gas flow and the deformable drop. In
the experiments, once the oscillations appear, “stars” naturally
develop as a parametric instability for low-viscosity drops, in a
way similar to water drops placed on an oscillating plate [19].
At higher viscosity, the star formation is suppressed by viscous
damping and only axisymmetric modes appear. This is similar
for the onset of Faraday waves, induced by periodic forcing
of a horizontal free surface [33]. Indeed, a large viscosity
suppresses the appearance of the parametric instability that
leads to Faraday waves. Therefore, this confirms that faceted
star shapes are a result of parametric excitation that can only
appear at sufficiently small damping (i.e., liquid viscosity).

Though the exact mechanism that leads to oscillations
remains to be explained, our study unveiled interesting
clues to understand the phenomenon and could dismiss
other mechanisms. Interestingly, the Reynolds number for
the high-viscosity drops in experiments is relatively small
Rel ∼ ŨlRρl/ηl ∼ 0.1Rf Rρl/ηl ≈ 1 (where we estimate the
oscillation amplitude as 10% of R) and still spontaneous
oscillations are observed above a threshold radius and gas flow
rate. Previous numerical simulations based on Stokes flow for
both the drop and the gas displayed no oscillations [24]. This

023017-10



OSCILLATING AND STAR-SHAPED DROPS LEVITATED . . . PHYSICAL REVIEW E 88, 023017 (2013)

raises the question of whether oscillations indeed cease to exist
when further reducing the Reynolds number, i.e., by increasing
the liquid viscosity. It will be a challenge to investigate this
regime experimentally due to practical difficulties of working
with such a highly viscous liquid. Other valuable information
could also be provided by flow visualization inside the drop and
the gas, since the results suggest a crucial coupling between
the drop flow and the gas flow. The latter method applies not
only to the experiments, but also to the numerics.
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