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A water drop that is gently deposited on a very cold surface freezes into a pointy ice-drop with a

very sharp tip. The formation of this singular shape originates from the reduction of mass density

during the freezing process and can be explained using a simplified model for which the universal

structure of the singularity is revealed in full detail. The combination of a relatively simple, static

experiment, and the accessible asymptotic analysis makes this system an ideal introduction to the

topic of singularities. VC 2012 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4726201]

I. INTRODUCTION

One of the most fascinating features encountered in fluid
mechanics is the ability to create singular structures in space
and time.1–8 These singularities are the consequence of flows
that self-focus into a specific location and/or a given moment
of time. Perhaps the best known singularity is encountered
during drop formation, where a liquid thread pinches off
under the action of surface tension.1 Other examples are
found in dewetting flows,2,3,7 during the penetration of one
fluid into another,4,5,8 or in the formation of Taylor-cones in
electrified fluids.6 These situations typically involve the for-
mation of a cusp on the interface between two fluid phases.

Interestingly, it is known that surface tension tends to
oppose the formation of these cusps. Indeed, the macro-
scopic action of surface tension is to generate a pressure dif-
ference across the interface proportional to the local
curvature of the interface, which we could summarize by the
motto: surface tension does not like sharp points. Thus, it is
clear that any of the pointy structures described in Refs. 1–8
require complex and highly energetic processes. In fact, the
cusp tip has a high, but finite, curvature. The driving force
responsible for the singularity is balanced by surface tension
on a scale that is much smaller than the scale of the flow.
The consequence of this complex and dynamical equilibrium
is that these singularities are challenging to access experi-
mentally and often require high-speed and/or high-resolution
cameras.

The freezing of water drops, on the other hand, provides a
surprisingly simple example of the formation of a cusped
singularity that is easy to generate and observe.9,10 Just place
a drop of water onto a plate with a temperature far below the
freezing point and wait. Starting from the bottom of the
drop, the liquid will quickly freeze. Just before the freezing
front reaches the top of the drop, the interface changes from
a spherical to a pointy top that is reminiscent of the onion
domes that appear on orthodox churches or minarets. As
shown in Fig. 1, these pointy ice-drops offer a static, frozen
cusp that can be analyzed in detail.

From a practical perspective, these freezing drops are
encountered in icing of water during flights11 where frozen
accreted water can cause damage to the cabin of aircrafts.
More generally, the formation of frost and how it can be
delayed is of fundamental interest to material scientists.12,13

At much smaller scales, similar pointy structures at the tip of
crystal spikes form during solidification processes on water,
silicon, or germanium.14 These pointy structures only seem
to appear for liquids that expand upon freezing.

The formation of the cusp can be described by an elegant
geometric model originally proposed by Sanzet al.10 and
later generalized by Anderson et al.9 The key ingredient to
produce the cusp is that the density of the solid phase is
lower than that of the liquid phase. Mathematically, the
model relies mainly on geometry and is therefore accessible
to students at the undergraduate level. Importantly, no back-
ground knowledge of fluid mechanics is necessary. In addi-
tion, the model allows for an asymptotic analysis that gives
students a taste of the methods used to analyze singularities.
This combination of a relatively simple, static experiment,
and an accessible asymptotic analysis makes these ice-drops
a unique introduction to the topic of singularities.

The rest of this paper is organized as follows. In Sec. II,
we present the experimental setup. Section III introduces the
mathematical model used to understand the formation of the
cusps and discusses how the model can be solved numeri-
cally. In Sec. IV, we present a detailed asymptotic analysis
to reveal the fine structure of the singularity. Finally, a con-
cluding discussion is given in Sec. V.

II. EXPERIMENTAL SETUP

The formation of singular ice-drops can be studied with
the relatively simple experimental setup shown in Fig. 2(a).
A smooth plate with good thermal conductivity (copper,
steel, or silicon) is cooled to a temperature between 200 K
and 250 K. This is achieved by placing the plate in a polysty-
rene box filled with liquid nitrogen. The temperature of the
plate is measured with a thermocouple in contact with the
surface. Once the plate has cooled significantly, the tempera-
ture will remain stable for the duration of the experiment
(typically a few minutes). To allow for an unobstructed view
of the drop profile, the top surface of the plate must be higher
than the edges of the polystyrene box.

The experiment begins by gently depositing a drop of
water on the plate using a syringe. Typical drop volumes
range from 10 to 20 ll, which corresponds to millimeter-
sized drops. For these volumes, the drops take the shape of a
nearly perfect spherical cap, suggesting that gravity can be
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neglected. The dimensionless parameter that quantifies the
importance of gravity compared to surface tension is the
Bond number, defined as

Bo ¼ qgR2

c
; (1)

where R is the radius of a perfect sphere of the same vol-
ume, q and c are the liquid density and surface tension,
respectively, and g is the gravitational field strength. For the
volumes cited above, the Bond number ranges from 0.25 to
0.4, confirming that surface tension forces dominate over
gravity.

The timescale for droplet freezing is typically around
10–30 s; thus, no high-speed imaging techniques are required
to follow the process. In fact, one can simply take pictures
with a still camera after the entire drop is frozen. To obtain
an accurate drop profile, the pictures must be taken at a very
small angle with respect to the horizontal [see Fig. 2(b)].

Installing the camera on a tripod makes it easier to adjust
shutter speeds and aperture settings to obtain a good contrast
image. Special care must be taken to avoid the mist produced
by the cooling of water vapor in the vicinity of the plate.
This mist diffuses the light and can make it difficult to obtain
clear images. We have obtained high contrast images by ei-
ther backlighting a white screen behind the drops or shining
a bright light directly on the front of the drops.

A qualitative description of the freezing process is as fol-
lows. Due to the very cold temperature of the substrate, the
bottom of the drop freezes first. This means the solidification
of the water occurs through a sharp ice/water front that
moves upwards over time. The freezing process is completed
once the front has invaded the entire liquid phase. It is only
during the last few moments of freezing that the shape of the
droplet top turns from round to pointy.19

After the water is transformed into ice, the frozen droplet
is progressively covered with tiny ice crystals that self
assemble on its top. Thus, the initially smooth solid/vapor
interface becomes increasingly rough over time. This solidi-
fication of water vapor on the frozen droplet is most efficient
at the sharp tip, as is visible in Fig. 1. We will discuss this
phenomenon in detail in Sec. V.

III. MODEL FORMULATION

A. Geometric model

To make a quantitative model for the ice-drops, we need
to know the exact shape of the ice/water front as it propa-
gates during the freezing process. This propagation is a com-
plicated process that depends on the details of heat transfer
inside the drop.16 In addition, the dynamics near the three-
phase contact line, where the liquid, solid, and vapor phases
meet, is not fully understood and is the subject of current
research.9,15 Therefore, a fully quantitative model that is able
to accurately predict the shape of these ice drops is beyond
the scope of this paper.

Fortunately, it is possible to illustrate the physics underly-
ing the pointy drops with a simplified version of the models
proposed in the literature.9,10 The basic idea is sketched in
Fig. 3. First, it is assumed that the ice/water interface remains
horizontal during the solidification process. A second assump-
tion is that freezing along the surface occurs in the direction
along the water/vapor interface, characterized by the contact
angle h [Fig. 3(a)]. In other words, the slope of the ice layer is
identical to the slope of the liquid spherical cap at the contact
line. As we show below, this framework indeed reproduces
singular, pointy ice-drops for liquids that have a lower density

Fig. 2. (a) Schematic representation of the experimental setup. (b) Typical

experimental photograph from a frozen ice-drop. Note the mist of frozen

water vapor that deposits ice crystals on the drop.

Fig. 3. Geometric model for the solidification of the water drop. (a) The

water/ice interface is assumed to be perfectly horizontal, and the shape of

the unfrozen water is assumed to be that of a spherical cap. The geometry is

entirely determined by the base radius of the unfrozen liquid R, the water

volume V, and the contact angle h. (b) We assume the edge of the solidifica-

tion front propagates along the contact angle h, allowing us to compute the

shape of the ice-drop, characterized by R(z).

Fig. 1. Pointy ice drops frozen on a cold plate. The ice drops are formed from

millimeter sized water drops that were gently deposited on the surface. The

singular shape at the top of the drop appears spontaneously towards the end of

the freezing process. Note that tiny ice crystals are formed on the sharp tips of

the drops, which is due to the freezing of the surrounding vapor.
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after solidification. The price we pay for these simplifications
is that the conical top of the drop does not appear for a solid-
liquid density ratio that is typical for water, but only for much
smaller values. However, the key advantages of such a simple
model is that it can be solved in full detail while still revealing
the underlying physics of the singularity. More refined ver-
sions of this model have been proposed that are indeed able to
quantitatively reproduce the experimental results for realistic
density ratios.9

Following the assumptions of Fig. 3, the model contains
three geometric parameters: the base radius of the unfrozen
liquid R, the volume of the remaining liquid V, and the con-
tact angle of the liquid with the ice h. All of these quantities
are functions of the height z of the ice layer. For millimetric
drops, the liquid will take the shape of a spherical cap; larger
drops will be somewhat flattened by gravity. For simplicity,
we focus on small drops and use the geometric expression
for the volume of a spherical cap

Vsc

R3
¼ p

3

2� 3cos hþ cos3h

sin3h

� �
; (2)

which provides a first relation between the three parameters
V, R, and h.

A second relation comes from the assumption that the
freezing process is directed along the water–vapor interface,
which gives a relationship between the contact angle h
defined for the fluid and the slope of the solid ice, giving
(Fig. 3)

dR ¼ � dz

tan h
: (3)

Finally, the evolution of the liquid volume is given by mass
conservation: an increase in solid mass (ice) of qs dVs results
in an equal decrease in liquid mass of �q‘ dV. Here, we
denote qs and q‘ as the solid and liquid densities, respec-
tively. Using dVs ¼ pR2 dz then gives

dV ¼ � qs

q‘
pR2 dz: (4)

Equations (3) and (4) provide two differential equations for
the system

dR

dz
¼ � 1

tan h
; (5)

dV

dz
¼ ��p R2; (6)

where we have introduced the density ratio � ¼ qs=q‘, a pa-
rameter that plays a key role in this problem. Once the initial
radius and volume are specified, Eqs. (5) and (6), along with
the volume constraint (2), completely determine the shape of
the drop R(z).

As discussed in Appendix A, differentiating Eq. (2) with
respect to z and making use of Eqs. (5) and (6) leads to a
system of two coupled equations for R and h given by

dh
dz
¼ � 1

R
½� � ð1� �Þð2 cos hþ cos2 hÞ�; (7)

dR

dz
¼ � 1

tan h
: (8)

This system can be solved analytically for R(h), although the
derivation for arbitrary � is cumbersome (see Appendix A
for details). However, it is instructive to discuss the limiting
case � ¼ 1 for which there is no change in density upon
freezing. In this case, Eqs. (7) and (8) can be recast as

dR

dh
¼ R

tan h
; (9)

and solved to give

RðhÞ ¼ R0 sin h
sin h0

; (10)

where R0 and h0 are the initial radius and contact angle,
respectively. Physically, this solution corresponds to a per-
fect sphere with radius of curvature R0/sin h0. This is to be
expected because when � ¼ 1 there is no density change dur-
ing freezing. Therefore, the volume of the spherical cap is
conserved, which leads to no change in shape.

B. Numerical results

We generated drop profiles by numerical integration of
Eqs. (7) and (8). Because h and R both appear explicitly in
these equations, numerical integration is straightforward
using software such as MAPLE, MATHEMATICA, or MATLAB. Our
numerical results are shown for two different contact angles
in Fig. 4. The two plots show the drop profiles R(z) after
freezing on substrates with different initial contact angles,
with each curve corresponding to a different values of the
density ratio �. We observe the following trends. First, for
� ¼ 1, the drop retains its original spherical shape, as pre-
dicted above. These are shown as thick solid lines in the two
figures. (The fact that the spherical solution appears slightly
flattened in this figure is due to a difference in the horizontal
and vertical scales.) Second, the top of the drop becomes
increasingly pointy as the density ratio is decreased below
� ¼ 1. In fact, there appears to be a critical density ratio
below which the top of the drop takes the shape of a cone
with a well-defined angle. In Sec. IV, we show that conical
drops appear at the critical value �c ¼ 3=4 (these shapes are
depicted with dashed curves in Fig. 4). For � > �c, the drops
still exhibit a rounded top; indeed, in the regime � > 1, the
drops are flattened with respect to their original spherical
shape. Although the shapes obtained for � < �c are reminis-
cent of those observed experimentally (Fig. 1), the agree-
ment is not quantitatively accurate in terms of the parameter
�. Namely, for ice and water, the density ratio is close to
� ¼ 0:9, in which case the model predicts drops that are
fairly rounded. Nevertheless, the model does provide insight
into how such singular structures can arise.

Despite the obvious differences in shape between Figs.
4(a) and 4(b), the properties of the tips appear to be the same
for both cases. To investigate this in more detail, we analyze
the slope jdz=dRj for all profiles. The simplest way to obtain
this slope is to take a finite difference between the last two
datapoints as close as possible to R¼ 0; the actual point
R¼ 0 cannot be included in the numerical scheme because R
appears in the denominator of Eq. (7). For the current data,
the closest distance to the tip was of order 10�5. The results
are shown in Fig. 5 where the tip angles for hydrophilic
drops (circles) and hydrophobic drops (triangles) are super-
imposed. Indeed, the tip angles agree very well except for
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the case � ¼ 3=4. From the analysis in Sec. IV, it will
become clear that � ¼ 3=4 marks a critical point for which
the numerical resolution requires a higher accuracy then
used in the current simulations. In principle, we could

improve our time-stepping for the case � ¼ 3=4, but here we
intentionally kept the numerical accuracy identical for all
values of � to emphasize the general point that a critical
point is difficult to resolve numerically. The fact that the tip
structure is independent of large scale details of the drop is a
generic feature of singularities called universality.17 This
term means that the structure near the singularity is inde-
pendent of any details far from the singularity—it is
“universal.” For the present model, we can indeed show that,
for a given value of �, the shape of the tip is independent of
the initial volume or contact angle.

IV. ASYMPTOTIC ANALYSIS OF THE

SINGULARITY

It is usually rather difficult to approach a singularity in a
numerical simulation. In the example above, one has to
increase the numerical resolution to determine the detailed
structure of the tip of the ice-drop. Perhaps surprisingly, it
turns out that the vicinity of the singularity can often be
treated analytically in full detail, even when the problem
itself has no exact solution. The mathematical trick is to
define a variable that quantifies the “distance” to the singu-
larity. One can then analyze the simplified expressions that
result when taking the limit that this distance goes to zero.
This method is called asymptotic analysis.

Let us denote the maximum height of the ice drop as z0. A
natural choice for the distance to the singularity is

y ¼ z0 � z; (11)

and we will analyze the drop shape as y! 0. Given the sim-
ulation results, we anticipate two regimes: � < �c, for which
a cone is formed, and � > �c, which yields rounded drops.
The goal of this section is to determine the value of �c, the
nature of the bifurcation, and the (asymptotic) shapes near
the top of the drop for arbitrary values of �.

A. Conical drops: m < mc

We assume that the top of the drops has a conical shape
with angle /, as shown in Fig. 6. We will show that the value
of / depends only on the density ratio �. The drop profile
can be represented as R ¼ y tan /. This angle relates to a

Fig. 6. Physical interpretation of the cone formation. To create a conical tip,

the liquid mass stored in the unfrozen spherical cap has to be transformed

into the conical ice mass (denoted as “ice under formation”). Since the vol-

ume of the (solid) cone is clearly larger than that of the (liquid) spherical

cap, the cone can only appear when the solid has a lower density than the

liquid. More precisely, one requires � < �c ¼ 3=4 as discussed in the text.

Fig. 4. Numerical solution of the model for ice-drops. (a) Hydrophilic sur-

face with initial contact angle h¼ 30�. (b) Hydrophobic surface with initial

contact angle h¼ 1335�. The curves correspond to density ratios � ¼ 0:65,

0.75, 0.85, 1, 1.2 (top to bottom), with initial radius R0¼ 1. The thick solid

curve represents the original spherical cap (� ¼ 1), while the dashed curve is

the critical case separating “rounded” from “conical” drops (� ¼ 3=4). Note

that the profiles are slightly flattened due to a difference in horizontal and

vertical scales.

Fig. 5. Numerical determination of the tip angle. The circles and triangles

are the slope jdz=dRj near the tip for the profiles in Fig. 4. The tip angle only

depends on � and agrees with the analytical prediction (solid line) derived in

Sec. IV.
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“base” angle h ¼ p=2� / that is constant, and thus inde-
pendent of z along the cone. The model equations (5) and (6)
are then easily integrated to give

R ¼ y

tan h
; (12)

V ¼ �py3

3 tan2 h
: (13)

The latter equation gives the volume of water necessary to
fill the ice cone shown in Fig. 6. To see this more clearly,
Eq. (13) can be expressed as

V ¼ � 1

3
p R2y

� �
¼ �Vcone; (14)

which is nothing but the volume of the ice cone multiplied
by � to obtain the equivalent liquid volume. For graphing
purposes, it is convenient to write Eq. (13) in dimensionless
form as

V

R3
¼ �p

3
tan h: (15)

As illustrated in Fig. 6, the mass inside the ice cone has to
match that of the unfrozen liquid stored inside the spherical
cap. For a given density ratio �, this condition is only ful-
filled for a single angle h. Mathematically, this angle is
obtained by equating the two masses, q‘Vsc ¼ qsVcone, or
equivalently, by equating the volume of the spherical cap to
the volume given in Eq. (13) or (14): Vsc ¼ V; the top angle
of the cone then follows simply as / ¼ p=2� h. This solu-
tion procedure is sketched in Fig. 7. The thick solid curve
represents the volume of the spherical cap as given by
Eq. (2). The other curves are given by Eq. (15), plotted for
different values of �. Clearly, only the thin solid curve dis-
plays an intersection corresponding to a cone solution. For
values of � beyond a critical value, there is no intersection
and hence no conical solutions exist. To determine this criti-
cal value, we look for when the volume curve is tangent to

the spherical cap curve at h¼ 0. Mathematically, we equate
the slopes of the volume curves (2) and (15) at h¼ 0. Carry-
ing out the differentiation, we find that V0scð0Þ ¼ pR3=4 and
V0ð0Þ ¼ �pR3=3, which are identical for �c ¼ 3=4.

It turns out that this graphical solution can be represented
by the simple analytical formula

h ¼ arccos
1ffiffiffiffiffiffiffiffiffiffiffi

1� �
p � 1

� �
: (16)

The interested reader can find the derivation of this result in
Appendix A. This relation is plotted as the solid curve in
Fig. 8 and forms the basis for the solid curve in Fig 5. In the
vicinity of the critical point, we see that h! 0 (or /! p=2)
as expected. We also see that the cone angle h increases (or
equivalently / decreases) for smaller �, which is consistent
with our numerical findings. Note the typical “square-root”
behavior near the critical point, which is characteristic for a
supercritical bifurcation. For � > 3=4, the argument of the
arccos function becomes greater than 1, rendering Eq. (16)
undefined. To determine the shape of the drops in this regime
requires further analysis.

B. Rounded drops: m > mc

We now turn to the question of what happens when
� > �c ¼ 3=4, when the drops do not exhibit a conical tip.
From the numerical solutions, we know that the top is
rounded and is thus characterized by a vanishing contact
angle h� 1. One can take advantage of this fact by approxi-
mating the volume of the spherical cap volume for small
angles. Taking h� 1 in Eq. (2) gives

V

R3
¼ Vsc

R3
’ p

4
h; ) 1

tanh
’ pR3

4V
: (17)

The model equations (2), (5), and (6) are then substantially
simplified by eliminating h. Again using y ¼ z0 � z, we
obtain

Fig. 7. Geometric relations for the normalized volume V=R3. The thick solid

curve shows the volume of a spherical cap given by Eq. (2); the other curves

show the volumes according to Eq. (15). No intersection with the spherical

cap is found for � > 3=4 (thin dashed), while a finite cone angle can be

determined for � < 3=4 (thin solid). The critical curve corresponds to �c ¼
3=4 (thick dashed).

Fig. 8. Bifurcation diagram for different density ratios �. Base angle of the

cone h for drops with � < 3=4 (solid curve). The cone angle approaches 0 in

the vicinity of the critical point �c ¼ 3=4, marking the transition between

rounded and conical drops. Exponent a that characterizes the shape of the

tip as R � ðz0 � zÞa (dashed curve). In the conical regime a¼ 1, while a< 1

in the rounded regime. The closed circle represents � ¼ 1 for which the drop

remains spherical (a¼ 1/2). The curve excludes the critical point (open

circle) because the shape displays logarithmic corrections to the power law.
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dR

dy
¼ pR3

4V
; (18)

dV

dy
¼ �pR2: (19)

We will look for power-law solutions of the form

R ¼ Aya; V ¼ pByb; (20)

but first note that the conical solutions have a linear shape
R� y (a¼ 1, b¼ 3), while the top of a spherical cap will be
approximately quadratic R2� y (a¼ 1/2, b¼ 2).

The general solution for a and b can be determined by sub-
stituting the power-law Ansatz into Eqs. (18) and (19) to get

aA ya�1 ¼ A3

4B
y3a�b; (21)

bB yb�1 ¼ �A2 y2a: (22)

Equating powers of y leads to

2a� bþ 1 ¼ 0; (23)

while equating the prefactors, we find

4a ¼ b
�
: (24)

Combining Eqs. (23) and (24) yields the key result of the
analysis, that a and b depend only on the density ratio as

a ¼ 1

4� � 2
; b ¼ 4�

4� � 2
: (25)

The dependence of a on � is shown as the dashed curve in
Fig. 8. Note that only solutions with a< 1 are consistent
with the assumption of h� 1, which in practice means
� > 3=4. For � < 3=4 one instead observes perfectly coni-
cal tips (a¼ 1) as discussed above. The critical solution
�c ¼ 3=4 will be discussed separately below.

The result of this analysis tells us that all solutions for � >
3=4 have a rounded top: since a< 1, the angle at the top is
h¼ 0. It is interesting to compute the sharpness of the tip,
characterized by the curvature

j ¼ R00

ð1þ R02Þ3=2
� y1�2a: (26)

We see that the curvature at the tip (y¼ 0) diverges for
1/2< a< 1, which corresponds to the range 3=4 < � < 1. So
despite the fact that these drops are rounded, the tip is infin-
itely sharp. Conversely, drops with � > 1 have a zero curva-
ture at y¼ 0 and are therefore extremely flat. The separating
case � ¼ 1 corresponds to the spherical cap, identical to the
initial liquid drop, with finite curvature.

C. Critical drops: mc 5 3=4

The critical density ratio �c ¼ 3=4 must be considered
separately because the solution is neither a cone nor a
perfect power-law. From Eq. (25), one may be inclined to

think that the critical case simply gives a¼ 1, correspond-
ing to a conical shape. However, according to Eq. (16),
the corresponding cone would be completely opened up
with an angle / ¼ p=2. As shown in Appendix A, it is
possible to obtain the critical solution in the form R(h). In
the vicinity of the singularity, this solution can be
expanded as

h ’ 1ffiffiffiffiffiffiffiffiffiffiffiffi
�ln R
p ; or R ’ y

ffiffiffiffiffiffiffiffiffiffiffi
�ln y

p
; (27)

confirming that the shape is indeed not a cone—the angle
h depends weakly (logarithmically) on R. Ultimately,
however, one finds that h! 0 so that the drop is rounded.
This explains, in hindsight, why the numerical results in
Fig. 5 differ from the theoretical curve at the critical point
�c—the slow, logarithmic convergence towards h¼ 0
requires a much greater numerical accuracy in the vicinity
of the tip.

V. DISCUSSION: EDGE EFFECTS

We have shown that the freezing of water drops on a cold
surface provides a beautiful introduction to the physics of
singularities. We discuss experimental, numerical, and ana-
lytical methods to study the formation of the sharp tip, all of
which are applicable within a classroom environment. De-
spite various approximations, the model contains the essen-
tial physics of the tip formation, namely, the singularity only
appears if the liquid expands upon solidification.

To arrive at a more quantitative agreement with experi-
ments, which requires conical tip formation for a density ra-
tio of � � 0:9, would necessitate a more detailed model. For
example, it has been shown that a realistic prediction for the
appearance of the tip is obtained by assuming a growth angle
that is determined by dynamical wetting conditions.9 In
essence, this means that the freezing no longer occurs per-
fectly along the liquid–vapor interface, as was assumed in
our simplified model. In contrast, a more detailed numerical
study that resolves the heat transfer problem in more detail,
obtains realistic results by keeping the growth along the
interface.16 In this case, it is found that the freezing front is
strongly curved and thus not horizontal. At present, there is
no experimental evidence that can discriminate which of
these mechanisms is most relevant.

Finally, let us comment that the singular tips are preferen-
tial sites for the formation of ice crystals after the freezing of
the liquid is complete. Leaving the drops for a few minutes,
one observes the deposition of water vapor from the air on
the top of the drops in the form of tiny ice crystals. This can
already be seen in Figs. 1 and 9(a). We argue that this is
another beautiful example of “edge effects,” as described by
Bocquet18 in the context of the baking of potato wedges.

The limiting factor for the formation of ice crystals is the
transport of vapor molecules towards the frozen ice-drop. The
deposits thus grows fastest at locations where the vapor diffu-
sion is most efficient. One can easily understand why this natu-
rally occurs at the sharp tip. To this end, recall that the diffusive
flux J depends on the gradient of the vapor concentration as

J ¼ �D$c; (28)

where c(x,y,z) is the vapor concentration field outside the drop
and D is the diffusion constant. In turn, the concentration is
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obtained from the steady diffusion equation $2c ¼ 0 (Lapla-
ce’s equation). If the concentration at the cone interface is
approximately constant, the problem for c is mathematically
identical to the electrical potential near a sharp conducting tip.
In this analogy, the vapor flux J behaves as the electrical field,
which is known to diverge upon approaching a sharp tip.18 A
typical example for the concentration field (or electric poten-
tial) around a sharp tip is shown in Fig. 9(b); the flux is largest
where the lines are closest together. Hence, similar to how a
lightning rod attracts a flow of charge, the sharp tip of the ice-
drop attracts a flow of water vapor that forms tiny crystals.
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APPENDIX A: DETAILS ON THE GEOMETRIC

MODEL

Here, we briefly discuss the numerical solution of the
model, defined by Eqs. (2), (5), and (6). The latter of these
equations are coupled differential equations for R and V that
require the value of tan h. This angle is defined implicitly by
Eq. (2), but unfortunately we cannot find a closed-form
expression in terms of R and V. One solution strategy would
thus be to numerically solve for h from Eq. (2) for each inte-
gration step of Eqs. (5) and (6). Here, we propose another
strategy. Differentiating Vsc with respect to z gives

dVsc

dz
¼ � 1

tan h
@Vsc

@R
þ @Vsc

@h
dh
dz
; (A1)

where we used dR=dz ¼ �1=tan h. Equating Eq. (A1) to Eq.
(6) allows us to eliminate

dh
dz
¼ 1

@Vsc=@h
1

tan h
@Vsc

@R
� �p R2

� �
: (A2)

Working out the partial derivatives then gives the two
coupled differential equations

dh
dz
¼ � 1

R
½� � ð1� �Þð2 cos hþ cos2 hÞ�; (A3)

dR

dz
¼ � 1

tan h
: (A4)

The advantage of this approach is that these equations only
involve h and R, both of which appear explicitly. This makes
the numerical integration very straightforward.

Equation (A3) also has a number of benefits for analysis.
For example, the cone angle can easily be identified because
dh=dz ¼ 0. The corresponding value of h can be found by
making the numerator vanish

� � ð1� �Þð2 cos hþ cos2 hÞ ¼ 0: (A5)

This is a simple quadratic equation for cos h, whose solution

cos h ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1� �
p � 1 (A6)

is given in Eq. (16). An even more interesting observation is
that one can combine Eqs. (A3) and (A4) to get the separable
equation

dR

R
¼ dh

tan h½� � ð1� �Þð2 cos hþ cos2 hÞ� : (A7)

Indeed, both terms can be integrated, although the expression
for general � is rather elaborate and not particularly enlight-
ening. We therefore present only two interesting cases. First,
for � ¼ 1, one obtains

ln
R

R0

� �
¼ ln

sin h
sin h0

� �
;) R ¼ R0sin h

sin h0

; (A8)

where h0 is the initial contact angle. As discussed in Sec. III A,
this is the formula for a spherical cap with radius of curva-
ture R0/sin h0, demonstrating that for � ¼ 1 the original
spherical shape is preserved. Second, the critical solution
� ¼ 3=4 gives

ln
R

K

� �
¼ 1

2ðcos h� 1Þ �
3

8
lnð3þ cos hÞ

� 1

8
lnð1� cos hÞ þ 1

2
lnð1þ cos hÞ; (A9)

where K is a constant of integration that depends on the ini-
tial conditions. We are mainly interested in the structure of
the singularity, which is obtained by expanding for small h,
yielding

hðRÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lnðR=KÞ

p : (A10)

This reveals a logarithmic dependence of the angle on R.
Ultimately, this drop is rounded since h(0)¼ 0.
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