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Evaporation-driven particle self-assembly can be used to generate
three-dimensional microstructures. We present a unique method
to create colloidal microstructures in which we can control the
amount of particles and their packing fraction. To this end, we eva-
porate colloidal dispersion droplets on a special type of superhydro-
phobic microstructured surface, on which the droplet remains in
Cassie–Baxter state during the entire evaporative process. The re-
mainders of the droplet consist of a massive spherical cluster of the
microspheres, with diameters ranging from a few tens up to several
hundreds of microns. We present scaling arguments to show how
the final particle packing fraction of these balls depends on the
dynamics of the droplet evaporation, particle size, and number of
particles in the system.

superhydrophobicity ∣ microparticle deposition

Evaporation-driven particle self-assembly is an ideal mechan-
ism for constructing micro- and nanostructures at scales

where direct manipulation is impossible. For example, in colloidal
dispersion droplets with pinned contact lines, evaporation gives
rise to the so-called coffee stain effect (1): A capillary flow drags
the particles toward the contact line to form a ring-shaped stain.
Such a flow not only aggregates the particles, but is also able to
organize them in crystalline phases (2–5). Similar mechanisms
such as the convective assembly (6, 7) are currently successfully
used to produce two-dimensional colloidal crystal films. To obtain
three-dimensional clusters of microparticles, colloidal dispersion
droplets can be dried suspended in emulsions (8–10), in spray
dryers (11, 12), or kept in Leidenfrost levitation (13). The main
drawback of these three-dimensional assembly techniques, how-
ever, is the lack of control on both the amount of particles and the
particle arrangement in the remaining structures.

In this work, we devise a unique, controlled way of generating
on-demand self-assembled spherical microstructures via droplet
evaporation on a superhydrophobic surface (Fig. 1). We present
scaling arguments to predict the particle arrangement in themicro-
structures formed, based on the dynamics of the evaporation
process. To generate the microstructures, we evaporate colloidal
dispersion droplets on a special type of superhydrophobic sub-
strates. In most of the cases, a liquid Cassie–Baxter state drop
evaporating on a superhydrophobic surface will eventually suffer
a wetting transition into a Wenzel state, i.e., it will get impaled into
the structure and loose its spherical shape (14, 15). Here, however,
we use a surface that combines overhanging pillared structures (16,
17) with a hierarchical nanostructure (Fig. 2C). These surface
properties impose a huge energy barrier for the wetting transition
to occur, and therefore the droplet will remain almost floating over
the structure in a Cassie–Baxter state during its entire life (18).

A typical result can be observed in Fig. 1 (see also Movie S1:
A water droplet containing 1 μm soluble polystyrene particles
(initial concentration 0.08% weight and initial volume 5 μL) eva-
porates on the superhydrophobic surface at room temperature
and 30% humidity. After a typical evaporation time of 45 min, the
solvent is completely evaporated and only the colloids are left

upon the substrate. Remarkably, the particles (approximately 107

in this particular case) are not just lying scattered on the pillars
but they have aggregated and form a spherical macrocluster rest-
ing on top of the micropillars, which we call colloidal supraball.
The final ball has a slightly oblate shape, with an ellipticity of
approximately 10%. The final macroscopic contact angle with the
structure is slightly (about 15%) lower than the initial one. Be-
cause the particles are fully wetted and do not have the tendency
to accumulate at the interface, spontaneous shell formation (10)
is not expected. Indeed, we do not observe shell formation during
the evaporation of the droplets (11, 13, 19): The supraballs we
obtain are solid, and present a high mechanical resistance and
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Fig. 1. (A) A droplet of colloidal solution is left to evaporate on a super-
hydrophobic surface. As the solvent evaporates, the particle concentration
increases. Once all the solvent has completely evaporated the colloidal par-
ticles have aggregated to form a spherical particle conglomerate: a colloidal
supraball. (B) Top view of the resultant compact colloidal supraball left on the
superhydrophobic surface after evaporation. The micropillars forming the
structure are seen as circular objects around the supraball.
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stability. To inspect inside the ball, we cut some of them open with
the aid of sharp blades or microcapillaries. All the examined
balls showed compact nuclei and no hollow structures (Fig. S1).
Additionally, when looking closer at the surface of these particular
colloidal supraballs as shown in Fig. 2D, one can identify crystalline
flat patches which resemble the pentagonal patches present in a
soccer ball. These crystalline patches are even observed close to
the contact line (Fig. 2B), and at the bottom of the ball, where its
shape is slightly flattened due to the contact with the pillars.

The system strongly differs from the particle deposition in the
coffee stain problem (1, 5), where pinning of the droplet’s contact
line causes a capillary-driven flow that brings the particles to the
boundary. Pauchard and Couder (20) studied the drying of highly
concentrated colloidal solutions of large droplets on hydrophobic
surfaces, which is more similar to our system. However, in their
case the contact line is also pinned, and as a consequence the
droplet does not keep its spherical shape but shows strong defor-
mations.

To understand the final structure of our present supraballs, it
will turn out crucial to understand the dynamics of the droplet
evaporation. The fact that we do not observe shell formation sug-
gests that the particles do not influence the droplet evaporation.
To test this hypothesis we compare the evaporation dynamics to
that of a liquid drop that does not contain any particles. The eva-
porative mass loss from such a drop is typically governed by the
diffusion of vapor molecules in the surrounding air (1, 21, 22).
For diffusion-limited evaporation, the rate of volume change of
the drop is given by

dV
dt

∼D 0R; [1]

whereR is the drop radius,D 0 ¼ DvaΔc∕ρ, withDva the diffusion
constant for vapor in air, Δc the vapor concentration difference
between drop surface and the surroundings, and ρ the liquid
density (5). One might have expected the evaporation rate from
the drop surface to be proportional to the droplet surface area
approximately R2. However, the vapor concentration gradient
is proportional to 1∕R, and therefore the total evaporation rate

is proportional to R (23). If the droplet evaporates with a con-
stant contact angle, we find that because V ∼R3,

RðtÞ ∼ ½D 0ðtf − tÞ�1∕2: [2]

Here tf is the total droplet lifetime in case no particles are
present, for which the drop radius reaches zero. In the present
case the drop radius saturates at a finite radius, Rball, at a time
t̂ ¼ tf −R2

ball∕D
0, corresponding to the moment where the

particles become densely packed. In Fig. 3 we plot the colloidal
droplet radius versus tf − t. The droplet radius is measured using
a spherical/elliptical fitting from side-view images of the shrinking
droplet during the experiment. Our experimental data for
different number of particles are in very good agreement with
the one-half power law. This result confirms that the particles
do not influence the evaporation process until the final radius
Rball is reached. Hence, we see no indication that the particles
form an impermeable shell during the evaporation of the drop.
In previous studies, Sen et al. (11, 19) concluded that a shell
would only form for fast evaporation or in extremely dilute cases.
The absence of a shell also agrees with other well-known colloidal
drop evaporation experiments in which particles do not tend to
adsorb at the interface (1, 5), unless the colloids are specifically
modified for that purpose (10, 24).

The scaling (Eq. 1) implies that the speed with which the
interface is moving inward is given by dR∕dt ∼D 0∕R. Hence,
the interface speed increases dramatically as the droplet shrinks
and the maximum speed reached in the experiment will be deter-
mined by the final radius Rball. As we will show later, this increase
in interface speed determines the particle packing inside the
supraballs.

The final size of the ball depends on the number of particles
inside the drop. The number of particles can be tuned by mani-
pulating either the initial particle concentration or the droplet
size. In our experiment, the ball size was in the range 100 < Rball∕
Rp < 1;000, with Rp the particle radius. Clearly, the exact final
size of the ball will not only depend on the amount of particles in
the system but also on their packing fraction. We define the global
packing fraction as

Φ ≡ N
�

Rp

Rball

�
3

; [3]

where N is the total number of particles in the droplet. The final
supraball radius Rball is accurately determined from SEM images.
If the packing fractions were identical for all supraballs, one
would expect that Rball∕Rp ∼N 1∕3. In Fig. 4A, however, we show
that there is some deviation from the one-third scaling, especially
for balls with a smaller number of particles.* In Fig. 4B we show
that the packing fraction indeed strongly depends on the number
of particles in the system.

As the number of particles increases, the packing fraction ap-
proaches that of a perfect hexagonal close packing configuration,
in which case one would find Φ ¼ 0.74 (25), hence, we have an
ordered particle packing inside the balls. On the other hand, the
supraballs with a smaller amount of particles show remarkably
low packing fractions, even below the random close packing
(RCP) limit (Φ ¼ 0.64) (26), corresponding to a disordered par-
ticle arrangement. The balls which show packing fractions below
the RCP limit contain several empty cavities. Remarkably, the
final configuration reached seems to depend on the number of
particles in the system. In Fig. 4B we indicated the critical number

Fig. 2. (A) Tilted view of the supraball in contact with the microstructure.
(B) Detail of the contact area. (C) Magnified view of the micropillars forming
the microstructure. (D) Close-up of the supraball surface. The distribution of
crystalline patches resemble the pentagons in a soccer ball.

*All quantitative results shown in this paper have been performed with colloids of 1 μm
diameter (nonsurface-modified fluorescent microspheres supplied by Thermo Scientific),
but the same qualitative behavior has been observed for 0.2 and 2 μm. The colloidal
solutions were always prepared with deionized water. According to the manufacturers,
the particles have a melting point of approximately 200 °C.
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of particles Nc ≈ 3 · 106 when the packing fraction reaches that
of an RCP. For N < Nc we get a loose, disordered particle pack-
ing in the supraball, whereas forN > Nc we get a densely packed,
ordered supraball.

What causes the transition from ordered to disordered pack-
ings, and what determines the critical number of particles? In
order to answer this question, we follow a similar approach as
in Marín et al. (5): We compare the timescale on which particles
can arrange by diffusion to the hydrodynamic timescale for the
particle transport by convection, given by the inward motion
of the liquid-air interface. If the diffusion time is small compared
to the hydrodynamic time, particles can arrange into an ordered
packing. The diffusive timescale for particles to find the best
position in a crystalline phase is given by td ¼ R2

p∕D, with Rp the
particle radius and D the diffusivity of the particles in the liquid
(3, 5, 27). The hydrodynamic timescale is th ¼ L∕jdR∕dtj.
Here RðtÞ is the droplet radius and L is the typical interparticle
distance, which depends on the particle concentration as
L ¼ N−1∕3R, as long as the solution is dilute (L ≫ Rp). We de-
fine the ratio of both timescales as

AðtÞ ≡ td
th

¼
����dRðtÞdt

����tdL ¼ D 0

D
N 1∕3

�
Rp

RðtÞ
�

2

; [4]

where in the last step we used 1 to replace dR∕dt ∼D 0∕R. Note
that our definition of the interparticle distance L is a global
average of the whole system. Locally, some inhomogeneities will
be present, in particular close to the interface, but our scaling
analysis will not be affected.

FromEq. 4 we observe thatAðtÞ increases as the droplet radius
becomes smaller during the evaporation (Fig. 3), until the limit
R ¼ Rball is reached. A cross-over between the timescales is
reached when the hydrodynamic time becomes equal to the dif-
fusion time, hence whenA ¼ 1. If the cross-over is reached when
R ≫ Rball, the amount of crystalline clusters is still very small.

From this point in time onward the interface speed is too high
for the particles to further arrange in a crystalline way (5).
Instead, they are pushed together in a random arrangement, with
a low packing fraction. If the cross-over is reached when
R ≤ Rball, the particle packing is already dense and ordered, and
we find a high packing fraction. For all droplets the evaporative
mass loss, and hence the decrease in radius, is the same (Fig. 3),
hence, the moment when the particle packing becomes suffi-
ciently dense for particles to arrange depends solely on the num-
ber of particles in the droplet. IfN is high (N > Nc), this moment
is reached relatively early, i.e., well before A ¼ 1, and we get an
ordered particle packing inside the supraballs. Using that
Rball∕Rp ∼N 1∕3 and considering A ¼ 1, we find from Eq. 4
the critical number of particles above which we obtain ordered
supraballs

Nc ∼
�
D 0

D

�
3

: [5]

This result emphasizes that the transition is governed by two
diffusion processes: the diffusion of vapor, determining the
speed of evaporation, versus the diffusion of particles inside the
drop. The ratio of diffusion constants selects the critical number
of particles. In our experiment D 0 ¼ 3 × 10−10 m2∕s and
D ¼ 2 × 10−13 m2∕s, from which we find that Nc ∼ 109. This
prediction is two to three orders of magnitudes larger than the
experimentally observed Nc. There are two reasons why this
estimation is quantitatively off: First of all, we have neglected
all prefactors, and the result is strongly (to the third power)
dependent on the experimental parameters included in D 0, i.e.,
humidity, liquid density, diffusivity of vapor, and saturated vapor
concentration. Secondly, in the analysis we have not taken into
account which packing fraction is actually achieved when A ¼ 1.

To verify whether the final packing fraction indeed depends on
the spacing between the particles the moment the cross-over time
is reached, we go back to our experimental data. We define the
time-dependent packing fraction as NðRp∕RðtÞÞ3. As the droplet
evaporates, this packing fraction will increase until it reaches its
final value Φ. At the cross-over, defined by A ¼ 1, the droplets
will have a packing fraction Φ�. If this Φ� is low, the amount of
crystalline clusters is still very small. On the other hand, if Φ� is
high, we expect crystalline clusters to have formed already. After
the cross-over time, the interface moves too fast to allow for
further ordering, and it just presses the ordered particle clusters
closer together. In Fig. 5 we show that droplets with a high Φ�
have a high Φ: When Φ�⪆0.1 we obtain a final packing fraction
above the RCP limit.
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Fig. 3. The radius of the droplet plotted against tf − t with tf the lifetime of
the droplet and t the actual time. The triangle indicates the one-half power
law, the dots represent the dataset for seven different experiments, where
the number of particles was varied. For a certain t̂ < tf the final ball size Rball is
reached. The final time was extrapolated as tf ¼ t̂ þ R2

ball∕D
0.

Fig. 4. (A) Supraball to microparticle diameter Rball∕Rp plotted against the
total amount of particles N in the system. (B) The packing fraction Φ strongly
depends on N. Blue dots represent experimental measurements and the red
solid line corresponds to the most efficient particle packing Φ ¼ 0.74 (hexa-
gonal close packed), the dashed line marks Φ ¼ 0.64, and random close
packed. Nc is the critical number of particles, above which we find an ordered
ball structure.

Fig. 5. Final packing fractionΦf versus the packing fraction at the cross-over
time Φ�. Droplets below a certain Φ� have a too low packing fraction at the
cross-over time to achieve final packing fractions above the RCP limit. The
particle packing can not only be obtained from the value of the packing frac-
tion, but it can also directly be observed from the SEM images of the surface
of the supraballs.
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We cannot predict the critical Φ� theoretically. However, we
can, retrospectively, use the experimental critical Φ� to compute
Nc. Using that Rball∕Rp ∼ 0.1N 1∕3 at the cross-over, we obtain
Nc ∼ 107, which is in the same order of magnitude as our experi-
mental results (Fig. 4B).

The particle packing in the supraballs can not only be assessed
by measuring the packing fraction, but it can also directly be seen
in SEM images from the surface of the colloidal supraballs, as
shown in Fig. 5. The size of the soccer-ball-like crystalline patches
on the surface of the ordered supraballs depends on the ball size:
Bigger balls will show larger patches due to the reduced curvature
at their surfaces. To explain the size of the crystalline domains, we
hypothesize that a crystalline patch will bend radially no more
than a particle size. Then, it follows by simple trigonometry that
the size of a patch S will be related to the ball radius Rball and the
particle size Rp via S∕Rball ¼ arccosð1 −Rp∕RballÞ. This expres-
sion predicts a typical patch size of approximately15 μm for a ball
with Rball ¼ 50 μm and Rp ¼ 0.5 μm, which is in the right order
of magnitude as one can observe in Fig. 2D.

In conclusion, in this work we devise a simple technique to
create spherical colloidal supraballs relying only on droplet eva-
poration over a robust superhydrophobic surface. The supraballs
show a highly ordered structure if the number of particles inside
the drop is large enough to trigger early particle clustering. The
critical number of particles required to obtain an ordered particle
packing inside the balls depends on the parameters driving the
droplet evaporation (through D 0) and the diffusivity of the parti-
cles. Hence, by controlling the humidity and ambient temperature
the supraball packing fraction and hence size can be controlled.
Massive fabrication of microcompact supraballs could easily be
achieved by simply spraying a colloidal solution over the micro-
structure in a controlled atmosphere. By tuning the wetting proper-
ties of the particles one could also be able to generate the well-
known colloidosomes (10) using the same proposed technique.
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