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The contact angle that a liquid drop makes on a soft substrate does not obey the classical Young’s

relation, since the solid is deformed elastically by the action of the capillary forces. The finite elasticity of

the solid also renders the contact angles differently from those predicted by Neumann’s law, which applies

when the drop is floating on another liquid. Here, we derive an elastocapillary model for contact angles on

a soft solid by coupling a mean-field model for the molecular interactions to elasticity. We demonstrate

that the limit of a vanishing elastic modulus yields Neumann’s law or a variation thereof, depending on the

force transmission in the solid surface layer. The change in contact angle from the rigid limit to the soft

limit appears when the length scale defined by the ratio of surface tension to elastic modulus �=E reaches

the range of molecular interactions.
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The wetting of liquid drops on deformable solids is
important in many circumstances, with examples from
biology to microfluidic devices [1–4]. When the solid is
soft or flexible, the shapes of both the solid and the liquid
are determined by elastocapillary interactions, i.e., by the
elastic response to the capillary forces [5,6]. The resulting
surface deformations have major consequences for the
condensation of drops on soft solids [7], as used for micro-
patterning of polymeric surfaces [8], mechanical stability
of gels [9], or wetting on very soft coatings. To date,
however, the most basic characterization of wetting has
remained elusive for highly deformable solids [10–13]:
What is the contact angle that a liquid makes on a soft
solid?

The geometry of the interfaces near the three-phase
contact line is governed by two classical laws that describe
the macroscopic boundary condition for the contact angles
[14]. Young’s law applies in the case where the substrate
is perfectly rigid, with elastic modulus E ¼ 1, while
Neumann’s law holds for liquid lenses floating on another
liquid substrate. A question that naturally arises is whether
the contact angles vary from ‘‘Young’’ to ‘‘Neumann’’
upon reducing the elastic modulus of the substrate: In other
words, does one recover Neumann’s angles in the limit
E ! 0?

Surface deflections due to capillary forces below a drop
[10,11,15] have recently been determined with a submi-
cron resolution [16–18]. As reported in Fig. 1(d), Jerison
et al. [17] demonstrated that the solid exhibits a cusp below
the contact line, as would occur for a liquid substrate. In
this experiment, however, the solid deformation was found
to be ten times smaller than the elastocapillary length �=E
based on the Young modulus E and the liquid surface
tension �. Similarly, the solid angle deflection is much

lower than that expected from Neumann’s law. Another
open question is to identify the dimensionless parameter
governing the value of the contact angle or, in other words,
to identify the length to which the elastocapillary length
�=Emust be compared. This length could be macroscopic,
such as the size of the drop [17,19], mesoscopic, or a truly
molecular size characteristic for the capillary interactions
[20,21]. At what value of �=E does the elastic substrate
develop a cusp?
In this Letter, we solve the elastocapillary contact angle

selection within the framework of the density functional
theory (DFT), using the sharp-kink approximation. The
evolution of the contact angles with stiffness is summa-
rized in Fig. 1. The central result is that the liquid contact
angle is selected at the molecular scale a and therefore
exhibits a transition from Young to Neumann around a
dimensionless number �=ðEaÞ of order unity. We propose
an analytical description of this transition, which agrees
quantitatively with the full numerical solution of the
coupled DFT and elasticity models. Above this transition,
the elastic solid is deformed by the capillary forces over
the length �=E. When the latter becomes larger than the
system size [the layer thickness h in Fig. 1(c)], the
elastic deformation saturates. Importantly, the soft limit
�=ðEaÞ � 1 does not reduce to Neumann’s law for the
contact angles whenever tangential forces are transmitted
below the contact line. In this case, the solid cusp is much
less sharp than predicted from Neumann’s law, which
could explain recent experiments.
Density functional theory.—The multiscale nature of

elasticity makes it convenient to treat the wetting interac-
tions in a continuum framework, such as the DFT. We
consider a simplified DFT model in which the solid and
the liquid are treated as homogeneous phases that mutually
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attract, while the interface is assumed to be infinitely thin
[22–24]. This model captures the microscopic properties,
such as the stress anisotropy near the interface, the disjoin-
ing pressure, and the line tension, and is consistent with
macroscopic thermodynamics in the form of Laplace pres-
sure and Young’s law [22–25].

The idea underlying this DFT model is to separate the
molecular interactions into a long-range attractive poten-
tial ’ðrÞ, which takes into account the pair correlation
function, and a hard-core repulsion that acts as a contact
force. For van der Waals interactions, this potential decays
as 1=r6, which is cut off at a microscopic distance r ¼ a
that corresponds to the repulsive core. In the model, it turns
out that all the capillary forces can be expressed in terms of
the integrated potential [21],

���ðrÞ ¼ ����

Z
�
dr0’��ðjr� r0jÞ: (1)

This represents the potential energy in phase � due to
phase �, where the phases can be liquid (L), solid (S), or
vapor (V). �� and �� are the corresponding homogeneous

densities. The repulsive core at r ¼ a ensures that the
integrals over the entire domain� converge and is modeled
by an isotropic internal pressure that ensures incompressi-
bility. As detailed in Refs. [21,26], the model distinguishes
three types of attractive interactions: liquid-liquid, solid-
solid, and solid-liquid interactions, which can be expressed
directly in terms of the surface tensions �, �SV , and �SL

[21,23,27]. The liquid-vapor surface tension � character-
izes the liquid-liquid interactions. The strength of the solid-
liquid interactions is characterized by Young’s contact
angle �Y , defined by cos�Y ¼ ð�SV � �SLÞ=�. The inter-
action with vapor can be neglected in the limit of a low
vapor density. In the full DFT numerical calculation,
the equilibrium shape of the liquid-vapor interface is

determined iteratively using the procedure described in
previous papers [24,25].
Selection of the liquid angle.—An important feature is

that the strength of the capillary interactions depends on
the geometry of the deformable solid. We consider the
reference case of a solid shaped like a wedge of angle �S
(upper inset of Fig. 2). Similar to the case of a flat surface,
the force acting on a corner of liquid depends only on its
angle �L at a large distance from the contact line and can be
determined exactly by integrating over all the interactions
in the DFT model [23,24]. This force on the liquid corner
consists of three contributions that are sketched in the
lower inset of Fig. 2: (i) the force exerted by the solid
(solid-liquid interactions, black arrow), (ii) the attractive
force exerted by the rest of the liquid (liquid-liquid inter-
actions, white arrows), and (iii) the repulsive force exerted
by the rest of the liquid, induced by the presence of the
solid [28] (liquid-liquid interactions, red arrow). This last
force arises because the presence of the solid leads to an
increase of the liquid internal pressure near the solid-liquid
interface.
The balance of forces in Fig. 2 provides the equilibrium

�L for arbitrary �S (details are worked out in the
Supplemental Material [26]):

cos�L ¼ 1

2

0
@cos�Y½1� cos�S�

� sin�S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1� cos�S
� cos2�Y

s 1
A: (2)

This result is independent of the microscopic length a and
the functional form of ’ðrÞ. For a flat surface (�S ¼ �),
the solid-on-liquid force is oriented vertically, with fSL ¼
� sin�L. In this case, the force balance reduces to Young’s
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FIG. 1 (color online). Geometry near the three-phase contact line obtained by coupling elasticity to a DFT model. Contact angles
continuously vary from Young’s law to Neumann’s law by reducing the stiffness of the solid. (a) Rigid solid, �=ðEaÞ � 1. The surface
is undeformed, and the liquid contact angle follows Young’s law down to molecular scale a. (b) Soft solid, �=ðEaÞ � 1. Surface
elasticity is negligible on the scale of molecular interactions, and the contact angles obey Neumann’s law. The solid is deformed over a
distance ��=E from the contact line. (c) Very soft solid, �=ðEhÞ � 1. The change of the contact angles saturates when �=E becomes
comparable to the thickness of the elastic film. The solid angle measured at scale h becomes identical to the microscopic solid angle at
scale a. (d) Surface elevation profile measured by Jerison et al. [17] induced by a water drop on a silicon gel (E ¼ 3 kPa). The solid
deforms into a ‘‘cusp’’ of solid angle �S ¼ 164�.

PRL 109, 236101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 DECEMBER 2012

236101-2



law, and the liquid angle �L ¼ �Y . However, (2) predicts
that �L increases when �S is reduced (Fig. 2, solid line).
Physically, this is due to the reduction of the solid volume
for smaller �S: This lowers the total solid-liquid interac-
tion, making the solid wedge more ‘‘hydrophobic.’’

Selection of the solid angle.—If the phase S behaves as a
perfect liquid, its mechanical equilibrium gives a second
equation for the angles. This can be deduced from (2) by
exchanging the roles of L and S, which indeed result in �S
and �L, according to Neumann’s law [26]. In the elastoca-
pillary problem, by contrast, the solid S can resist shear.
One therefore needs to express how the capillary stress �
applied at the free surface deforms the solid. We treat the
substrate as an incompressible elastic body (Poisson ratio
� ¼ 1=2) with Young’s modulus E, as is typical for soft
elastomers. We introduce the Green’s function R, which
gives the surface displacement induced by a Dirac force
distribution applied at the boundary of a two-dimensional
elastic medium. Then, the total surface displacement is
obtained by the convolution

�hðxÞ ¼ 1

E

Z 1

�1
Rðx� x0; hÞ � �ðx0Þdx0:

The contact line is considered to be invariant in one direc-
tion, so that R and � have two components corresponding
to the normal and the tangential directions to the substrate.
Let us emphasise that the problem is inherently multiscale.

On one hand, the capillary forces are localized in the
vicinity of the contact line; on the other hand, the surface
displacement induced by a localized force of resultant fz
scales as [29]

�hðxÞ � � fz
E

lnjxj (3)

and is therefore singular at both small and large distances x
from the contact line. The elastic kernel requires a cutoff
length at a large scale, which for our numerical calcula-
tions arises due to the finite elastic film thickness h [17]. It
can also result from the finite size of the drop [20,30,31].
The inner regularization originates from the finite range of
intermolecular capillary forces [10,13,21]. The capillary-
induced stress� can be expressed in terms of the��� [26],

and the integrals of (1) can be evaluated numerically for the
arbitrary shape of the liquid and solid domains. This closes
the elastocapillary problem, and the resulting numerical
profiles are provided in Fig. 1.
At intermediate distances from the contact line, a �

x � h, the Green’s function for the elastic response is
given by Eq. (3). The slope of the solid-liquid interface
thus scales as �h0 � fz=ðExÞ. Importantly, the angle �L of
the liquid is selected at the microscale a. Therefore, the
relevant solid angle �S induced by elastic deformations
must be defined at that scale. This is confirmed by the
agreement between the prediction of (2) and the numerical
solution of the fully coupled elasticity DFT model: The
symbols in Fig. 2 are obtained by measuring �S in the
numerics at a distance a from the contact line. With this
information, one can obtain an approximate equation for
the selection of �S by evaluating (3) at x ¼ a:

�h0 � tan

�
�� �S

2

�
� fz

Ea
: (4)

The force acting on the solid corner.—The final step is to
express the vertical force fz exerted on the solid corner in
the vicinity of the contact line (bright, light orange region
in Fig. 3). Using the approximation that the solid domain is
a perfect wedge and assuming that the liquid is at equilib-
rium, we can derive the tangential and normal components
of this force due to the liquid-solid interaction [26],

ftLS
�

¼ ð1þ cos�YÞ
cos�L2 sin�S2
sin�Lþ�S

2

; (5)

fnLS
�

¼ ð1þ cos�YÞ
2

�
sin�S þ cos�S

tan�Lþ�S
2

�

þ ð1� cos�YÞ
2

�L
2
: (6)

As emphasized in recent papers, this force is oriented
towards the interior of the liquid and therefore presents a
large tangential component, even in the limit of a flat
surface [21,32].

FIG. 2 (color online). Main graph: Relation between �L and �S
predicted by the DFT model. The solid line is the analytic
formula (2) for �Y ¼ 0:96. The symbols are the angles obtained
numerically for the normal force transmission model (j) and the
vectorial force transmission model (d), as defined in the text.
Upper inset: Definition of �L and �S. Lower inset: Forces acting
on a corner of liquid (bright region, light blue). Black: Force
exerted by the solid. Red: Repulsive liquid-liquid force induced
by the presence of the solid. White: Attractive force exerted by
the liquid due to the missing half-domain of liquid.
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To express the solid-solid interactions, we need to model
the mechanical behavior of the surface layer of the sub-
strate. We consider two extreme cases of how the liquid-
on-solid force can be transmitted to the bulk of the elastic
solid. First, one can assume that only the normal stress is
transmitted, as would be the case for a liquid. In terms of
forces on the solid corner (bright region in Fig. 3), the
tangential component of fLS is balanced by a surface
stress. This is represented by the red arrow in Fig. 3(a)
(in perfect analogy to the red arrow in the liquid in Fig. 2).
In this case of normal force transmission, the total vertical
force reads

fz ¼ fnLS cos�SL þ ð�ftLS þ �� �SLÞ sin�SL
� �SV sin�SV: (7)

The angles �SL and �SV are defined with respect to the
undisturbed solid surface (Fig. 2).

Alternatively, one can hypothesize a perfect vectorial
force transmission, for which there is no such surface stress
[Fig. 3(b)]. We recently proposed an experimental test
aiming to discriminate between the two force transmission
models: It turned out that the vectorial transmission model
is the correct description for an elastomer [32]. Then, the
tangential force exerted by the liquid is transmitted to the
bulk of the elastic body and the total force on the solid
corner becomes [Fig. 3(b)]

fz ¼ fnLS cos�SL þ ð�ftLS � �SVÞ sin�SL � �SV sin�SV:

(8)

Discussion.—The system of equations (2)–(6), closed by
Eq. (7) or Eq. (8), gives a prediction for �L and �S and
forms the central result of our Letter. It involves three
dimensionless parameters: the elastocapillary number
�=ðEaÞ and the surface tension ratios �SV=� and �SL=�.
The resulting contact angles are shown as solid lines in
Fig. 4 and are in excellent agreement with the numerical
solution of the full elasticity DFT model. The contact
angles undergo a transition governed by the dimensionless
parameter �=ðEaÞ. The relevant length scale that

determines the contact angles is therefore microscopic
and not macroscopic. In the limit of strong elasticity,
�=ðEaÞ � 1, one recovers Young’s angle �L ¼ �Y and
an undeformed solid �S ¼ �. Conversely, in the limit of
a soft solid, for �=ðEaÞ � 1, the elasticity is too weak to
resist any normal force near the contact line. In this limit,
one thus finds that fz ¼ 0, corresponding to a perfect
balance of capillary forces. The resulting angles are not
only determined by the surface tensions but also depend on
the solid surface stress. As expected, Neumann’s law is
recovered for the normal force transmission model
[Eq. (7)]. Indeed, in that case, the solid behaves as an
incompressible liquid in the limit �=ðEaÞ ! 1.
For the vectorial force transmission model [Eq. (8)],

however, the absence of a surface stress changes the force
balance along x: A residual horizontal force fx remains
even when �=E � a. As a consequence, the contact angles
are different from Neumann’s law. In particular, Fig. 4
reveals that the deflection of the solid,�-�S, is significantly
smaller than the prediction of Neumann’s law. This could
be an explanation for the unexpectedly small elastic defor-
mation observed by Jerison et al. [17], for which the solid
angle was fitted as �S � 164� [Fig. 1(d)]. A fully quanti-
tative comparison is not possible at present, since the
surface tensions �SV and �SL are not known from inde-
pendent measurements. However, the same experiments
revealed significant horizontal displacements below the
contact line, consistent with a residual tangential force.
The selection of the contact angle at the scale a has a

very important consequence: The strain in the vicinity of

FIG. 3 (color online). Forces acting on the corner of the solid
near the contact line [indicated by the bright (light orange)
region near the contact line]. (a) Normal force transmission
model. Black: Force exerted by the liquid. Red: Force exerted
by the solid due to pressure build induced by the liquid. White:
Force exerted by the solid due to the missing half-domain of
solid. (b) Vectorial force transmission model. The difference
with respect to (a) is the absence of surface stress (red).

100 10110-110-2 102

FIG. 4. Transition of the contact angles �L (white) and �S
(gray) upon increasing the ‘‘softness’’ parameter �=ðEaÞ for
�Y ¼ 0:96 and �SV ¼ �. The symbols correspond to DFT nu-
merical solutions for h=a ¼ 1000 for the normal transmission
force (h) and for the vectorial transmission force (	).
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the contact line scales as �=ðEaÞ. For soft elastomers, this
would imply unphysically large strains of 103. Clearly,
enthalpic effects will become important at large strain,
leading to a strengthening of the material [33]. The effec-
tive value of �=ðEaÞ will thus be much smaller than
expected from small-strain calibrations. To quantitatively
analyze experiments, the effective elasticity must be deter-
mined in a self-consistent way in order to describe the
strongly strained zone below the contact line.

*Present address: Department of Mechanical Engineering,
University of Alberta, Alberta, Canada T6G 2G8.
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