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The coalescence of viscous drops on a substrate is studied experimentally and theoretically. We

consider cases where the drops can have different contact angles, leading to a very asymmetric

coalescence process. Side view experiments reveal that the ‘‘bridge’’ connecting the drops evolves with

self-similar dynamics, providing a new perspective on the coalescence of sessile drops. We show that the

universal shape of the bridge is accurately described by similarity solutions of the one-dimensional

lubrication equation. Our theory predicts that, once the drops are connected on a microscopic scale, the

bridge grows linearly in time with a strong dependence on the contact angles. Without any adjustable

parameters, we find quantitative agreement with all experiments.
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The coalescence or breakup of liquid drops is a funda-
mental process relevant for the formation of raindrops or
sprays, inkjet printing, or stability of foams and emulsions
[1–4]. The initial stages of coalescence of two spherical
drops has been characterized in great detail [5–10]. After
contact, a small liquid bridge connects the two drops and
the bridge grows rapidly with time. Depending on the
viscosity of the liquid, the radius of the bridge grows as

r� t (high viscosity) [5–8], or r� t1=2 (low viscosity,
inertia dominated) [7–9], with a crossover depending on
fluid properties and drop size [10].

In many cases, however, the coalescing drops are not
freely suspended but are in contact with a substrate. Much
less is known about the coalescence of such sessile drops.
When looking from a top view, the coalescence of drops on
a substrate looks very similar to the case for spherical drops
[Fig. 1(d)]; yet the bridge dynamics is fundamentally dif-
ferent. Measurements of the top view width of the bridge r

for very viscous drops give a growth r� t1=2 [11,12], and
even smaller exponents have been suggested [13]. The
challenge lies in the complications introduced by the pres-
ence of the substrate. First, the geometry of the drop is no
longer a sphere with an axisymmetric bridge, but a spherical
cap with a contact angle �. As a consequence, a top view of
the coalescence process is very different from a side view.
Second, thewall slows down the liquid transport towards the
bridge [11] and gives rise to the motion of a contact line
[14]. At present, it is not clear whether or not this contact
line motion affects the initial stages of coalescence, and
different predictions for the � dependence have been
reported [11–13]. Based on numerical simulations it was ar-
gued that the main flow direction is parallel to the wall and
oriented towards the bridge [11], as sketched in Fig. 1(d).
While this simplifies the description of the coalescence, this
hypothesis remains to be validated experimentally.

In this Letter we resolve the coalescence of viscous
drops on a substrate by performing side view experiments,

imaging parallel to the substrate (Fig. 1). Our central
finding is that, once the contact is established on a nano-
meter scale, the bridge develops a self-similar shape and
its height grows linearly as h0 � t. The influence of the
contact angle is studied in detail by considering drops with
identical or different contact angles, resulting in sym-
metric or asymmetric coalescence [Figs. 1(b) and 1(c)].
Theoretically, we show that all experiments are described
quantitatively by a one-dimensional lubrication theory.
We identify similarity solutions that quantitatively predict
the shape and evolution of the bridge without adjustable

FIG. 1. (a) Schematic of two coalescing viscous drops on a
substrate, viewed from the side. The minimum height h0ðtÞ
characterizes the bridge height. The left-right contact angles
�L and �R can be different at the moment of contact. The
horizontal displacement x0 results from the asymmetry in the
contact angles. (b), (c) Typical frames of the experiments are
shown for asymmetric contact angles (b) and symmetric contact
angles (c). (d) Schematic of two coalescing viscous drops,
viewed from the top. The lubrication model assumes that the
flow is parallel to the solid wall and predominantly in the x
direction (arrows) [11]. The width of the bridge is rðtÞ.
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parameters. This confirms the hypothesis by Ristenpart
et al. [11] that the coalescence is governed by liquid flux
from the drop into the bridge. Our results reveal that the
rate of vertical growth scales with the contact angle as
��4, the horizontal speed ��3, and provide a new per-
spective on previous top view measurements.

Experimental setup.—The side view images of coales-
cing drops in Figs. 1(b) and 1(c) are obtained by a digital
video camera (Photron APX-RS) equipped with a micro-
scopic lens (Navitar 12x zoom lens), resulting in a resolu-
tion of 2 �m=pixel. The camera recorded 12.5 frames per
second. The substrate consists of a horizontal microscope
glass slide (Menzel precleaned microscope slide, average
roughness � 10 nm). The glass slide was further cleaned
using ethanol and acetone, then submerged in an ultrasonic
bath and dried with filtered nitrogen gas. The coalescing
drops were made from silicon oils (Basildon Chemical
Company Limited), with viscosity � ¼ 0:974 Pa � s or
12:2 Pa � s, which both have a surface tension � ¼
21� 10�3 N �m�1 and density � ¼ 975 kg �m�3. The
silicon oils perfectly wet the cleaned glass slide (�eq � 0).

The coalescence of two drops is controlled as follows.
A first drop is deposited from the syringe on the substrate.
Although the silicon oil perfectly wets the glass, the
spreading of these high viscosity drops is very slow, with
the liquid contact angle decreasing slowly in time.
Subsequently, the glass plate is displaced by a manual
translation stage and a second drop is placed next to the
first one. By controlling the volume of silicon oil and the
time between the deposition of drops we achieve a range
of contact angles �L and �R between 10� to 67� at the time
of coalescence. We consider both symmetric coalescence
[�L ¼ �R, Fig. 1(c)] and asymmetric coalescence [�L �
�R, Fig. 1(b)]. The spreading determines the initial con-
ditions, but in all cases the spreading speed is much smaller
than the growth of the bridge. We verified that the weak
spreading does not influence our results by performing
some experiments under partially wetting conditions, for
which the coalescence was started from equilibrium.
Contact time is determined when there is a visual change,
which happens before the bridge is thick enough to provide
a reliable measurement. The dashed line in Fig. 2(a) shows
this spatial resolution limit.

Self-similar dynamics.—The dynamics of coalescence is
characterized by the growth of the bridge connecting the
two drops. Figure 2(a) presents the height of the bridge h0
defined in Fig. 1, as a function of time for a symmetric
coalescence experiment (�L ¼ �R ¼ 22�). At early times,
we observe a linear increase of the bridge height, i.e.,
h0 � t, while at later times the coalescence slows down.
In these final stages the height of the bridge becomes
comparable to the total drop size, which is typically
�1 mm for all experiments. The very early stage, however,
exhibits self-similar dynamics that is governed by a single
length scale. This is revealed in Fig. 2(b) where the

meniscus profiles, hðx; tÞ, and the horizontal coordinate,
x, are rescaled by h0ðtÞ. The scaled profiles at different
times collapse onto a universal curve: the early stages of
coalescence are characterized by a self-similar meniscus
profile. The size of the bridge is simply h0, both in the
horizontal and vertical direction. The solid line is the
theoretical similarity profile that will be derived below.
Our experiments suggest that coalescence of drops on a

substrate is governed by a similarity solution of the flow.
To simplify the three-dimensional geometry of the coales-
cence, we assume that the flow is predominantly along the
wall and oriented as sketched in Fig. 1(d), as suggested by
Ristenpart et al. [11]. We therefore attempt a similarity
solution based on the one-dimensional lubrication theory
for viscous flows [15]:
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FIG. 2 (color online). Symmetric coalescence. (a) Height of
the bridge h0 as a function of time after contact t, for drops
with �L ¼ �R ¼ 22� (� ¼ 12:2 Pa � s). Experiments are shown
in red (d), the solid line is the prediction by Eqs. (2) and (3).
The dashed line represents the lower limit for spatial resolution.
(b) Rescaled experimental profiles at different times, H ¼
hðx; tÞ=h0ðtÞ versus � ¼ x�=h0ðtÞ. The collapse reveals self-
similar dynamics at the early stage of coalescence, in agreement
with the similarity solution (solid line).

PRL 109, 184502 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

2 NOVEMBER 2012

184502-2



Here, hðx; tÞ is the meniscus profile viewed from the side,�
is the liquid viscosity and � denotes the surface tension.
This lubrication equation is valid for small contact angles
and represents mass conservation: the second term is the
surface tension-driven flux of liquid towards the bridge,
causing a growth of the bridge (@h=@t > 0). A direct
comparison with side view experiments will test the valid-
ity of the one-dimensional assumption.

Consistent with our experiments, Eq. (1) has a similarity
solution that imposes a linear time dependence,

hðx; tÞ ¼ vtH ð�Þ; with � ¼ �x

vt
; (2)

where H ð�Þ is the similarity profile of the meniscus
bridge. Here we incorporated the contact angle � in the
scaling of x, such that the condition @h=@x ¼ � translates
toH 0 ¼ 1. The correct scaling of the coalescence velocity
with � then turns out to be

v ¼ V
��4

3�
; (3)

where V is a numerical constant that still needs to be
determined. In combination with (1) and (2), this provides
an ordinary differential equation (ODE) for the similarity
profile H ð�Þ:

H � �H 0 þ 1

V
ðH 3H 000Þ0 ¼ 0: (4)

In order to solve Eq. (4), which is a fourth order ODE with
one unknown parameter V, five boundary conditions are
required. At the center of the symmetric bridge

H ð0Þ ¼ 1; H 0ð0Þ ¼ H 000ð0Þ ¼ 0; (5)

while far away the profile has to match a linear slope
of contact angle �. For the similarity variables this
becomes

H 00ð1Þ ¼ 0; H 0ð1Þ ¼ 1: (6)

The boundary value problem (4)–(6) uniquely determines
the similarity solution for symmetric drop coalescence.
It was solved numerically using a shooting algorithm,
from which we obtained both the dimensionless velocity,
V ¼ 0:818 809, and the similarity profile H ð�Þ. As the
influence of the contact angle was scaled out, the solution
describes the coalescence for all contact angles, within the
lubrication assumption of small �.

The similarity solution indeed provides an accurate
description of the coalescence experiments. The solid
line in Fig. 2(a) is the prediction (3) without adjustable
parameters. The solid line in Fig. 2(b) is the similarity
profile H ð�Þ obtained from our analysis. The agreement
between experiment and theory shows that the coalescence
dynamics is accurately described by a one-dimensional
lubrication model. As expected, the similarity solution
breaks down at later times when the size of the meniscus
bridge becomes comparable to the size of the drops.

Similarly, a cutoff for the scale-free solution will appear
when h falls within the range of molecular interactions.
Details on how contact is established initially are beyond
the similarity solution and will depend on nanoscopic
features such as the presence of a precursor film [16,17].
Asymmetric coalesence.—We further extend the theory

to asymmetric coalescence, for which the contact angles
�L � �R (Fig 1). Without loss of generality, we assume
that �L > �R, and scale the coordinates using �L.
Interestingly, the lack of symmetry induces a horizontal
displacement of the meniscus bridge during the coales-
cence process: the minimum of the bridge, x0, is pulled
towards the lower contact angle (�R). This effect can be
captured using a similarity variable that is comoving with
the bridge, of the form

� ¼ �Lðx� utÞ
vt

; with u ¼ U
��3L
3�

: (7)

FIG. 3 (color online). Asymmetric coalescence. (a) Horizontal
and vertical position of the meniscus bridge, x0ðtÞ and h0ðtÞ,
for asymmetric drops (�L ¼ 46�, �R ¼ 13�, viscosity
� ¼ 12:2 Pa � s). Blue (d) and red (j) markers are experimen-
tal data for x0 and h0, respectively. Solid and dashed lines are the
predictions from the similarity solutions. (b) Rescaled experi-
mental profiles at different times, H ¼ hðx; tÞ=h0ðtÞ versus � ¼
x0�L=h0ðtÞ. The collapse reveals self-similar dynamics at the
early stage of coalescence. The solid line is the similarity
solution predicted by our analysis.
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The horizontal velocity of coalescence u scales with �3L,
where U is a numerical constant. The vertical velocity still
follows (3) with � ¼ �L. Inserting (7) into (1) yields

H �
�
�þU

V

�
H 0 þ 1

V
ðH 3H 000Þ0 ¼ 0: (8)

This fourth order ODE for H ð�Þ now contains two
unknown parameters U and V; hence, the solution requires
six boundary conditions. The minimum of the bridge is
still defined by H ð0Þ ¼ 1, H 0ð0Þ ¼ 0, but the symmetry
condition on H 000 no longer applies. Instead, one has to
impose H 00ð�1Þ ¼ H 00ð1Þ ¼ 0, with contact angles

H 0ð�1Þ ¼ �1; H 0ð1Þ ¼ �R=�L: (9)

The resulting boundary value problem has a unique solu-
tion for each ratio �R=�L, selecting both U and V.

Figure 3 compares theory and experiment for an
asymmetric coalescence (�R=�L ¼ 0:25). The horizontal
position of the bridge x0 (blue circles) and the vertical
position of the bridge h0 (red squares) are shown in
Fig. 3(a). These again evolve linearly in time with a
well-defined velocity. The solid and dashed lines are the
predictions (3) and (7), with prefactors U and V deter-
mined from the similarity solution. Figure 3(b) confirms
that the asymmetric experimental profiles indeed display
self-similarity (symbols), in excellent agreement with
theory (solid line).

We finally consider the influence of the contact angle on
the coalescence speed. Our theory suggests a universal
behavior when making the horizontal and vertical veloc-
ities dimensionless, according to U ¼ 3u�=ð��3LÞ and
V ¼ 3v�=ð��4LÞ. The results of 75 experiments are sum-
marized in Fig. 4 and compared to the theoretical predic-
tion. Indeed, we observe a good collapse of the data. The
open symbol corresponds to a case where the substrate is
partially wetting. The agreement with the (slowly) spread-
ing drops shows that the initial coalescence is governed by

the bridge geometry, not by the substrate wettability. An
interesting feature is that the theory predicts an optimal
horizontal speed around �R=�L � 0:5, which is verified
experimentally. This maximum horizontal velocity can be
explained as follows. The asymmetry induces a bias in the
pulling force of surface tension, which is more efficient
for the smaller contact angle �R. However, the ‘‘lubrication
effect’’ inhibits liquid transport when �R ! 0, as the
viscous friction in the liquid increases for smaller angles.
The combination of these two effects gives rise to an
optimum ratio �R=�L.
Discussion.—Our results imply that the coalescence of

drops on a substrate, which is manifestly three dimen-
sional, is described quantitatively by a one-dimensional
model. This can be explained from the cross section of
the bridge perpendicular to our viewpoint, r, which is
much larger than h0 [Fig. 1]. Elementary geometry sug-

gests r� ðRh0=�Þ1=2 [12], R being the footprint radius of
the drop on the substrate. At early times we therefore have
r � h0, such that local gradients will be oriented in the x
direction. This is consistent with numerical characteriza-
tion of the flow field [11]. It would be interesting to see
whether the one-dimensional approach also applies for
coalescence of low-viscosity drops, which are dominated
by inertia rather than viscosity [2,18].
Our findings also highlight the key importance of asym-

metry on the coalescence dynamics. While here the asym-
metry is due to the contact angles, a similar effect was
found for merging drops with unequal surface tensions
(such as water and alcohol), for which the coalescence is
strongly delayed by Marangoni forces [19]. This will have
a strong bearing on applications such as inkjet printing, for
which such asymmetries are encountered naturally due to
spreading and evaporation of ink drops.
We thank K. Winkels and S. Huisman for discussions.
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FIG. 4 (color online). Contact angle dependence of coalescence velocity. (a) Dimensionless vertical speed, V ¼ 3v�=ð��4LÞ, as a
function of �R=�L. (b) Dimensionless horizontal speed,U ¼ 3u�=ð��3LÞ, as a function of �R=�L. The horizontal speed vanishes for the
symmetric case �R=�L ¼ 1, and displays a maximum around �L=�R � 0:5. Closed symbols: 75 experiments on completely wetting
substrate. Open symbols: drops on partially wetting substrate (�eq ¼ 55�). Solid lines: similarity solutions.
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