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The evaporation of sessile drops in quiescent air is usually governed by vapour
diffusion. For contact angles below 90◦, the evaporative flux from the droplet tends
to diverge in the vicinity of the contact line. Therefore, the description of the flow
inside an evaporating drop has remained a challenge. Here, we focus on the asymptotic
behaviour near the pinned contact line, by analytically solving the Stokes equations
in a wedge geometry of arbitrary contact angle. The flow field is described by
similarity solutions, with exponents that match the singular boundary condition due
to evaporation. We demonstrate that there are three contributions to the flow in a
wedge: the evaporative flux, the downward motion of the liquid–air interface and
the eigenmode solution which fulfils the homogeneous boundary conditions. Below
a critical contact angle of 133.4◦, the evaporative flux solution will dominate, while
above this angle the eigenmode solution dominates. We demonstrate that for small
contact angles, the velocity field is very accurately described by the lubrication
approximation. For larger contact angles, the flow separates into regions where the
flow is reversing towards the drop centre.

Key words: capillary flows, contact lines, drops

1. Introduction
Evaporation of colloidal dispersion droplets is a widely used mechanism to deposit

particles onto a substrate and generate colloidal crystals (Velikov 2002; Dufresne
et al. 2003; Bigioni et al. 2006). The ring-shaped stains that remain after evaporation
can also be disadvantageous, for example in the coating and inkjet-printing industry
(Deegan et al. 1997, 2000; Eral et al. 2011; Yunker et al. 2011). To understand
and control the stains that form when a droplet evaporates, one needs to know the
velocity field inside the drying drop (Deegan et al. 1997; Ristenpart et al. 2007;
Brutin et al. 2011; Marı́n et al. 2011). The capillary flow inside an evaporating drop
is driven by the evaporative mass loss from its surface. There are three mechanisms
which can be rate limiting for the evaporation of a drop (Haut & Colinet 2005;
Cazabat & Guéna 2010; Murisic & Kondic 2011): the transfer of molecules across
a liquid–air interface, the heat transfer to the interface, or the diffusive transport
of the vapour in air. One of the first two mechanisms can be dominant when thin
films of evaporating liquid are considered (Haut & Colinet 2005; Cazabat & Guéna
2010), when the surrounding phase is not gas but pure vapour (Burelbach, Bankoff &
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Davis 1988; Colinet & Rednikov 2011), or for droplets on heated substrates (Anderson
& Davis 1995; Cazabat & Guéna 2010). For macroscopic evaporating drops in air,
diffusion-limited evaporation is often assumed, based on estimates of the time scales
for transport (Hu & Larson 2002; Popov 2005; Cazabat & Guéna 2010; Eggers &
Pismen 2010). For water drops there has been some debate about the time scale for
transport across the interface, and hence about the applicability of diffusion-limited
models (Cazabat & Guéna 2010; Murisic & Kondic 2011). Experimentally, however,
the diffusion-based evaporation model is found to describe the evolution of the droplet
mass and contact angle of sessile water drops with pinned contact lines very well, for
the entire range of possible contact angles (Deegan et al. 1997; Hu & Larson 2002;
Guéna, Poulard & Cazabat 2007; Cazabat & Guéna 2010; Gelderblom et al. 2011;
Sobac & Brutin 2011).

Here, we will study the flow near the pinned contact line of a macroscopic
evaporating drop in air on an unheated substrate, and therefore we consider diffusion-
limited evaporation. Until now, the nature of the flow in the vicinity of the contact line
has remained unclear. In the diffusion-limited case, the singular corner geometry of the
droplet close to the contact line gives rise to a diverging evaporative flux and hence to
a diverging velocity field (Deegan et al. 1997, 2000; Hu & Larson 2005; Popov 2005).
This singularity makes analytical and numerical solutions to the velocity field inside a
drop difficult to obtain (Fischer 2002; Hu & Larson 2005; Poulard et al. 2005; Petsi &
Burganos 2008; Masoud & Felske 2009; Colinet & Rednikov 2011). In several studies
the flow inside the drop was solved analytically, but at the expense of smoothing the
evaporative flux singularity. Masoud & Felske (2009) considered an exponential cut-off
for the flux, while Petsi & Burganos (2008) focused on uniform evaporation profiles.
For small contact angles, evaporation-driven flow inside a droplet is often described in
the lubrication approximation (Berteloot et al. 2008; Eggers & Pismen 2010), which
compares very well with experimental data (Marı́n et al. 2011). It was argued by Hu &
Larson (2005), however, that the standard lubrication approximation does not hold near
the contact line region due to the diverging evaporative flux.

On top of that, Marangoni stresses could alter the velocity field in the vicinity of the
contact line: the non-uniform evaporative flux leads to temperature gradients over the
drop surface, which give rise to differences in surface tension, and drive a Marangoni
flow inside the drop, as has been confirmed experimentally by Hu & Larson (2006)
for octane droplets. Dimensional analysis shows that this Marangoni effect is so strong
that it can overcome the diverging evaporation-driven outward flow, at least at some
distance from the contact line (Hu & Larson 2006; Ristenpart et al. 2007; Bodiguel
& Leng 2010). However, for water droplets the Marangoni effect is found to be weak
(Hu & Larson 2006). In PIV measurements of the velocity field in an evaporating drop
by Marı́n et al. (2011) the experimental velocities were of the order of 10 µm s−1,
whereas the Marangoni velocities would be of the order of 10 mm s−1.

Here, we derive analytical solutions of evaporation-driven Stokes flow in a wedge
geometry to address the nature of flow near the pinned contact line of an evaporating
drop. While solutions to the full flow pattern in the drop can only be obtained
numerically (Fischer 2002; Hu & Larson 2005) or for a regularized evaporative flux
(Petsi & Burganos 2008; Masoud & Felske 2009), the behaviour in the vicinity of the
contact line is characterized by similarity solutions. This is a classical approach for
flows near contact lines that goes back to Huh & Scriven (1971) and was recently
applied to Marangoni flow in evaporating drops by Ristenpart et al. (2007). We
examine the velocity field inside the drop while retaining the singular evaporative
flux as a boundary condition. We demonstrate that for small enough contact angle,
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FIGURE 1. (a) An evaporating drop on a substrate with a contact angle θ and base radius R.
The arrows indicate the evaporative flux of water vapour J from the drop surface to the
surroundings. The dashed square marks the area close to the contact line, where the drop
geometry can be approximated by a wedge. (b) Overview of the wedge geometry. The
evaporative flux drives the Stokes flow inside the liquid. The contact line is located at the
origin of the polar coordinate system (ρ, φ).

the lubrication approximation can be applied all the way down to the contact line,
which invalidates the argument of Hu & Larson (2006). For larger contact angles
(above 127◦) interesting flow structures appear, with a reversal in the flow direction.
We show that there are three contributions to the total flow in the wedge: one
that comes from the evaporative flux boundary condition, one from the downward
movement of the liquid–air interface, and one eigenmode solution, which satisfies the
homogeneous boundary conditions. Which of these conditions is dominant depends on
the contact angle θ of the drop. For θ < θc = 133.4◦, the critical angle, the evaporative
flux solution dominates, whereas for θ > θc the eigenmode solution dominates. The
solution at the critical point is treated separately. Finally, we comment on the typical
pressure in the vicinity of the contact line and on the regularization of the evaporative
singularity.

2. Corner solutions
2.1. Problem formulation

The geometry of the droplet close to the contact line can be approximated by a
two-dimensional wedge with contact angle θ ; see figure 1. The contact line is located
at the origin of the polar coordinate system (ρ, φ).

We define the velocities in terms of streamfunction Ψ (ρ, φ) as

uρ(ρ, φ)=− 1
ρ

∂Ψ

∂φ
, uφ(ρ, φ)= ∂Ψ

∂ρ
. (2.1)

The flow is governed by the Stokes equations, or equivalently, in terms of the
streamfunction, by the biharmonic equation

∇4Ψ = 0. (2.2)

As boundary conditions we have no slip and impermeability of the substrate (φ = 0)
on which the droplet is deposited,

uρ(ρ, 0)=− 1
ρ

∂Ψ

∂φ

∣∣∣∣
φ=0

= 0 and uφ(ρ, 0)= ∂Ψ

∂ρ

∣∣∣∣
φ=0

= 0, (2.3)
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and no stress at the liquid–air interface (φ = θ ),

τρφ
∣∣
φ=θ = η

[
ρ
∂

∂ρ

(
1
ρ

∂Ψ

∂ρ

)
− 1
ρ2

∂2Ψ

∂φ2

]
= 0, (2.4)

with η the dynamic viscosity. The problem is completed by the kinematic boundary
condition at the liquid–air interface, where mass transfer due to evaporation occurs.
This kinematic boundary condition consists of two contributions. One contribution
comes from the evaporative mass flux from the interface, which drives a flow inside
the droplet. Due to the evaporative mass loss, the droplet volume decreases with time.
While the contact area of the drop remains constant because the contact line is pinned,
the contact angle decreases with time. This gives rise to a second contribution to the
kinematic boundary condition: the downward motion of the liquid–air interface acts
like a closing hinge. Hence, the kinematic boundary condition reads

uφ(ρ, θ)= ∂Ψ

∂ρ

∣∣∣∣
φ=θ
= 1
ρl

J(ρ)+ dθ
dt
ρ, (2.5)

with J the evaporative flux and ρl the liquid density. Both contributions in (2.5) are
known in detail from earlier studies (Deegan et al. 1997; Popov 2005). The key
ingredient is that the mass loss from the droplet is limited by diffusive transport of
the water vapour in the air outside the drop. By solving the vapour concentration field
outside the droplet, one can find an expression for the evaporative flux J, which, close
to the contact line, scales as J ∼ ρ̃λ(θ)−1 (Deegan et al. 1997), where ρ̃ = ρ/R, with R
the drop base radius, and

λ(θ)= π

2π− 2θ
. (2.6)

Hence, for λ < 1, which means θ < 90◦, the evaporative flux diverges as the contact
line is approached. From the solution for the vapour concentration field in the corner
geometry, the evaporative flux is found to be (Deegan et al. 1997)

J(ρ)

ρl
= A(θ)Uρ̃λ(θ)−1, (2.7)

where U = D1c/Rρl is the velocity scale, which is of order µm s−1 for water drops
in ambient conditions (Marı́n et al. 2011), with D the diffusion constant for vapour
in air, and 1c = cs − c∞ the vapour concentration difference (in kg m−3) between the
drop surface and the surroundings. Prefactor A(θ) can be found from the asymptotic
behaviour of the full spherical-cap solution (Popov 2005) and is of order unity. The
rate of contact angle decrease, dθ/dt, can be determined from the total rate of mass
loss from the drop. A closed-form analytical solution for the rate of contact angle
decrease was derived by Popov (2005),

dθ
dt
=−B(θ)

U

R
, (2.8)

with

B(θ)= (1+ cos θ)2
[

sin θ
1+ cos θ

+ 4
∫ ∞

0

1+ cosh 2θτ
sinh 2πτ

tanh(π− θ)τ dτ
]
. (2.9)
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2.2. Solution
For a given power n, a general solution to biharmonic equation (2.2) reads (Michell
1899)

Ψ (ρ, φ)= ρ̃n [c1 cos nφ + c2 sin nφ + c3 cos(n− 2)φ + c4 sin(n− 2)φ] , (2.10)

where n 6= 0, 1, 2. Since (2.2) is a linear equation, the two contributions to the
inhomogeneous boundary condition (2.5) can be considered separately, whereas the
full solution is obtained by superposition. On top of this, one may in principle add the
classical ‘eigenmode’ solution of the homogeneous problem by Dean & Montagnon
(1949) and Moffatt (1964), for which all boundary conditions are zero. Hence, we
need to consider three types of solutions: the velocity field due to the evaporative flux
condition,

uφ(ρ, θ)= 1
ρl

J(ρ), (2.11)

the velocity due to the moving interface condition,

uφ(ρ, θ)= dθ
dt
ρ, (2.12)

and the flow that satisfies the homogeneous condition,

uφ(ρ, θ)= 0. (2.13)

From now on, we will refer to (2.11) as the flux condition, to (2.12) as the hinge
condition, while the solution satisfying (2.13) is the corner eigenmode. Note that each
of these boundary conditions will give rise to a different power of ρ̃ in the final
solution. The flux condition (2.11) scales as ρ̃λ−1, with λ given by (2.6), while the
hinge condition (2.12) scales as ρ̃. The homogeneous eigenmode solutions turn out to
scale with yet another exponent, denoted λE. This exponent also depends on θ , and
follows from an eigenvalue equation M(λE, θ)= 0 (Moffatt 1964), where

M(λ, θ)= sin 2(λ− 1)θ − (λ− 1) sin 2θ. (2.14)

This equation has a countable infinite number of zeros, each of which corresponds
to a different eigenmode (with the exception of the trivial solutions λ = 0, 1, 2). The
solutions of (2.14) are discussed in great detail by Dean & Montagnon (1949), Moffatt
(1964) and Moffatt & Duffy (1980). For angles θ < 79.6◦ (2.14) has complex roots,
which causes viscous eddies to appear in the flow (Moffatt 1964). We are interested in
the lowest root that has Re(λE) > 1, to ensure regularity of the eigenmode velocity.

2.2.1. Flux condition
One can cast the solutions generated by the flux condition (2.11) in the form

Ψ (ρ, φ)= RUA(θ)

M(λ, θ)
ρ̃λf (φ, θ), (2.15)

where λ depends on θ as given in (2.6), and the φ-dependent part reads

f (φ, θ)= 1
2
{(λ− 2) [sin λθ − sin(λ− 2)θ ] [cos λφ − cos(λ− 2)φ]

+ [λ cos λθ − (λ− 2) cos(λ− 2)θ ]
[

sin(λ− 2)φ − λ− 2
λ

sin λφ
]}

. (2.16)



74 H. Gelderblom, O. Bloemen and J. H. Snoeijer

The factor RU provides the dimensional strength of the streamfunction, while A(θ)
captures the dependence of the evaporative flux on the contact angle of the drop.
Interestingly, the denominator contains the factor M(λ, θ) that was previously defined
in (2.14). We thus need to consider separately the cases where M(λ, θ)= 0, for which
the solution (2.15) is not defined.

The function M(λ, θ) has two obvious roots that are encountered in the flux
problem, namely λ = 1 and λ = 2. These correspond to cases for which the form
(2.10) is degenerate and additional solutions to the biharmonic equation appear. For
λ= 1 (θ = 90◦) the flux solution becomes

Ψ (ρ, φ)= 2RUA(π/2)
π

ρ̃φ sinφ, (2.17)

while for λ= 2 (θ = 135◦) we find

Ψ (ρ, φ)= RUA(3π/4)
2

ρ̃2 (1− cos 2φ) . (2.18)

Note that these degenerate solutions are a regular limit of (2.15) for θ → 90◦ and
θ→ 135◦, respectively.

In addition to these trivial roots, M(λ, θ) with λ = π/2(π − θ) exhibits one
root that leads to a truly non-trivial solution. This root appears at a critical
angle θc = 133.4◦, with corresponding exponent λc = 1.93. The critical point arises
when the four boundary conditions are not linearly independent, which implies that
the inhomogeneous system cannot be solved. Indeed, this is exactly the condition
required for a non-trivial (eigenmode) solution of the homogeneous problem, namely
M(λE, θ) = 0. As a consequence, the eigenmode solution has the same exponent
λE = λc at the critical angle θc. The resulting critical solution is not of the form (2.10)
and will be treated separately in § 2.3.

2.2.2. Hinge condition
The hinge condition (2.12) gives rise to a degeneracy of solution (2.10), since in this

case n= 2. The solution to (2.2) with the hinge condition is given by

Ψ (ρ, φ)= RUB(θ)

N(θ)
ρ̃2g(φ, θ), (2.19)

with N(θ)= 2 (2θ − tan 2θ), and

g(φ, θ)= sin 2φ − tan 2θ cos 2φ − 2φ + tan 2θ. (2.20)

Hence, (2.19) is defined for all angles, except at θ = 0◦ and θ = θh = 128.7◦, where
N(θ) = 0. For θ satisfying N(θ) = 0, λ = 2 becomes a double root of eigenvalue
(2.14). Hence, once more a critical point appears when the eigenmode has the
same exponent as the solution of the inhomogeneous hinge problem, i.e. λE = 2.
We anticipate that this critical point will be of less importance than the critical point
for the flux condition, as the latter has a slightly smaller exponent λ < 2.

2.2.3. Eigenmode
The eigenmode represents the non-trivial solution of the homogeneous problem,

appearing when M(λE, θ)= 0. It reads (Moffatt 1964)

Ψ (ρ, φ)= RUC(θ) ρ̃λE h(φ, θ), (2.21)
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with

h(φ, θ)= sin[(λE − 2)(θ − φ)] − sin(λE − 2)θ
sin λEθ

sin[λE(θ − φ)]. (2.22)

The prefactor C(θ) cannot be determined from the ‘inner’ Stokes flow problem, where
we consider only the wedge in the vicinity of the contact line. This is fundamentally
different from the prefactors A(θ), B(θ), which are known from the external boundary
conditions on the wedge. In general, the eigenmode solution will be excited by the
far-field flow inside the drop, and is therefore determined on the outer scale R. This is
beyond the present, local analysis. As the only velocity scale in the problem is the one
induced by the evaporation, the streamfunction will naturally scale as RU, and C(θ)
will be of order unity (with the exception of the critical point). Note that (2.21) is the
classical solution by Moffatt (1964), which leads to the famous viscous eddies when
λE has a non-zero imaginary part.

2.3. The critical point
The vanishing denominator of (2.15) at θc = 133.4◦ and (2.19) at θh = 128.7◦ signals
the breakdown of the local similarity solution. Such a breakdown of similarity
solutions in corner flows has been analysed in great detail by Moffatt & Duffy
(1980). This work considered a pressure-driven flow along a duct whose cross-section
has a sharp corner, as well as a variation to the hinge problem considered above. All
cases displayed the same scenario: the inhomogeneous boundary conditions cannot be
fulfilled at a critical angle θc, due to an overlap with the homogeneous eigenmode. The
key result by Moffatt & Duffy (1980) is that the critical solution develops logarithmic
corrections, of the type Ψc ∼ ρ̃λc ln ρ̃. This can be derived by considering the regular
solution, including the eigenmode contribution, in the limit θ → θc. We therefore
introduce an expansion parameter, ε = θ − θc, and derive the critical flux solution in
the limit ε→ 0. Below we discuss in detail the critical point for the flux condition, as
it will turn out to be the most relevant for the evaporation problem. The critical point
for the hinge condition can be treated analogously; the result is given below.

The identity of exponents at the critical point, λ = λE = λc, forces us to consider a
superposition of the flux solution and the eigenmode, Ψc = Ψf + ΨE. As expected, the
flux solution diverges near the critical point as 1/ε, and gives an expansion of (2.15):

Ψf = RUρ̃λ

ε

[
A0 + εA1 + O

(
ε2
)] [

f0(φ)+ εf1(φ)+ O
(
ε2
)]
. (2.23)

Here we note that λ = λc + ελ1 + O
(
ε2
)
, and all coefficients can in principle be

derived from the expressions given in this section. Here we summarize the leading-
order contributions:

f0(φ)≡ f (φ, θc), A0 = A(θc)

M1(λc, θc)
, λ1 ≡ dλ

dθ

∣∣∣∣
θc

= π

2 (π− θc)
2 , (2.24)

where f (φ, θ) was previously defined in (2.16), and M1(λc, θc) = dM/dθ |θc . As noted
by Moffatt & Duffy (1980), a regular solution for ε → 0 is only achieved if the
eigenmode displays an identical 1/ε scaling, to compensate for the divergence of
Ψf . To leading order, we thus require C(θ) ' −A0/ε, such that the expansion of the
eigenmode can be written as

ΨE =−RUρ̃λE

ε

[
A0 + εC1 + O

(
ε2
)] [

h0(φ)+ εh1(φ)+ O
(
ε2
)]
, (2.25)
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where now λE = λc + ελE,1 + O
(
ε2
)
. Once again, we provide the leading-order

contributions:

h0(φ)≡ h(φ, θc), λE,1 ≡ dλE

dθ

∣∣∣∣
θc

=−2(λc − 1) [cos 2(λc − 1)θc − cos 2θc]
2θc cos 2(λc − 1)θc − sin 2θc

. (2.26)

Indeed, one can verify that h0(φ) = f0(φ), which ensures a perfect cancellation of the
1/ε contributions of Ψf and ΨE. Finally, the critical solution Ψc = Ψf + ΨE is obtained
from (2.23) and (2.25) as

Ψc = RU ρ̃λc

{
A0

[
ρ̃ελ1 − ρ̃ελE,1

ε

]
f0(θ)+ (A1 − C1)f0(θ)+ A0 (f1(φ)− h1(φ))+ O (ε)

}
= RUA0ρ̃

λc
{(
λ1 − λE,1

)
ln (ρ̃/κ) f0(φ)+ [f1(φ)− h1(φ)]+ O (ε)

}
. (2.27)

Indeed, this confirms the scenario that the leading-order asymptotics of the critical
solution is of the form Ψc ∼ ρ̃λc ln(ρ̃/κ). The logarithm appears due to the expansion
of ρ̃ελ1 − ρ̃ελE,1 , and thus originates from the ‘closeness’ of λ and λE near the critical
point. The length scale κ that appears inside the logarithm cannot be determined
from the current local analysis. Namely, κ follows from the combination (A1 − C1)

appearing in (2.27). The coefficient C1 requires more knowledge of the eigenmode
amplitude C(θ), and thus of the large-scale flow in the spherical-cap-shaped drop.
Finally, one can verify that this critical solution indeed satisfies the inhomogeneous
boundary condition, due to the properties A0f1 = A(θc)/λc and f0 = h1 = 0 at the free
surface φ = θc.

The hinge solution at the critical point θh = 128.7◦ can be obtained following a
similar procedure: the singular contributions from the hinge and eigenmode solutions
at this point will give rise to logarithmic corrections. Here we only state the result:

Ψc,h =−RUB(θh)

8θ 3
h

ρ̃2

{
ln (ρ̃/κh) g0(φ)+ θh

2
[g1(φ)− h1(φ)]+ O (ε)

}
, (2.28)

with g0(φ) ≡ g(φ, θh) = sin 2φ − 2φ + 2θh(1 − cos 2φ). Note that the leading-order
part, which contains the logarithmic corrections, is identical to the hinge problem
considered by Moffatt & Duffy (1980). Differences arise in the inhomogeneous
contribution, g1(φ), due to the different boundary conditions.

3. Results
3.1. Dominant contribution

The complete flow field is obtained by a superposition of the flux, hinge and
eigenmode solutions identified above. Which of these will be relevant near the contact
line depends on the scaling with ρ̃: the lowest exponent provides the leading-order
asymptotic contribution. Figure 2 shows the exponents λ (flux solution, solid line)
and λE (eigenmode, dotted line), as a function of the contact angle θ . For θ > θc

the flux solution has the higher exponent, and hence the eigenmode will provide the
leading-order contribution. For θ < θc, the flux solution dominates. The hinge solution
∼ρ̃2 (dashed line) is asymptotically subdominant for all contact angles. Note that in
the vicinity of θc = 133.4◦, however, the values of all exponents are very close to 2.
This means that in this range of contact angles the asymptotic solution can be reached
only at very small ρ̃: on practical scales all solutions will contribute.

Most experiments on evaporating drops with pinned contact lines are performed at
angles below 90◦. This means that the flux solution, for which the prefactor A(θ) is
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FIGURE 2. A plot of the exponents of ρ̃ that arise in the flux solution (solid line), hinge
solution (dashed line) and eigenmode solution (dotted line) versus θ . For θ < 133.4◦, the
flux solution is dominant, whereas for larger θ the eigenmode solution dominates. The hinge
solution is always subdominant. The critical points θc = 133.4 and θh = 128.7 arise when the
flux or hinge solution, respectively, is equal to the eigenmode solution.

known, is by far the most relevant case. Nevertheless, an important conclusion is that
a local analysis of the problem cannot provide the amplitude of the leading-order flow
for θ > θc: the prefactor C(θ) is determined from matching to the outer flow.

3.2. Streamlines
The solutions (2.15), (2.19) and (2.21) in principle contain all information on the
liquid flow in the vicinity of the contact line. We plot the streamlines associated to
these solutions in figures 3–5 for different values of the contact angle. Figure 3 shows
the flow due to the flux condition, with a mass transfer out of the liquid, figure 4
represents the hinge condition due to the moving liquid–air interface, while figure 5
shows the eigenmode solutions. For the inhomogeneous solutions, the streamlines
arrive at the liquid–air interface with a well-defined angle. As we deal with similarity
solutions, the inclination of the streamlines with respect to the free surface is
independent of ρ and depends only on θ . The only exception is the solution at
the critical point θc (2.27), where an additional length scale κ from the outer problem
comes in and the self-similarity is lost.

When analysing the flux solution in figure 3 in more detail, one can see that for
θ < 90◦ the strength of the flow increases upon approaching the contact line. From the
scaling in (2.15) one in fact sees that the velocity diverges as ρ→ 0 for this range
of contact angles, since λ − 1 < 0. Above θ > 90◦, however, the velocity decays and
vanishes near the contact line. Interestingly, the flow displays some reversal structure
for these large contact angles. As θ increases from 126◦ to 128◦ the flow becomes
separated into two regions, such that near the bottom wall the liquid flow direction is
actually away from the contact line, towards the centre of the drop. The dashed line
shows the separating flow line that ends with a stagnation point at the contact line.
The separatrix then moves upwards with increasing θ , as seen in the plot for θ = 130◦.
Between θ = 130◦ and 140◦ the separatrix disappears. This occurs when the separatrix
reaches the free surface, which coincides with the critical point, i.e. θ = θc = 133.4◦.
At this critical angle, the surface flow changes direction. Indeed, a separatrix located
at the free surface is incompatible with the boundary condition of an outward flux,
which illustrates the breakdown of a local similarity solution and the appearance of the
critical solution (2.27). When the contact angle is increased to 150◦ a new separatrix
appears. For θ = 160◦ we see that this separatrix has moved upwards, and a second
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FIGURE 3. (Colour online) Streamline plot of the flux solution (2.15) for different contact
angles. For θ = 128◦, 130◦, 150◦ and 160◦ reversal of the flow direction is observed.
Based on (3.2), a new separatrix (dashed line) appears for θ ≈ 127◦ (which disappears at
θ = θc = 133.4◦), θ ≈ 148◦ and θ ≈ 157◦. At θ = θc we only show the φ-dependent part of the
solution, since the prefactor is diverging and has to be treated separately (see § 2.3).

FIGURE 4. (Colour online) Streamline plot of the hinge solution (2.19) for different
contact angles. A separatrix (dashed line) appears for θ = 90◦, and disappears again for
θ = θh ≈ 128.7◦. At θ = θh we only show the φ-dependent part of the solution, since the
prefactor is diverging and has to be treated separately (see § 2.3).

separatrix has appeared. Separatrices that appear for θ > 133.4◦ do not disappear again,
since the flux solution (2.15) has only one critical point. One can demonstrate from
the exact solutions that a new separatrix appears at φ = 0 when ∂uρ/∂φ

∣∣
φ=0
= 0. This

leads to the condition

p(θ)= sin θ(λ− 2)− sin θλ= 0, (3.1)

with λ = π/2(π − θ), which is illustrated in figure 6. From criterion (3.1) the contact
angles at which a new separatrix appears are found to be (in radians)

θ = π
4

(√
1+ 6k + k2 + 1− k

)
for k = 1, 3, 5 . . . . (3.2)

The hinge solutions have a simpler structure (figure 4). For all values of θ we
find that u ∼ ρ̃, and thus the speed increases linearly with the distance from the
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FIGURE 5. (Colour online) Streamline plot of the eigenmode solution (2.21) for different
contact angles with prefactor C(θ) = 1. For θ = 30◦ and 60◦ viscous eddies are present. The
dashed line separates the two eddies visible for θ = 30◦.
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FIGURE 6. The contact angles at which a new separatrix appears for the flux condition are
located at the zeros of p(θ)= sin λθ − sin(λ− 2)θ , given by (3.2).

contact line. For contact angles below 90◦ the flow is oriented away from the contact
line. For θ > 90◦ only one single separatrix appears, which has disappeared again for
θ > 128.7◦. At the critical point θh = 128.7◦ the local similarity solution again breaks
down, and we encounter a critical solution.

The eigenmode solutions are shown in figure 5, where we took C(θ) = 1. In the
eigenmode solution, viscous eddies will appear for angles smaller than 79.6◦ (Moffatt
1964); in that case the real part, Re(λE) > 3.8, so that the eigenmode is subdominant
with respect to the inhomogeneous solutions. Hence, in the evaporation problem, the
eigenmodes become important only for angles where no eddies are present.

3.3. Lubrication limit: θ � 1

Now we have the full analytical solution to the evaporation-driven velocity field in a
wedge available, we can check whether for sufficiently flat droplets (i.e. small contact
angles) the lubrication approximation can be applied. Therefore, we expand the Stokes
flow solution for the flux condition for small θ , φ, yielding

uρ(ρ, φ)' 3A(θ)U
1
θ

1

(ρ/R)1−λ(θ)

[
1
2

(
φ

θ

)2

− φ
θ

]
. (3.3)

In the lubrication approximation, we can write the radial velocity in terms of the radial
distance from the drop centre, r, distance to the solid substrate, z, and drop height h,
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FIGURE 7. (Colour online) (a) The radial velocity uρ(φ), normalized by the velocity at the
free surface uρ(θ), in the lubrication approximation (3.4) (solid black line), and the Stokes
flow solutions (2.1) (dashed lines) for θ = 20◦ (blue), θ = 30◦ (red), θ = 40◦ (green), θ = 50◦
(orange). (b) Streamline plot of the lubrication solution for θ = 50◦. The velocity in azimuthal
direction is derived from the continuity equation.

as (Hu & Larson 2005; Marı́n et al. 2011)

ur(r, z)=−3
√

2
π

U
1
θ

1√
1− (r/R)

[
1
2

( z

h

)2 − z

h

]
. (3.4)

For small enough θ , A(θ)→ √2/π (Popov 2005) and ρ̃ ' 1 − r/R. Furthermore,
since z = ρ sinφ ' ρφ and h = ρ sin θ ' ρθ , z/h ' φ/θ , and (3.3) leads to the same
expression as (3.4). Hence, the Stokes solution converges to the lubrication solution for
small θ . To illustrate this, we plotted the lubrication solution together with the Stokes
solution for different contact angles; see figure 7. For convenience, we normalized
all velocities by the velocity at the interface. From these results it is clear that even
close to the contact line, where the evaporative flux is diverging, the lubrication
approximation can be applied.

4. Discussion
We have derived the analytical solution to the Stokes flow problem in a wedge

geometry with an evaporative flux boundary condition. From the Stokes flow solution
it was found that the lubrication approximation accurately describes the velocity field
in an evaporating drop all the way down to the contact line, for small enough
contact angle. For larger contact angles, reversing flow structures are observed, and
the eigenmode solution of the problem becomes of importance. Hence, the direction of
the flow (towards or away from the contact line) depends on the contact angle of the
droplet. The contact angles at which new separatrices in the velocity field appear are
calculated from the exact solutions. This flow reversal, the appearance of separatrices
and the dominance of the eigenmode solution for evaporation-driven flow have not
previously been reported in numerical studies (Fischer 2002; Hu & Larson 2005),
which focused on smaller angles, or in analytical studies (Petsi & Burganos 2008;
Masoud & Felske 2009), where different boundary conditions were used. It would be
interesting to investigate these aspects further in numerical simulations of the flow in
the entire drop, in particular near the critical point, where the exponents of all three
contributions (flux, hinge and eigenmode) to the total solution are very close.
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The direction of the surface flow in the evaporating drops changes when the contact
angle passes through the critical angle θc. In addition, Marangoni stresses induced
by the non-uniform evaporative flux can change the surface flow direction. We can
re-examine the influence of the Marangoni effect by direct comparison of our results
to the solution with a Marangoni boundary condition, presented by Ristenpart et al.
(2007). In our case, hence in absence of Marangoni stresses, the radial velocity
scales as

uρ ∼ 1
θ

Uρ̃λ−1, (4.1)

whereas the solution for the Marangoni case scales as (Ristenpart et al. 2007)

uρ ∼ θ 2UMaρ̃λ, (4.2)

where Ma= ρlβR1Hv/µk is the Marangoni number, with 1Hv the specific latent heat
of evaporation, β the dependence of surface tension on the temperature, and k the
thermal conductivity of the liquid. For water, the Marangoni number is of order 105.
The factors 1/θ and θ 2 only appear in the small contact angle limit; otherwise, the
θ -dependent prefactors are of order unity. From (4.1) and (4.2) it is clear that the two
expressions have a different power in ρ, and therefore a cross-over length scale exists.
Below this critical length ρc, the lowest power, hence the evaporation-driven solution
(4.1), will dominate; above this length the Marangoni-driven flow is dominant. The
cross-over length scale is given by

ρc = 1
θ 3Ma

R, (4.3)

and hence this length scale is of order 10−8 m for a millimetre-sized droplet, as
long as the contact angle is of order one. Only for extremely small contact angles
does the length scale over which evaporation dominates the Marangoni effect become
comparable to the drop size. Hence, the Marangoni effect should alter the velocity
pattern in evaporating droplets significantly, as described by the solutions obtained
by Ristenpart et al. (2007). The question remains as to why this is not observed
experimentally for water drops, a possible explanation being that it has to do with
surface-active contamination which could suppress the Marangoni effect (Hu & Larson
2006).

We described flow structures inside drops on partially wetting substrates, in cases
where the contact line is pinned. When the contact line is not pinned but free to move,
this will lead to an additional velocity field inside the drop, as described by Huh
& Scriven (1971). Since the Stokes flow problem is linear, the moving contact line
solution by Huh & Scriven (1971) could simply be superimposed on our evaporation-
driven solution. In that case, two velocity fields that are in opposite directions will
arise in the problem: one with a mean flow directed towards the contact line (for
contact angles below 127◦), driven by the evaporative flux from the drop surface, and
one with a mean flow away from the contact line, driven by the receding contact
line. Since the evaporation-driven velocity field diverges close to the contact line for
θ < 90◦, it will dominate the solution close to the contact line. A cross-over length can
be defined where both velocity fields cancel each other (Berteloot et al. 2008). This
length depends on the contact angle and can be as large as 100 µm: for small contact
angles the entire flow field in the wedge close to the contact line will be dominated by
evaporation.
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Interestingly, the diverging evaporative flux leads not only to a diverging velocity
field inside the droplet but also to a diverging pressure field, which scales as p ∼
1/θ(ηU/R)ρ̃λ−2. For water drops, with U = 10−6 m s−1, η = 10−3 Pa s, R = 10−3 m,
this gives for very small length scales ρ̃ = 10−6 (ρ = 10−9 m) that p = 103/θ Pa. This
pressure is large compared to the Laplace pressure pγ = γ /R = 102 Pa. Therefore, we
expect for small scales (ρ ∼ nm) some additional curvature of the interface. This
subtle problem has been studied in detail by Berteloot et al. (2008): for angles ∼0.1
a change in contact angle of about 15 % was reported. For angles of order unity,
however, no significant effect of the evaporation-driven flow on the contact angle was
found. Note that, since p∼ ρ̃λ−2, the pressure will diverge for all contact angles, since
the leading-order exponent λ < 2 (see figure 2). For θ < 90◦, or λ < 1, the evaporation
problem is even more singular than the moving contact line problem by Huh &
Scriven (1971), for which p ∼ ρ̃−1. Moreover, the introduction of a slip length does
not change the pressure exponent given by the evaporative-flux boundary condition,
contrary to the case of a moving contact line of a non-volatile liquid.

Finally, it is still an open question as to what regularizes the radially diverging
velocity inside an evaporating drop with a contact angle smaller than 90◦. In previous
studies, two approaches have been used. Either the evaporative flux singularity is
smoothed mathematically (Fischer 2002; Poulard et al. 2005; Petsi & Burganos
2008; Masoud & Felske 2009), or a precursor film is introduced, which regularizes
the singular wedge geometry near the contact line (Poulard et al. 2005; Eggers &
Pismen 2010; Pham et al. 2010; Semenov et al. 2011). However, for droplets on
a hydrophobic substrate, a precursor film is not expected, and a proper explanation
for the regularization of the evaporative flux is still lacking. The large pressure close
to the contact line could reduce the vapour concentration, according to the Kelvin
equation (Eggers & Pismen 2010), but for contact angles of order unity the pressure
appears insufficient for this effect, even at the nanometre scale. Furthermore, if the rate
at which molecules are transported by diffusion exceeds the rate at which they transfer
across the interface, the air just above the droplet is no longer saturated with vapour
and the evaporative flux no longer diverges. We speculate that another option could be
that the regularization occurs on the length scale of the mean free path of the water
vapour molecules in the surrounding air, which is of the order of 100 nm, and sets a
lower bound on the validity of the diffusion problem.
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