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Origin of line tension for a Lennard-Jones nanodroplet
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The existence and origin of line tension has remained controversial in literature. To address this
issue, we compute the shape of Lennard-Jones nanodrops using molecular dynamics and compare
them to density functional theory in the approximation of the sharp kink interface. We show that the
deviation from Young’s law is very small and would correspond to a typical line tension length scale
(defined as line tension divided by surface tension) similar to the molecular size and decreasing with
Young’s angle. We propose an alternative interpretation based on the geometry of the interface at the
molecular scale. © 2011 American Institute of Physics. [doi:10.1063/1.3546008]

I. INTRODUCTION

The development of microfluidics in the past decade has
renewed the interest for a thermodynamical concept intro-
duced by Gibbs in his pioneering article: line tension." By
analogy with surface tension, which is by definition the ex-
cess free energy per unit surface of an interface separating
two phases, line tension is the excess free energy per unit
length of a contact line where three distinct phases coexist.
The variation of a system free energy F therefore presents
three contributions, a bulk contribution when the volume V is
varied, a surface contribution when any interface area S; is
varied, and a line contribution when the contact line length L
18 varied,

dF = PdV + , ydS; + 7dL. (1)

Here, we use a summation to indicate that one has to take all
interfaces into account (liquid-solid, liquid-vapor, and solid-
vapor). The stability of deformable surfaces, such as a liquid-
vapor or liquid-liquid interface, necessarily requires a posi-
tive surface tension. Although the shape of the contact line is
deformable as well, the line tension cannot be inferred from
a stability argument.2 In addition, there are conceptual prob-
lems defining line tension properly,3’4

The simplest system in which a line tension effect may
be observed is a liquid drop on a solid substrate, in partial
wetting conditions. Consider a drop whose shape is a spheri-
cal cap characterized by its contact line radius R—seen
from the top—and its contact angle 6. The drop volume

is Viéwﬁ3(2—3 cos f+cos’ ), the liquid-vapor area S,
=2mR*(1-cos #), the solid-liquid area Sg;=wR?, and the
contact line length L=27R. Here, we defined R as the radius

of curvature of the spherical cap: R=R/sin 6 (see also Fig.
1). When minimizing the free energy with respect to 6 at
constant volume (PdV=0), one gets5
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where 6y is the Young’s contact angle and vyg;, vsy, and 7y are
the solid-liquid, solid-vapor, and liquid-vapor surface ten-
sion, respectively. Note that Eq. (2) only holds for spherical
cap-shaped droplets—the contact line of a cylinder-shaped
drop has zero curvature, which means that the contact angle
6 is unaffected by line tension and is independent of the drop
size. In this derivation, we did not take any interface curva-
ture effects into account (such as Tolman corrections on %), if
these become comparable in magnitude to line tension, the
measured 7 from Eq. (2) cannot be considered “pure” line
tension, but rather an apparent line tension.** From Eq. (2),
one can see that when 7 is positive, drops will present a
larger contact angle than Young’s angle.

Theoretical predictions on the strength of line tension are
based on calculating the free energy (per unit length) associ-
ated with the contact line using statistical mechanics (e.g.,
using density functional theory6’7) or a model based on inter-
face displancement.s’9 These analyses predict the value of line
tension to be in the range of 107'2-107'° J/m. Of particular
interest is the behavior near the wetting transition (6—0),
for which 7 can vanish or diverge depending on the details of
the interaction.'®"

A large amount of experimental work has been done to
determine the magnitude of line tension. The most direct way
is to measure the contact angle as a function of contact line
curvature and thus droplet size.!471® Using the modified
Young’s equation from Eq. (2), 7 can then be calculated. Due
to the small length scales involved for the measurement of 7,
the observed values for 7 vary greatly in magnitude: both
negative and positive values as low as 107!' J/m and as high
as 10 J/m have been reported. The reason for the huge
variation is that determining the contact angle is notoriously
difficult due to contact angle hysteresis caused by surface
inhomogeneities.19 The slightest amount of surface inhomo-
geneities can cause a severe overestimation of 7. Indeed,
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FIG. 1. Schematic of two drops of the same size, one cylindrical cap-shaped
(left) and the other spherical cap shaped (right). For small volumes, the
contact angle 6 for the spherical cap is affected by line tension, while 8 is
constant for the cylindrical cap.

contaminated surfaces can even lead to an apparent change
of the sign of 7202 Historically, droplets were used to mea-
sure line tension. Recent developments on surface
nanobubbles allowed to detect a similar size dependence of
the contact angle of the nanobubbles.”>** Because of the
difficulty of exact contact angle measurements at the re-
quired scale (1-100 nm), alternative methods have been de-
veloped, for example, by calculating the effective potential
near the contact line by measuring the deviation of the liquid
surface from a wedge shape.%’27 For reviews on experimen-
tal methods and results, see Refs. 11 and 16.

In this paper, we adopt the usual experimental method to
determine the line tension, by measuring € against 1/R, in a
theoretical setting. We will perform this measurement for
different equilibrium contact angles 6y to study the depen-
dence of the line tension length (£) on 6y. The tension length
is defined as

(=-T (3)
Y

Since we always find negative values of 7 for the Lennard-
Jones drops studied in this paper, the minus sign is added to
ensure that the tension length is always positive.

We perform these measurements for both three-
dimensional (3D) (spherical cap-shaped) and two-
dimensional (2D) (cylindrical-shaped) droplets to compare
similar sized droplets with and without contact line curva-
ture. In the first part of this paper, we investigate line tension
by means of molecular dynamics simulations of a Lennard-
Jones droplet, which has the added advantage that no as-
sumptions have to be made as is required for most analytical
approaches. In this sense, these simulations are like an ex-
periment, but with unprecedented accuracy and without sur-
face inhomogeneity. Since the expected tension length is on
the order of the molecular size, the problem has also the right
scale for molecular dynamics. Line tension has been ob-
served in molecular dynamics studies before,”** but a Sys-
tematic study has, to our knowledge, not been carried out. In
the second part of the paper, we analyze the existence and
origin of line tension using the density functional theory
(DFT) in the approximation of the sharp kink interface. Fi-
nally, we will calculate the line tension using a geometric
interpretation based on missing bonds in a wedge-shaped
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FIG. 2. Interaction potentials ¢5(r) for the Lennard-Jones particles (4) (solid
line) and the potential p)p@g (r)p(r) used for the DFT calculations (17)
(dashed line). Note that the DFT potential is regularized to account for
vanishing g,(r) when r— 0.

interface. We show that the deviation from Young’s law is
very small and would correspond to a line tension of a frac-
tion of the molecular size.

Il. NANODROPS FROM MOLECULAR DYNAMICS
A. Numerical setup

We perform molecular dynamics (MD) simulations on
nanodrops using the GROMACS software package.30 We simu-
late binary systems in which two types of particles exist:
fluid particles that can move around either in the gas or lig-
uid phase and solid particles that are frozen on an fcc lattice
and constitute the solid substrate [Fig. 3(a)]. The simulations
are done in the NVT ensemble, where the temperature is held
at 300 K using a thermostat, which is below the critical point
for a Lennard-Jones fluid with the interaction strengths used.
All particle interactions are defined by the Lennard-Jones
(LJ) potential,

6
‘f’iLjJ(r):“fij[(ﬁ)lz—(ﬁ) ] )
r r

(see also Fig. 2). Here, ¢;; is the interaction strength between
particles i and j and o;; is the characteristic size of the mol-
ecules. This size is chosen to be the same for all interactions,
o;;/=0. The potential function is truncated at a relatively
large radius (r.=50), where ¢ is practically zero. The time
step is chosen at dr=o\m/ €;; /200, with m being the mass of
the particles. The fluid particles are initially positioned on an
fce lattice near the substrate, but are free to move around and
relax toward an equilibrium droplet shape (Fig. 3). Periodic
boundary conditions are present in all directions. To study
the effect of line tension, we consider two different systems.
In the “3D” case, the dimensions of the system are chosen
large enough to ensure that the droplet does not interact with
itself, resulting in an isolated droplet with the shape of a
spherical cap. In the “2D” case, the system size in the
x-direction (parallel to the substrate) is only 150, leading to
an infinitely long cylindrical cap-shaped droplet. The small
length is required to suppress the Rayleigh instability, which

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



022001-3 Origin of line tension for a Lennard-Jones nanodroplet

2D

FIG. 3. (Color online) (a) Snapshots from molecular dynamics simulations
of a 2D, cylindrical cap-shaped droplet (left), and a 3D, spherical cap-
shaped droplet (right). The light spheres represent the immobilized solid
particles, forming the substrate to which the droplet attaches. The darker
spheres represent the mobile fluid particles. The lines are a guide to the eye.
Several periods of the 2D droplet are shown (periodic boundary conditions),
causing the same particle to be printed multiple times. These drops were
simulated using identical interaction parameters (ESL/ €= % =0y~ 65°) and
differ in shape only because of the difference in the periodic boundary
conditions. (b) Isodensity contours measured using statistical averaging
from the droplets shown in the top row. The contact angle and the overall
shape of the two drops are almost identical, requiring a precise measurement
to observe the effect of line tension.

is only effective at wavelengths A >27R. Now, as there is no
contact line curvature, line tension has no effect.

The wettability of the substrate (and thus the equilibrium
contact angle) is tuned through the parameter ratio €,/ €,
where the subscript indicator S denotes the solid (fixed) par-
ticles and L denotes the liquid particles. A higher value for
€5/ €7y results in a large attraction of fluid particles to the
substrate and thus a more wetting substrate. A range of con-
tact angles can be explored in this way, as shown in Table 1.
The obtained contact angles compare well to those found in
previous studies.*!* Depending on the size of the droplet,
the effect of layering inside the liquid (Fig. 3) limits the
range where reliable contact angle measurements can be per-
formed. In practice, this limits the analysis to contact angles
larger than approximately 70°.

B. Cylindrical versus spherical caps

Figure 3(a) shows the shape of two nanodrops
(6y=65°) with similar radii R (as seen from the top) but with
a different geometry. The cylindrical droplet on the left is
formed in the quasi-2D system (several periods shown). The
spherical cap-shaped droplet on the right is simulated in a
fully 3D system. Figure 3(b) shows the isodensity contours
from the same droplets. One observes that these cross-
sectional shapes are already very similar, indicating that line
tension is indeed a weak effect, even for such nanodrops. We
will now perform careful and precise contact angle measure-
ments in order to quantify line tension.
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TABLE I. MD results as shown in Fig. 6. The ratio €;5/€;; was varied to
obtain the tension length € for different equilibrium contact angles 6y. Oppr
is the contact angle resulting from the interaction ratio according to the DFT
model described in Sec. IIIL.

Oy Oprr
€5/ €rr (deg) (deg) € (o)
0.33 129+ 1.0 109 0.36+0.02
0.40 117x1.2 102 0.82+0.03
0.47 106+1.3 94 0.99+0.09
0.53 95*+1.8 86 1.39£0.20
0.60 84+1.5 78 2.01£0.18
0.67 74+1.8 71 3.34+0.32

C. Measurement of contact angle

To perform precise contact angle measurements, we first
compute the density field by averaging over time and over
space (translational or rotational symmetry). During this av-
eraging, we compensate for any center of mass motion of the
droplet parallel to the substrate by moving the droplet such
that the center of mass is stationary throughout the averaging
procedure. When the droplet has reached its equilibrium state
(Fig. 3), the density profiles are calculated by time-averaging
over 1 000 000—10 000 000 time steps until the density field
has converged. Using real world parameters for argon as the
fluid, this would correspond to 2-20 ns. This leads to droplet
shapes, as shown at the bottom row of Fig. 3. The part of the
droplet that is close to the substrate is subject to layering:32
the density oscillates as a function of height. To avoid inter-
ference from this effect, we ignore this part of the droplet
when determining the contact angle: we perform a circular fit
through the top part of the spherical cap and extrapolate
toward the substrate (which is defined to be o/2 above the
top row of substrate atoms) to find 6 and R. Figure 4(a)
shows these fits through some isodensity contours
(p"=0.3,0.5,0.7).

This leads, however, to a new problem: which isodensity
should one choose? As can readily be seen from Fig. 4(a), it
turns out that the width of the interface cannot be neglected,
and choosing different isodensity contours results in different
values for the # and R. To overcome this problem, we use the
data from the cylindrical droplets to determine which isoden-
sity contour to use. From a macroscopic perspective, the cy-
lindrical caps are not affected by line tension (6= 6y). It turns
out that this property is obeyed by the Gibbs dividing surface
at p*=0.5, where p* is a parametrized version of the local
density given by

p(7) — py
PL— Pv

p(F)= (5)
Here, p; and py are the bulk densities of the liquid and vapor
phases, respectively. We note that although line tension does
not affect cylindrical droplets, other curvature effects (such
as the Tolman correction on vy and the effect of the increased
Laplace pressure on yg;) do play a role. The baseline estab-
lished by this methodology is therefore not based on “pure”
line tension, but rather an apparent line tension in which all
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FIG. 4. (Color online) Isodensity contours of a Lennard-Jones droplet. (a) A selection of isodensity contours (the same drop as in Fig. 3, Ry=90,
p*=0.3,0.5,0.7) fitted by circles (dashed). The circles turn out to be concentric, which we use to collapse the contours into one single shape. (b) Density
profile (6) fitted to measured p*(r), where we can see that the interface is several molecular diameters thick. With this fit we can shift all contours by using
Eq. (6). (c) The rescaled isocontours nicely collapse on a single curve, which allows us to define the interface in a precise way.

these effects are combined. This is in line with the previous
experimental work, where this distinction could also not be
made.

To improve statistics, we have also used the remaining
isodensity contours. This can be done since the density pro-
file across the interface is accurately fitted by [Fig. 4(b)]

P*=%[1+tanh<Row_ r)]’ (6)

where R is the point where the density is halfway between
the liquid value and the vapor value (p*=0.5). w is a fit
parameter that defines the width of the liquid-vapor transi-
tion. Since the circular fits are concentric [they share a com-
mon center point, C in Fig. 4(a)], we can easily transform any
isodensity contour to the reference contour. For this, we cal-
culate the radial distance from the contour toward the refer-
ence contour using Eq. (6). The result of this transformation
for the spherical droplet from Fig. 3 is shown in Fig. 4(c),
where we see that the contour shapes indeed collapse and can
now all be used to determine the contact angle. The spread of
these values for different p* are used to determine the error
of the measurements.

D. Results: Tension length

Figure 5 shows the relation between the contact angle
defined as described above and the drop radius for different
sized droplets. Young’s angle 6y was independently calcu-
lated from independent measurements of the surface
tensions>> of planar interfaces, under the same simulation
conditions as the droplet simulations. This is shown as the
diamond symbol at 1/R=0. One can observe that the contact
angle does not present any variation with the drop size in the
cylindrical cap case, which is consistent with the macro-
scopic picture. By contrast, the spherical drops exhibit a de-
creasing contact angle for small radii (large R™'), which ac-
cording to Eq. (2) is consistent with a negative line tension 7.
A negative value of 7 means that the contact line has the
tendency to expand—a larger contact line length leads to a
decrease in 6 under the constant volume constraint. The solid

line corresponds to the density functional theory in the sharp
kink approximation that will be discussed below.

The difference between the slopes of the 2D and 3D fits
in Fig. 5 (dashed lines) is equal to the tension length,
€ =—7/ 7, which is defined to be positive for negative values
of 7 [see Eq. (3)]. For this equilibrium contact angle
(6y=127°), we find €=0.360. Now, by varying the interac-
tion ratio €; ¢/ €;;, we measure € for varying 6y. The result is
shown in Table I and in Fig. 6 by the square symbols. What-
ever Oy, the tension length turns out to be positive (so 7 is
always negative) and very small—on the order of the atomic
size 0. The tension length recovered from the MD simula-
tions is a decreasing function of 6y, indicating that the effect
is stronger when the wedge formed by the liquid in the vi-

-0.54 7
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FIG. 5. (Color online) cos 8 vs R~ for cylindrical (open symbols) and
spherical (filled symbols) drops for cos 6,=-0.60 (=~127°). The dashed
lines are linear fits through the data points, and the solid lines are the solu-
tions obtained using DFT described in Sec. III. The top two (red) lines
represent the 3D data, whereas the bottom two (green) lines represent the 2D
data. The diamond at 1/R=0 indicates Young’s law, calculated indepen-
dently by determining the surface tensions of the three interfaces: 7y, g,
vsy- The difference between the slopes of the 2D and 3D fits quantifies the
tension length €. Note that for this particular equilibrium contact angle, MD
and DFT agree quantitatively on the tension length.
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FIG. 6. Tension length € vs 6y for spherical drops. Square symbols are the
molecular dynamics results, while triangle symbols are the results from the
self-consistent density functional theory model discussed in Sec. III A.
These data points were acquired by measuring the contact angle for different
drop sizes, meaning they represent an “apparent” line tension. The solid and
dashed lines also result from DFT, assuming a wedge-shaped geometry near
the contact line: Egs. (25)—(27). For the self-consistent DFT data, the char-
acteristic lengths are determined analytically: {;; ={;s=mo/4. The resulting
curve is the solid line. The characteristic lengths for the MD data are ac-
quired by fitting: ¢;;=3.50, {;s=0, represented by the dashed line.

cinity of the contact line is sharp. The other curves in Fig. 6
result from DFT, which will be discussed in the next
section.

lll. ORIGIN OF LINE TENSION EFFECT

In this section, we study line tension in the framework of
density functional theory using the sharp kink approxima-
tion. Once more, the strategy is to determine the equilibrium
shapes of 2D and 3D drops and to compare their contact
angles. Starting from the basic equations of DFT, we first
motivate the form of the free energy functional in Sec. IIT A.
Some of the assumptions are directly tested using molecular
dynamics simulations. We then derive the equilibrium condi-
tion for the capillary pressure (Sec. III B) and describe the
numerical scheme that was used to solve the equilibrium
shapes of the drops (Sec. III C). The numerical results are
presented and interpreted in detail in Secs. III D and III E.

A. Density functional theory in the sharp kink
approximation

The primary idea of DFT is to express the grand poten-
tial Q=U-TS—uN=F—puN as a function of the particle den-
sity p and to perform a functional minimization for a given u
and 7. For an ideal gas, the free energy functional is known
explicitly

Fipl= ka plIn(pA’) - 1]dr, (7)

but this is not the case for general liquids. Let us denote
¢(F,,7,) or ¢(r) as the additive pair potential between par-
ticles at 7, and 7, with distance r=|#~7|. From a grand
canonical averaging, one can show (see, e.g., Refs. 34 and
35)
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0 1

1
RN 59(2)(71,72) = Ep(ﬂ)P(Fz)g(FbFz), (8)

where p@ is the two-body density distribution function and g
is the pair correlation function. This relation can be used to
construct the free energy for nonideal systems. Introducing a
coupling parameter \ in front of the interaction, the free
energy can be constructed by integration as

Flpl=Flpl+ 5 f 01 an f ar,

Xfdsz(ﬂ)P(Fz)gA(Fb72)¢(|72—71|)~ 9)

Here, g\ is the pair correlation function in a system of the
same geometry and volume, for which the interaction is
Nop(r).

Although exact, this expression cannot be used as it is,
as g, is not known. For a practical approximation of the
energy functional, one can separate the thermodynamic non-
ideality in contributions due to attractive and repulsive com-
ponents of the intermolecular potential. As the repulsive
forces have a very short range, their effect is mainly local.
Using the local density approximation, the repulsive contri-
bution can be estimated from the Helmoltz energy density
fp) in a uniform system of density p at temperature T,
composed of purely repulsive molecules. The attractive van
der Waals interactions ¢, can then be treated as a perturba-
tion, assuming that the pair correlation function remains
mostly that of the purely repulsive reference system,
g7|,F,). The free energy then reads as

Flp]= J Ip)di

1
+ Ef dﬂJ dfzp(fl)p(fz)gr(fl,72)¢a[[(|72 - Fl|)~
(10)

To end up with a numerically tractable scheme, we make
a final approximation that the density profile across the in-
terface is mostly independent of the geometry. Defining the
position of the interface, e.g., by the isodensity p*=1/2, the
integrals in Eq. (10) can be approximated by assuming that
the density is uniform in both phase:s.6 This so-called “sharp
kink approximation” neglects the thickness of the diffuse in-
terface. Thermal effects are implicitly taken into account
since f,, g,, and the liquid density depend on temperature. In
this approximation, the free energy becomes an explicit func-
tional of the shape of liquid, solid, and vapor domains. Since
the vapor density is neglible with respect to that of the solid
and liquid, we find
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FIG. 7. Schematic representation of the integration variables and domains
from Eq. (11). Both the liquid-solid (left) and the liquid-liquid (right) inter-
actions are integrated over their respective volumes (the liquid cap £ and the
solid substrate S) to obtain the total free energy F.

szr(pL)f d?+fr(p5)f dr
c S
1 . e L.
+5PZJ dr1f dig ([P = Fi) (|7 = 74])
c c

), (a1

+prSf dflf disg (|7 = Fi]) (|7, — 7y
L S

where £ and S are the liquid and solid domains, respectively
(see also Fig. 7). ¢;; and ¢ denote the attractive parts of
the respective interactions. The drop shapes are found by
minimizing this free energy with respect to the shape of the
liquid domain L.

Before proceeding, it is instructive to discuss the ap-
proximations underlying Eq. (11) in light of the molecular
dynamics simulations of the Lennard-Jones droplets. First,
the assumption that the pair correlation function is homoge-
neous in space ignores the layering near the solid wall (cf.
Fig. 3). This can induce significant corrections to the esti-
mated free energy. Second, the local density approximation
of the short-range repulsive forces gives rise to isotropic re-
pulsive interactions, while the attractive interactions will be-
come anisotropic in the vicinity of an interface. If this is
indeed the case, the surface tension (and line tension) effects
mostly result from the attractive component of the interac-
tion. We test the validity of this hypothesis in the molecular
dynamics simulations by measuring the anisotropy of the
stress tensor in the vicinity of the liquid-vapor interface. We
define a cumulative stress tensor o*“(R*) that incorporates
only the interactions with a bond length smaller than R*,

FUR") = 2 myfvi -2 2 [, (12)

<R

The true stress in the system is recovered when R*=c, for
which all interactions are taken into account. Here, m; and v;
are the mass and velocity of particle i, respectively, and f;;
and r;; are the force and displacement vector between par-
ticles 7 and j. With this, we quantify the anisotropy from the
difference between the stress components tangential (7) and
normal (N) to the interface, as
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FIG. 8. Stress anisotropy A for bond lengths smaller than R* [see Eq. (13)].
The measurement was done in a slab of height o/3 within the liquid-vapor
interface in a molecular dynamics simulation. The dashed line indicates the
minimum of the Lennard-Jones potential at R*=2"°c and marks the sepa-
ration between the attractive and repulsive bonds. The majority of the an-
isotropy comes from attraction.
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Figure 8 shows the anisotropy A as a function of R*. The
dashed line indicates the transition from the repulsive
(r<2"Y6g) to the attractive domain (r>2"°¢). The figure
clearly shows that the majority of the anisotropy in the
liquid-vapor interface is due to the attractive interaction,
while the repulsive interaction accounts for about 20% of the
anisotropy. This indeed justifies a local density approxima-
tion for the repulsion, although one can expect quantitative
differences with molecular dynamics.

B. Capillary pressure

The equilibrium shape of liquid drops can be obtained
by minimizing the free energy F at constant volume V. This
can be done by variation of Eq. (11) with respect to the drop
shape £ under the constraint of constant volume. The result-
ing equilibrium condition is a constant potential energy den-
sity IT along the free surface.****" This potential can be in-
terpreted as the capillary pressure and can be decomposed
into a liquid-liquid and a solid-liquid contribution, as
IT=1I1I;; +I1;5. The former can be written as

I, (7)=- H2L+po df),gr(|?’ - F|)¢LL(|F, - ’71)’ (14)
L

where we subtracted I1;;, the interaction due to a semi-
infinite volume of liquid. The solid-liquid contribution fol-
lows from the interaction due to the semi-infinite volume of
solid

HLS(F):PSde?'gr(W_’7|)¢Ls(|’7’—7|)- (15)

The equilibrium condition is thus that
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H(f*) = HLL(’;*) + HLs(f»k) = COnSt, (16)
where 7 denotes an arbitrary position at the liquid-vapor

interface.

Note that the capillary pressure I1 depends on the shape
of the liquid, through the domain of integrations, and thus
reflects the effect of the interface geometry on the free en-
ergy. It implicitly contains the Laplace pressure, which is the
capillary pressure associated with a macroscopic curvature of
the interface, and the disjoining pressure, which is the capil-
lary pressure in the case of a microscopic film.

C. Shape relaxation

We compute droplet shapes for a pair interaction consis-
tent with the long-range van der Waals interaction used in the
molecular dynamics simulations (see Fig. 2),

__—C (17)

ptpjgr(r)¢zj(r) - (Uz + }"2)3 B

where c¢;; represents the strength of the interaction between
molecules i and j. Compared to the van der Waals interaction
of Eq. (4), one finds cij=4p,-pja'6eij. For mathematical conve-
nience, we have chosen a simple regularization around r=o,
which represents the effective size of the short-range repul-
sion. Let us note that the potential of Eq. (17) does not lead
to the formation of a precursor film. Namely, the correspond-
ing energy per unit surface for a flat film is a monotonic
function of the thickness &, with a prefactor depending on the
spreading parameter. For partial wetting, the system tends to
zero thickness rather than to a precursor film of finite thick-
ness. We have tested that other similar choices such as
g(r)=0 for r<o and g(r)=1 for r> o leads to quantitatively
similar results (see Ref. 37). The surface tensions corre-
sponding to Eq. (17) can be computed as

y=mc; /807 (18)
and

Y+ Ysv— YsL = meLs/4o”. (19)
By choosing identical functional forms for both interactions,
one simply has™

_ ~CLs
cos Oy =cos Oppr=2—""

CrL

-1 (20)

Similar to the molecular dynamics simulations, we com-
pute the equilibrium shapes of nanodrops in both the 2D
configuration (cylindrical caps) and the 3D configuration
(spherical caps). The drop shapes are parametrized by r(a),
as shown in Fig. 9—polar coordinates are used to allow con-
tact angles larger than 77/2. We numerically determine the
equilibrium shape of the drop by an iterative algorithm that
tends to a constant II(«) along the interface. The initial
shape is taken as a spherical cap with 6y according to Eq.
(20). This is shown in Fig. 9 by dashed lines. The corre-
sponding potential I1(«) is uniform except within a few mo-
lecular scales from the contact line, where the influence of
the solid plays a role. We iteratively construct drop shapes
r(a) according to r*!(a)=r'(a)+\N(7(a)-{7"),), while

Phys. Fluids 23, 022001 (2011)

(a) ] T~ - (b) 4
o2 o
Y o __ 2
/‘/‘/
_10 |
45 a(O) 90

FIG. 9. Typical result of the DFT model in the sharp kink approximation. (a)
Surface potentials of an axisymmetric drop with #,=127°, a measured angle
0#=116° and radius R=20. @=0 at the contact line. The dashed line (top)

represents ﬁLL, the bottom line represents Ilg;, and the lines in the middle
indicate the sum of the two. Here, the dashed and solid lines indicate the
potential energy density of the droplet in its initial shape and its equilibrium
(final) shape, respectively. (b) Initial and final drop profiles shown by the
dashed and solid lines, respectively. The initial profile is a spherical cap-
shaped drop with 6=6,=127°.

keeping the volume constant. Here, 7'(«) is the capillary
pressure at angle a during iteration ¢. (7), is the space-
averaged potential at the interface during iteration z. The pa-
rameter N’ is selected such that the variance of the potential
is minimized at each step. After a few hundred steps, the
shape converges and yields (@) that indeed is constant
within numerical precision. Note that for the potential stud-
ied here, no precursor film is formed.

The shape r(«) and the capillary pressure II(a) of a
small drop are plotted as solid lines in Fig. 9. Away from the
contact line, the drop is a spherical cap, but a significant
deviation can be observed near the contact line. The drop has
spread with respect to the initial shape, resulting in a lower
contact angle than 6y. Once more, this is consistent with a
negative value of the line tension 7. Far from the contact line,
the capillary pressure is dominated by the II;; term. The
corresponding value is simply the expected Laplace pressure

2y/ R, where R is the radius of curvature the drop.

D. Results

In Fig. 10, we compare the contact angles of 3D drops
(squares) and 2D drops (triangles) as a function of the in-
verse drop radius 1/R. In both cases, the interactions were
identical, corresponding to #y=65°. For large drops, there is
indeed a difference that can be attributed to line tension: the
slope at 1/R—0 is finite for 3D drops, while it vanishes in
the 2D case. Interestingly, however, there remains a 1/R?
contribution for both types of drops. The two datasets are
accurately fitted by parabola, with equal prefactors for the
quadratic term. This suggests that the effect of line tension in
Eq. (2) can be seen as the leading order contribution of an
expansion in o/R and is only valid for relatively large drops.
In particular, Eq. (2) must break down when cos 6= 1. This
is illustrated by Fig. 11, showing a saturation of the contact
angle to 8= 0 for very small drops. This effect is, of course,
most pronounced for drops that already have a small Young’s
angle 6y. For such small drops, the range over which one
observes a 1/R behavior is very small and the main size
effect is to induce a wetting transition.

We are now in a position to make a comparison of the
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FIG. 10. Cosine of the equilibrium contact angle against 1/R for 2D drops
(triangles) and 3D drops (squares). The corresponding Young’s angle is
0y=65°. The slope of the curve near 1/R=0 can be attributed to line tension
for the 3D drops, while it is zero for 2D drops. Note that both curves exhibit
a significant 1/R? contribution for smaller drop sizes. This contribution was
not recovered from the molecular dynamics simulations since the radii of the
droplets were not small enough: R>7¢. Smaller droplets would not allow
for spherical cap fitting because the droplet size becomes similar to the
particle size.

DFT model with the molecular dynamics simulations pre-
sented in Sec. II. The solid line in Fig. 5 represents the con-
tact angles for 3D drops of varying sizes as obtained from
the numerical DFT calculation. We took the same Young’s
angle as obtained in the molecular dynamics simulations,
ie., y=127°. The trends of DFT and molecular dynamics
are very similar, clearly showing a decrease in contact angle
for decreasing drop radius. For both cases, line tension is
thus negative and has a similar magnitude in units of o.
Finally, we determined the tension length ¢ from the
slope near 1/R—0 for a broad range of 6y. The results are
reported as triangles in Fig. 6. The value of € vanishes both
for 0° and 180° and presents a maximum around 90°. Be-
sides the sign and the order of magnitude, the behavior is
thus qualitatively different from the molecular dynamics re-
sults. This difference is most pronounced at small 6y (Fig. 6).

1
cosf |
0.96+ 1 ... .
O—I T = T
-5 0 5
0.92
24 N0 e
B Otl /VFTN\
-10 0 10
0.88 L I I I T
0 0.1 0.2 0.3 0.4 0.5
o/R

FIG. 11. Cosine of the equilibrium contact angle against 1/R, for a 3D drop
0y=28°, as shown in the insets for two different sizes R. At sufficiently
small radius, we observe a saturation of cos(#)=1, approaching a perfectly
wetting drop (top inset).
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FIG. 12. Integration domains of the free energy (11) that contribute to line
tension due to liquid-liquid interactions 7;; (left) and solid-liquid interac-
tions 7,4 (right). Assuming the contact line region to be perfectly wedge-
shaped, the total free energy F minus the volumic and surfacic contributions
results in a residual energy, which can be attributed to line tension. We show
in the Appendix how the line tension contribution can be isolated from the
liquid-liquid and solid-liquid interactions. Then, by calculating the free en-
ergy associated with these integration domains [Eq. (21)], one directly finds
the line tension due to liquid-liquid interactions and solid-liquid interactions:
Egs. (25)-(27).

E. Geometric interpretation of line tension

Within our DFT model, the dependence of € on contact
angle 6y can be accurately described from a geometric
argument (solid line in Fig. 6). We separate the free energy
(11) in volumic, surfacic, and linear contributions as
F=PV+Z,yS;+7L. By assuming the liquid domain to be
wedge-shaped, it is indeed possible to explicitly separate the
domains of integration in Eq. (11) in bulk, surface, and line
contributions:

1
F=PV+ >, yS:+ EpiJ dr,
i Ly

Xf /dFZgr(|F2_Fl|)¢LL(|72_ 711) + prps

2

Xf dflf dig (|7 = 1) (|7 = 7). (21)
! S’

Here, the integration domains £}, £, L', and S’ are those
represented in Fig. 12 and the Appendix. Note that such a
decomposition is uniquely defined in the sharp kink approxi-
mation, while this is no longer the case for inhomogeneous
density profiles.

From Eq. (21), one sees directly that line tension has two
contributions, due to liquid-liquid interactions 7;;, and due to
liquid-solid interactions 7;5. These can be computed as fol-
lows. The integration domains £, £, L', and S are bor-
dered by straight lines passing through the contact line so
that they do not present a characteristic scale. Therefore,
both 7;; and 7; ¢ can be written as products of a characteristic
length (that does not depend on 6) and a function of @ (that
does not depend on the potentials ¢;; and ¢;). It turns out
that the lengths can be expressed in terms of the liquid-liquid
and solid-liquid disjoining pressures I1$(h) and T1{3(h).
The disjoining pressure is the energy per unit liquid volume
at a distance & from a flat semi-infinite zone of liquid or solid
(see the integration domain S’ in Fig. 12). The surface ten-
sions, already computed in Egs. (18) and (19), can be ex-
pressed as the integrals of these quantities,
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f 13 (h)dh =2y, (22)
J IG5 () dh = 7+ v, = v = A1 +cos 6y). (23)

The characteristic lengths {;; and {;¢ that appear in the cal-
culation of the line tension turn out to be the first moment of
the disjoining pressure,

J A1 (z)dz

{= L [ (R)dz
e (z)dz

RNV

Following the interpretation of surface tension as a force per
unit length, {;; and {;¢ are the “moment arms” of these
forces. Within our DFT model, the liquid-liquid and solid-
liquid potentials have the same shape so that these two
lengths are equal, {;¢={;;,=ma/4.

The line tension 7;¢ is as follows:

TLs= gLS?’M- (25)
tan 6
This contribution is positive for 0 << #<< /2 and changes its
sign at 6=1/2. The prefactor (1+cos 6y) is not of geometric
origin, but stems from the strength of the liquid-solid inter-
action c;g. A similar result for 7; ¢ was previously obtained in
Ref. 38, but this work omitted the contribution due to liquid-
liquid interactions 7;;, which is crucial to describe our nu-
merical DFT results. The contribution due to liquid-liquid
interactions is negative for all angles. In the limit of small
angles, 77, diverges as

=_ . 26
TLL §LL’)’tan 9 (26)
As the angle 6 tends to , 7;; vanishes as
2 2
T == 5 ST = 6)7. (27)
37

In between, we have determined the ratio 7;;/{;; by numeri-
cal integration.

Adding the two contributions 7;; and 7;, we obtain the
solid line in Fig. 6, which indeed closely follows the full
numerical simulations obtained from the spherical cap mea-
surements. Note that both 7;; and 7, scale as 1/6 for small
angles, but the diverging contributions balance exactly. This
is a consequence of having identical values for the moment
arms, i.e., {;;={;, resulting in a vanishing line tension for
small 6. Of course, this will not be the case in general, where
we expect one of the contributions to dominate.

IV. DISCUSSION

We theoretically investigated the effect of line tension by
studying the contact angles of Lennard-Jones droplets of
varying sizes. The equilibrium shapes of nanodrops were de-
termined using two methods: MD and DFT. For 3D drops,
we found a size-dependent contact angle consistent with Eq.
(2), while the contact angle was nearly constant for 2D
drops. DFT in the employed approximation does not fully
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reproduce the MD simulations, but it does capture the main
physics. In particular, DFT gives the correct (negative) sign
and order of magnitude of 7 and also captures the depen-
dence on wettability for large contact angles. Obviously, the
exact numerical values resulting from the DFT calculation
depend on our specific choice of the potential (17). Note,
however, that both the recovered trend and the orders of
magnitude for € are a general result, independent of the spe-
cific choice of the potential. The only exception is the limit
of the wetting transition, #— 0, which is known to depend on
the details of the interaction.®'*"?

In addition, we identified a simple geometric interpreta-
tion of line tension. Molecules inside a liquid wedge interact
with a larger number of surrounding molecules than esti-
mated from surface tension, which is based on an infinite
half-space of liquid. Hence, the sign of line tension is nega-
tive. The wedge shape of the liquid is indeed a good approxi-
mation of the liquid geometry for large contact angles and
yields a very accurate prediction for 7 in the DFT case. This
is remarkable since these DFT measurements did not dis-
criminate between line tension and other curvature effects,
suggesting that line tension is the dominant mechanism for
the size dependence of the contact angle. Once more, the
behavior for small contact angles is sensitive to the details of
the interaction: it depends on the “moment arm” of the sur-
face tensions, characterized by the length scales {;; and ;5.
We speculate that the layering effect near the substrate in
MD substantially reduces the moment arm (;¢ for the
liquid-solid interaction. This would explain the discrepancy
with DFT. Indeed, the MD data can be described by the
wedge approximation of 7;; by fitting the moment arms to
{;1=3.50 and {;4=0. It would be interesting to further in-
vestigate this matter.

Although we were able to observe the variation of con-
tact angle with drop size, the effect is only noticeable
for very small nanoscale drops. Taking ¢=0.34 nm and
¥=0.017 J/m?, our results correspond to line tension in the
range 7=10""2—10""! J/m (depending on the wettability).
This is consistent with theoretical predictions as well as
with recent experiments.26 Note, however, that much larger
experimental values for 7 have also been reported.m_18
Resolving this issue is particularly important for surface
nanobubbles,?>*>3%4 typically 100 nm wide, whose stability
was suggested to rely on an effective line tension.”!
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FIG. 13. Integration domain for the liquid-liquid interaction energy decomposed in the bulk, surface, and line components. The dotted and striped regions
represent the domains of integration for the variables d7, and dF,, respectively, in the liquid-liquid term of Eq. (21). The remainder after subtracting the bulk
energy (Fyy) and surface energy (Fyysee) 1S the free energy associated with liquid-liquid line tension (7;;). Note that the two line tension contributions shown

here can be combined into the integration domains shown in Fig. 12.

APPENDIX: GEOMETRIC INTERPRETION
OF LINE TENSION

Figure 13 shows by illustration how the free energy as-
sociated with the liquid-liquid interactions of a wedge-
shaped liquid interface sitting on a solid can be decomposed
into its bulk, surface, and contact line contributions. F;;
shows the total free energy of the liquid-liquid interactions,
which is the interaction of the liquid in the wedge with itself.
For clarity, we separated the two domains in the first row
spatially, but in reality they, of course, overlap since they are
the same volume of liquid. First, we decompose the integral
domain in the bulk energy contribution (wedge shape ® in-
finite volume): Fy. The surplus that has to be subtracted is

Fis

shown in the top right of Fig. 13 because one has to com-
pensate for the areas where no liquid is present. From this
surplus, we extract the surface contributions. Note that the
liquid wedge has two surfaces: the liquid-vapor interface and
the liquid-solid interface, which are both represented by in-
tegration of the wedge (dotted area) with an infinite half-
space, resulting in the total surface energy term. The third
row shows what remains and is by definition [Eq. (1)] the
line tension. These integration domains can be simplified and
merged into the one shown in Fig. 12 (left).

To compute 7,4, we follow a similar route. Figure 14
(left) shows the integration domain for F;¢ for a liquid
wedge (dotted) in contact with a solid (striped). The right

Fsurface

R TR,
RRIILLRIILLRIILLRRIE
SILLRS

FIG. 14. Integration domain for the liquid-solid interaction energy (left). This integration domain can be decomposed in the corresponding surface energy
contribution (Fy,ge) and the free energy associated with liquid-solid line tension (7;5). The dotted region represents the integration variable d7, in the
liquid-solid term of Eq. (21)) and the double striped region the integration variable d7, in the same equation.
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two panels directly give the decomposition into the surfacic
component (solid half-space ® liquid half-space, over the
solid-liquid interface), and the remainder which is the line
tension component (7;5). There is no bulk energy term since
we are dealing with two separate (and spatially separated)
phases.
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