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A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a

critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci

on fibers of varying radii. First, we use a matched asymptotic expansion and derive the maximum

speed of dewetting. For all radii, we find the maximum speed occurs at vanishing apparent contact

angle. To further investigate the transition, we numerically determine the bifurcation diagram for

steady menisci. It is found that the meniscus profiles on thick fibers are smooth, even when there is

a film deposited between the bath and the contact line, while profiles on thin fibers exhibit strong

oscillations. We discuss how this could lead to different experimental scenarios of film deposition.
VC 2011 American Institute of Physics. [doi:10.1063/1.3659018]

I. INTRODUCTION

A convenient way to deposit a thin liquid layer on a sur-

face is by withdrawing a solid from a liquid reservoir. The film

is dragged along with the solid due to the viscous friction of the

liquid. This principle is known as dip-coating and is a com-

monly used technique in industrial contexts.1,2 Once deposited

on the surface, the film often has a thickness as predicted by

Landau and Levich3 and Deryaguin,4 scaling with speed U of

withdrawal as h ! U2/3. Recently, however, a different class of

solutions were identified, which are much thicker and scale as

h ! U1/2.5 These thick films were indeed realized experimen-

tally in the case where the solid was partially wetting.

The conditions of partial wetting introduce another

interesting feature, namely that the film entrainment only

appears above a critical velocity of withdrawal.6–10 Below

this speed, the contact line finds at a steady position, indi-

cated as the meniscus rise D (Fig. 1). Due to viscous drag

between the liquid and the solid, the dynamical position of D
is higher than at equilibrium. This means that the apparent

contact angle hap of the dynamical meniscus is smaller than

the equilibrium angle he. The simplest interpretation of the

transition to film deposition is that the apparent contact angle

hap! 0 at some critical plate velocity. This idea was already

postulated by Deryaguin and Levi,11 although the energy

argument given by de Gennes8 suggested a nonzero hap at

the transition. The hypothesis of hap¼ 0, however, was given

a rigorous mathematical basis (for a flat solid) by asymptotic

expansions of the lubrication equations.12,13 Actually, it was

shown by Ref. 10 that de Gennes energy argument can be

extended to incorporate interface curvature: this exactly

gives the lubrication equation, meaning that also the energy

argument leads to a zero hap at the transition. This theory

gives a simple prediction for the maximum rise based on the

static meniscus solution with vanishing contact angle—for a

fiber of radius r0, this simply becomes14,15

Dmax ’
r0 ln 4‘c

r0
� c

� �
for r0 � ‘cffiffiffi

2
p

‘c for r0 � ‘c:

(
(1)

Here, ‘c¼ (c/qg)1/2 is the capillary length based on surface

tension c, density q, and gravity g and c is Euler’s constant

(0.57721). At intermediate radii r0� ‘c, the maximum rise

can be determined numerically.

Experimentally, the description of the forced wetting

transition has remained ambiguous. The condition of a van-

ishing apparent contact angle was convincingly shown by

Sedev and Petrov.16 When withdrawing fibers or thin cylin-

ders (r0/‘c� 0.06� 1), they found a maximum rise of the

meniscus consistent with Eq. (1). Using cylinders of larger

radii (r0/‘c� 10), Maleki et al.17 found zero or nonzero hap

at the transition, depending on the way hap was determined.

When using the criterion based on the meniscus height, the

transition was found slightly before reaching Dmax. Yet

another set of experiments using a flat plate (r0/‘c¼1) dis-

played a transition to film deposition clearly before reaching

the maximum rise.18,19 Still, during the unsteady entrainment

phase, the maximum recorded speed was reached exactly atffiffiffi
2
p

‘c. Note that in these experiments, the deposited liquid

was not simply the Landau-Levich-Deryaguin film, but gave

rise to thick films and even shock solutions. It was argued

that the presence of these dynamical solutions are related to

the pre-critical onset of entrainment,20 but an explanation is

still lacking.

An additional complexity is that the contact line can spon-

taneously develop sharp corner structures or even zig-zags.

This has been observed in dip-coating,21 splashing,22 immer-

sion lithography,23,24 and for drops sliding down an inclined

plane.25,26 The conical structure of the interface near the contact

line renders the problem truly three-dimensional, which affects

the balance of the capillary forces.27 For sliding drops, it has

been observed experimentally and described by a 3D lubrica-

tion model that this change in geometry indeed leads to a non-

zero apparent contact angle at the transition to liquid

deposition.28,29 This raises the question of how the geometry of

the flow can influence the critical speed of wetting.30

In this paper, we theoretically study the withdrawal of fibers

of arbitrary radii. By varying the ratio r0/‘c, we continuously
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cover the range from thin fibers to the flat plate. First, we extend

the asymptotic analysis that was previously done for the flat

plate12,13 to the limit of thin fibers (Sec. II). To resolve the sin-

gularity of viscous stress near the contact line,31,32 we introduce

a slip length k.33,34 Other types of microscopic regularization

will give similar results.10 Typical values for the slip and capil-

lary lengths are k� 10�9 m and ‘c� 10�3 m, respectively. We

can thus exploit the hierarchy of length scales

k� r0 � ‘c; (2)

and perform a matched asymptotic expansion. The control

parameter is the capillary number Ca¼U0g/c, which is the

speed of withdrawal scaled by viscosity g and surface ten-

sion c. The analysis yields the critical capillary number,

which depends on the value of r0, and confirms that the max-

imum speed coincides with hap¼ 0, for all fiber radii r0. In

this sense, the change in geometry does not qualitatively

change the nature of the critical point. However, striking dif-

ferences do show up when computing numerically the com-

plete bifurcation diagrams for all steady solutions (Sec. III).

These diagrams include solution branches above Dmax that

are unstable, but which have been observed as transients dur-

ing film deposition for the plate case.19 We find that for

small fiber radii much below ‘c, the steady solutions no lon-

ger smoothly join the film solutions that mediate the deposi-

tion. In the Discussion (Sec. IV), we speculate that this is

why, experimentally, it is easier to approach the critical point

for thin fibers (Sec. IV).

II. ASYMPTOTIC ANALYSIS

We compute the shape of an axisymmetric meniscus on

a fiber of radius r0 using the method of matched asymptotic

expansions. The interface is characterized by h(x), as

sketched in Fig. 1. The matching procedure is outlined sche-

matically in Fig. 2. At small scales, the dominant balance is

between viscosity g and surface tension c and is character-

ized by the capillary number Ca. Viscous effects can be

neglected on large scales, for which the interface profile is

that of a static meniscus. The problem is closed by matching

the inner and outer solutions. The analysis provides the me-

niscus rise D as a function of Ca as well as the critical speed,

both of which can be observed experimentally. We consider

both large fiber radii ðr0 � ‘cÞ and small fiber radii

ðr0 � ‘cÞ. In all cases, we take r0 and ‘c to be macroscopic

and much greater than the microscopic cutoff. Throughout

the analysis, we scale all lengths by the capillary length, i.e.,

‘c¼ 1.

A. Inner solution: Lubrication approximation

To distinguish the solution h in the inner region and the

outer region, we denote hin(x) as the solution in inner region

and hout(x) as the solution in outer region. The characteristic

length scale for the inner solution comes from the cutoff of

the viscous singularity, which here we take the slip length k.

Since typical interface curvatures turn out �Ca1/3/k, as can

be observed from the rescalings below, we can neglect the

curvature contribution due to axisymmetry, which is of order

1/r0. Hence, for the inner solution, we can follow the analysis

by Eggers,12,13 which was originally derived for the flat

plate. For completeness, we briefly summarize the analysis

and the central results.

By restricting the analysis to small contact angles,

h0inð0Þ ¼ he � 1, one can determine h(x) from the lubrication

approximation:35

h000in ¼
3Ca

h2
in þ 3khin

: (3)

Since the slip length k is the only length scale, we rescale the

solutions according to

hinðxÞ ¼ 3kH
xhe

3k

� �
; n ¼ xhe

3k
: (4)

Hence, Eq. (4) reduces to

FIG. 2. Schematic diagram showing the different asymptotic regions for the

case of a thin fiber. The inner region originates from a balance between vis-

cosity and surface tension. It has a microscopic contact angle he. The outer

region is a static meniscus joining a fiber with an apparent contact angle hap.

When the fiber radius r0 � ‘c, the outer profile is further separated into two

regions.15

FIG. 1. Schematic representation of the dip-coating setup: A fiber or cylin-

der of radius r0 is withdrawn with speed U0 from a bath of viscous liquid.

The axisymmetric meniscus profile is characterized by h(x), while D denotes

the maximum rise above the reservoir.
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H000 ¼ d
H2 þ H

; (5)

where we introduced a reduced capillary number

d ¼ 3Ca=h3
e . The boundary conditions are

Hðn ¼ 0Þ ¼ 0; (6)

H0ðn ¼ 0Þ ¼ 1; (7)

and the asymptotic behavior that has to be matched to the

outer solution. Away from the contact line, where H � 1,

Eq. (5) further reduces to

y000 ¼ 1

y2
; (8)

where we have put H(n)¼ d1/3y(n). This equation has an

exact solution, whose properties have been summarized in

Ref. 36. In parametric form, a solution with y(0)¼ 0 reads

n ¼ 21=3pAiðsÞ
bðaAiðsÞ þ bBiðsÞÞ

y ¼ 1

ðaAiðsÞ þ bBiðsÞÞ2

9>=
>;s 2 ½s1;1½; (9)

where Ai and Bi are Airy functions.37 The limit n! 0 corre-

sponds to s!1, the opposite limit n!1 to s! s1, where

s1 is a root of the denominator of Eq. (9)

aAiðs1Þ þ bBiðs1Þ ¼ 0: (10)

Since the solution extends to s¼1, s1 has to be the largest

root of Eq. (10).

The solution y(n) is thus characterized by three parame-

ters a, b, and s1. Note that these are related according to Eq.

(10), so that only two parameters are independent. The con-

stant b can be determined by matching Eq. (9), which is

valid only for nZ1, to a solution of Eq. (5), which includes

the effect of the cutoff and is thus valid down to the position

n¼ 0 of the contact line.13 It was found that

b2 ¼ p expð�1=ð3dÞÞ=22=3 þ OðdÞ; (11)

which eliminates one of the two free parameters. The

remaining parameter will be eliminated below by matching

the large scale asymptotics of y(n) the outer solution of the

problem. For that, we only need the asymptotic behavior of

y(n) for large n, which reads

yðnÞ ¼ 1

2
jyn

2 þ bynþOð1Þ; (12)

where

jy ¼
21=6b

pAiðs1Þ

� �2

; by ¼
�22=3Ai0ðs1Þ

Aiðs1Þ
: (13)

B. Outer solution: Static meniscus

At the scale of outer solution, one can neglect viscous

effects and the profile is governed by surface tension and

gravity. Thus, equating the hydrostatic pressure and the cap-

illary pressure gives

j ¼ D� x; (14)

where j is the curvature of the interface. Remind that we

expressed all lengths in the capillary length ‘c¼ 1. The cur-

vature can be expressed from the geometric relation

j ¼ h00out

ð1þ h02outÞ
3=2
� 1

ðr0 þ houtÞð1þ h02outÞ
1=2
: (15)

The corresponding outer solution hout(x) is that of a meniscus

of a liquid reservoir joining the fiber surface. The contact angle

of the meniscus at the surface is denoted as the apparent contact

angle, hap, since it refers to the apparent angle on the scale of

the outer solution. The boundary conditions, therefore, are

houtðx ¼ 0Þ ¼ 0; (16)

h0outðx ¼ 0Þ ¼ hap; (17)

h0outðx ¼ DÞ ¼ 1: (18)

For the present analysis, we require only the asymptotic

behavior near the contact line, which is obtained by a Taylor

expansion,

houtðxÞ ¼ hapxþ 1

2
japx2 þO x3

� �
: (19)

Note that, we consider small hap, since the inner solution is

obtained in the lubrication limit.

In general, the governing Eq. (14) cannot be solved ana-

lytically. In the following, we will consider two extreme

cases for which analytical solution can be obtained, namely

the larger fiber radius case ðr0 � 1Þ and the small fiber ra-

dius case ðr0 � 1Þ.

1. Large fiber radius: r0 � 1

In the case where the fiber radius is much larger than the

capillary length, the second term on the right hand side of

Eq. (15) due to the curvature of the fiber can be neglected.

Then, Eq. (14) can be written as

h00out

ð1þ h02outÞ
3=2
¼ D� x: (20)

Integrating Eq. (20) once with respect to x, we obtain

1� h0out

ð1þ h02outÞ
1=2
¼ 1

2
ðD� xÞ2; (21)

where the boundary condition h0out !1 at the position of

the reservoir (x¼D) is used. Evaluating Eq. (21) at the con-

tact line position (x¼ 0) and using the geometrical connec-

tion sin h ¼ h0out=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02out

p
, we end up with

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� sin hapÞ

q
; (22)

’
ffiffiffi
2
p
ð1� hap=2Þ; (23)
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and Eq. (14) immediately gives

jap ’
ffiffiffi
2
p
ð1� hap=2Þ: (24)

2. Small fiber radius: r0 � 1

For thin fibers, it has been shown that the outer region

can be further divided into two subregions,15 as has been

sketched in Fig. 2. In the region far away from the fiber

ðh� 1Þ, the term due to the curvature of the fiber can be

neglected. On the other hand, gravity can be neglected in the

region close to the fiber ðh� 1Þ, and the meniscus is deter-

mined by the balance between the two curvature terms in Eq.

(15). The profile near the fiber is a classical zero curvature

interface that can be expressed as

houtðxÞ ¼ r0 cosh
x

r0 cos hap

� �	

þ sin hap sinh
x

r0 cos hap

� �
� 1



: (25)

In the following paragraphs, we will match this small-scale

part of the outer solution to the viscous inner solution. We,

therefore, make a Taylor expansion, for small values of hap,

hout ¼ hapxþ 1

2r0

x2 þOðx3Þ: (26)

To express our results in terms of the meniscus rise D, we

quote the result obtained by James15 in which the two subre-

gions of the outer meniscus were matched

D ¼ r0 ln
4

r0ð1þ sin hapÞ

� �
� c

	 

; (27)

where c is Euler’s constant (0.57721…).

C. Matching

We are now in a position to perform the matching

between inner and outer solutions. First, we write the inner

solution in terms of the original variables,

hinðxÞ ¼ d1=3 jyh
2
ex2

6k
þ byhexþO 1ð Þ

	 

: (28)

Once more, we separately discuss the limits of large and

small fiber radii.

1. Large fiber radius: r0 � 1

Comparing the inner solution Eq. (28) to the outer solu-

tion Eqs. (19) and (24), one finds the matching conditions

hap ¼ d1=3byhe; (29)

2� hap ¼
ffiffiffi
2
p

d1=3 jyh
2
e

3k
: (30)

Adding these two conditions leads to an equation for s1 as a

function of d

2=he

d1=3
þ 22=3Ai0ðs1Þ

Aiðs1Þ
¼ 21=6 exp½�1=ð3dÞ�

3pAi2ðs1Þk=he
: (31)

Once s1 is known, one can compute the apparent contact

angle

hap

he
¼ �22=3d1=3Ai0ðs1Þ

Aiðs1Þ
: (32)

A typical result for hap as a function of Ca is shown in Fig. 3

(solid curve: r0¼ 1000). At vanishing speed, one recovers

the equilibrium contact angle (he¼ 0.1 in this example). The

apparent contact angle decreases for increasing speed and

tends to hap¼ 0 at a critical value Cac. The prediction from

the matching compares very well to direct numerical solution

of the problem, which will be discussed in Sec. II C 2 (solid

squares). Of course, it is also possible to determine the criti-

cal speed directly from Eq. (31), as shown in Ref. 13.

The critical value dc is obtained when the Airy function

takes its global maximum, Ai0(s1)¼ 0, corresponding to

smax ¼ �1:088 � � �. This gives a critical speed

dc ¼
1

3
ln

d1=3
c h2

e

25=63pðAiðsmaxÞÞ2k

 !" #�1

: (33)

Note that d ¼ 3Ca=h3
e and Ai(smax)¼ 0.53566…. Physically,

this corresponds to a vanishing apparent contact angle, as

can be seen from Eq. (32) since Ai0(s1)¼ 0. Indeed, this con-

firms the conjecture by Deryaguin and Levi11 that the maxi-

mum speed is attained when hap¼ 0.

2. Small fiber radius: r0 � 1

We now perform a similar analysis for thin fibers by

using the outer solution (26), which was never worked out

previously. Comparing this to the inner solution (28), one

finds the matching conditions

hap ¼ d1=3byhe; (34)

FIG. 3. (Color online) Apparent contact angle hap versus Ca (k¼ 10�8,

he¼ 0.1 radian) for large radius (r0¼ 1000) and small radius (r0¼ 0.01).

Curves: result from asymptotic matching, solid curve: r0¼ 1000 and dashed

curve: r0¼ 0.01. Symbols: numerical result, squares: r0¼ 1000 and circles:

r0¼ 0.01.

112103-4 Chan, Gueudré, and Snoeijer Phys. Fluids 23, 112103 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



1

r0

¼ d1=3 jyh
2
e

3k
: (35)

The parameter s1 can be solved as function of d from Eq. (35).

More explicitly, we can write Eq. (35) as

2=he

d1=3
¼ 22=3r0 exp½�1=ð3dÞ�

3pAi2ðs1Þk=he
: (36)

The apparent contact angle follows from Eq. (34). Since this

condition is the same for both small fiber radius and large fiber

radius, the explicit form of hap is also given by Eq. (32).

Once again, solutions of the matching conditions cease

to exist at a critical speed, which occurs when the Airy func-

tion takes it global maximum, Ai0(s1)¼ 0. In perfect analogy

to the flat plate case, this corresponds to hap¼ 0. The critical

speed is given by

dc ¼
1

3
ln

r0d
1=3
c h2

e

21=33pðAiðsmaxÞÞ2k

 !" #�1

: (37)

This result has the same structure as Eq. (33), valid for

r0 � 1. Apart from numerical coefficients, the main differ-

ence is that the fiber radius r0 appears inside the logarithm as

the relevant outer length scale; for the flat plate, the outer

scale is the capillary length.

This result is further illustrated in Fig. 3 showing hap for

a radius r0¼ 10�2 (dashed curve). The curve is similar to

that obtained for a plate of infinite radius, with a vanishing

contact angle at the critical point. Note that this critical speed

depends weakly (logarithmically) on the fiber radius, in

agreement with prediction Eq. (37). In addition, there is also

a logarithmic dependence of dc on the equilibrium contact

angle he. Let us emphasize that the validity of the asymptotic

analysis requires k/he to be small. This means that, strictly

speaking, we cannot deal with extremely small values of he.

It is instructive to compare our results with Voinov’s

formula.6 The prediction by Voinov for dc has the same

structure as ours, but the factor inside the logarithm is not

precisely specified (a ratio between the macroscopic length

scale and the microscopic scale). In fact, the factor reflects

the dependence on the specific geometry of the problem,

which in our approach is determined by the matching of the

inner region and the outer region. Naturally, the inner scale

turns out to be the slip length, while the outer scale is the

fiber radius or the capillary length. However, Voinov’s for-

mula misses details like the factors he, dc inside the loga-

rithm. Also the resulting hap vs Ca is a bit different from

Voinov’s formula, as was previously discussed in detail by

Eggers for the plate case.13

III. NUMERICAL SOLUTION

We now perform a numerical analysis of the fiber with-

drawal problem. This will confirm the validity of the asymp-

totics and extend the results to r0� 1. However, the main

added value is that the numerical solution can determine the

complete bifurcation diagrams of dewetting for arbitrary r0.

These contain steady state solutions above Dmax that serve as

transients towards film deposition,20,30 and thus provide cru-

cial additional information. Below, we first develop a lubri-

cation model that accounts for the axisymmetric nature of

the flow. This quantitative correction with respect to the flat

plate will turn out important for the bifurcation diagram. We

then summarize the numerical results.

A. Lubrication approximation on a fiber

To formulate a hydrodynamic model for the axisymmet-

ric meniscus on a fiber, we consider Stokes equations

� ~rpþ gr2~U � ~rU ¼ 0; (38)

~r � ~U ¼ 0; (39)

where p is the pressure field in the liquid, g is the viscosity

of the liquid, ~U is the velocity field in the frame comoving

with the fiber, and U is the gravitational potential per unit

volume in the liquid. Since the meniscus is axisymmetric,

the velocity in azimuthal direction is zero. We consider small

contact angle, he � 1, thus, the flow is mainly in the vertical

x direction, namely, the radial component of velocity is

much smaller than the vertical component ði:e:jUrj � jUxjÞ.
The flow is solved with a no-stress condition at the interface,

is located at r¼ r0þ h, and reads (in the frame of the fiber)

g
@Ur

@x
þ @Ux

@r

� �
r¼r0þh

� g
@Ux

@r
jr¼r0þh ¼ 0: (40)

At the fiber surface, r¼ r0, we apply a Navier slip boundary

condition

Uxjr¼r0
¼ k

@Ux

@r
jr¼r0

: (41)

The axial (vertical) component of the velocity field then

becomes

Ux ¼
1

2g
@ðpþ UÞ

@x

	 r2 � r2
0

2
� ðr0 þ hÞ2 ln

r

r0

� �
� k 2hþ h2

r0

� �	 

: (42)

For thin films h=r0 � 1, this reduces to the usual parabolic

Poiseuille profile but quantitative corrections appear when

h/r0� 1.

The lubrication equation is obtained by imposing a zero

flux condition in the frame of the reservoir

ðr0þh

r0

ðUx þ U0Þrdr ¼ 0: (43)

With this, Eq. (42) can then be simplified as

@ðpþ UÞ
@x

¼ 3gU0f ðdÞ
h½hþ 3kð1þ d=2Þf ðdÞ� ; (44)

where we introduced d¼ h/r0 and
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f ðdÞ ¼ 8d3ð2þ dÞ
3½4ð1þ dÞ4 lnð1þ dÞ � dð2þ dÞð2þ 6d þ 3d2Þ�

:

(45)

This function is a correction factor with respect to the flat

plate (d¼ 0) and has the property f(0)¼ 1. Finally, we

replace the pressure by the Young-Laplace equation,

p� p0 ¼ �cj; (46)

where j is the curvature of the interface given by Eq. (15).

This gives the lubrication equation on a fiber

@j
@x
¼ 3Caf ðdÞ

h½hþ 3kð1þ d=2Þf ðdÞ� � 1: (47)

Note that once again all lengths are scaled by the capillary

length. For d ¼ h=r0 � 1, we recover the usual lubrication

equation since f(0)¼ 1.

B. Results

1. Critical speed

The above lubrication Eq. (47) is solved numerically

with boundary conditions

hð0Þ ¼ 0; (48)

h0ð0Þ ¼ he; (49)

imposed at the contact line and

h0ðDÞ ¼ 1; (50)

jðDÞ ¼ 0; (51)

at the reservoir. We varied r0 and k and determined the me-

niscus as a function of Ca.

Figure 4 shows the meniscus rise D as a function of Ca on

a fiber of radius r0¼ 10�2. Different symbols correspond to dif-

ferent values of the slip length. In all cases, we find a critical

Cac above which solutions cease to exist. This indeed occurs

close to Dmax corresponding to a vanishing hap, which is indi-

cated by the horizontal dotted line. The curves are the predic-

tions from the matched asymptotics, showing a good agreement

with the numerical solutions. In particular, one observes con-

vergence as the slip length is reduced from k¼ 10�6, 10�7 to

10�8. This is because the separation of the two length scales k
and r0 is enhanced, which improves the validity of the matching

asymptotic expansion. The same results were previously

reported in Fig. 3, expressed in terms of hap rather than D.

It is interesting to show how the critical speed Cac

depends on the fiber radius r0. The numerical results are plot-

ted as squares in Fig. 5. In agreement with the asymptotic

analysis, one observes two regimes. At small radii, r0 � 1,

the critical speed depends logarithmically on the radius. The

solid red line is the asymptotic result (37). For large radii,

the speed approaches the value of the flat plate (33), indi-

cated as dashed black line. Indeed, the cross-over occurs for

fibers with a radius that is comparable to the capillary length

r0� 1.

2. Meniscus rise: Bifurcation diagram

The results shown in Fig. 4 represent only the lowest

branch of solutions of a more complete bifurcation diagram.

Indeed, one can identify solutions with D extending to arbi-

trary height above the meniscus, which are all characterized

by Ca<Cac. These are summarized in Figs. 6(a)–6(e) for

different fiber radii (all curves correspond to he¼ 0.05 and

k¼ 10�5). For r0¼ 1000 (Fig. 6(a)), we see after reaching

Cac, the curve turns back to Ca<Cac but with solutions of

increasing D. We refer to these solutions as the second

branch, which is known to be unstable.20 Further upwards,

we observe a series of bifurcations to higher branches, oscil-

lating around a characteristic value Ca*. Typical meniscus

profiles are shown in Fig. 6(b)—in order to compare the pro-

files, we have shifted the positions of the contact line such

that the baths collapse. Following the bifurcation diagram,

the profiles evolve to a film solution for which the contact

FIG. 4. (Color online) Height of meniscus D versus speed for different slip

lengths (r0¼ 10�2, he¼ 0.1 radian). Curves are results from asymptotic

matching, solid curve (the most left curve): k¼ 10�8, dashed curve:

k¼ 10�7, and dotted curve (the most right curve): k¼ 10�6. Symbols are the

corresponding numerical results. As the slip length gets smaller, the agree-

ment between numerics and asymptotic matching becomes better. The hori-

zontal dotted line indicates the maximum height of meniscus D¼ 0.05414

calculated by Eq. (27) with hap¼ 0.

FIG. 5. (Color online) Critical capillary number Cac versus fiber radius r0

(he¼ 0.1 radian, k¼ 10�8). Squares: numerical results; curve: result from

asymptotic matching for small fiber radius [Eq. (37)]; dotted line: result

from asymptotic matching for large fiber radius [Eq. (33)].
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line has moved to arbitrary height above the meniscus, i.e.,

D ! 1. This film solution (shown in Fig. 6(b)) is not the

Landau-Levich-Deryaguin film, but corresponds to the new

class of “thick film” solutions identified in Ref. 5.

We then decrease the fiber radius to r0¼ 0.1, as shown

in Figs. 6(c) and 6(d). We find that Cac increases almost by a

factor 2 with respect to the large radius. By contrast, Ca* cor-

responding to the thick film increases only by a small

amount. As a result, the values of Cac and Ca* have become

more separated. Also, the corresponding meniscus profiles

display more structure. The thick film exhibits much stronger

oscillations before joining the reservoir. These trends

becomes more dramatic up further decreasing the radius

r0¼ 0.001 (Figs. 6(e) and 6(d)). The difference between Cac

and Ca* is very pronounced and D changes much more dra-

matically for the 3rd branch solutions. In this sense, the

bifurcation diagram has a very different structure from those

of large fiber radius. Interestingly, there still exists a thick

film solution matching to the bath, but the profile displays

many oscillations (Fig. 6(f)). These oscillations decay only

very slowly when moving further away from the bath—the

asymptotic thickness of the film is indicated by the horizon-

tal line just above x axis. While for the flat plate, the thick

film solutions have been observed experimentally,5 we

expect the oscillatory solution obtained for small radii to be

unstable and of no physical relevance.

For completeness, we report the values of Cac and Ca* for

different radii in a separate graph (Fig. 7). Note that the theoret-

ical curve for Cac deviates from the numerical results as early

as r0. 10�2. The reason is that, here, we use a realistic value

for the slip length k¼ 10�5 (corresponding to� 10 nm), instead

of k¼ 10�8 used in Fig. 5. Clearly, the scale separation

required for the asymptotic analysis starts to break down when

the ratio k/r0 is no longer very small.

IV. DISCUSSION

We investigated the steady-state profiles of axisymmetric

menisci on a fiber that is withdrawn from a viscous liquid. The

main motivation for this work was the mixed experimental

observations on the transition to film deposition obtained for

FIG. 6. (Color online) Bifurcation diagrams of steady solutions. Panels (a), (c), and (e): bifurcation diagrams for r0¼ 1000, 0.1, and 0.001, respectively. All

curves correspond to he¼ 0.05 and k¼ 10�5. Panels (b), (d), and (f): interface profiles for r0¼ 1000, 0.1, and 0.001, respectively. We report profiles from the

2nd branch and 3rd branch, corresponding to solutions indicated in the bifurcation diagram by large circles. The “thick film” solutions correspond to profiles

without contact line, or D!1, for which we define Ca¼Ca*. The thickness of the film for r0¼ 0.001 is shown by the horizontal line just above x axis in (f).

FIG. 7. (Color online) Cac and Ca* as function of r0 for the same parameters

used in Fig. 6. Triangles: numerical results for Cac; squares: numerical

results for Ca*; curve: result for Cac from asymptotic matching for small

fiber radius [Eq. (37)]; dotted line: result for Cac from asymptotic matching

for large fiber radius [Eq. (33)].
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fibers, large cylinders, and plates. Sedev and Petrov16 found

that the maximum steady profile has a meniscus rise identical

to a perfectly wetting liquid at equilibrium, suggesting a vanish-

ing apparent contact angle hap. Other experiments found that

the steady-state solutions disappeared at a nonzero hap,
17,18

although the critical point could be accessed during transients.19

Our present calculations show that steady solutions always

cease to exist at hap¼ 0, independent of the fiber radius. In

addition, stability arguments put forward in Refs. 38 and 13

suggest that all solutions of the lowest branch are perfectly sta-

ble up to the maximum speed, consistent with a saddle-node

bifurcation.20 In that sense, our results do not provide an expla-

nation why experimentally it is practically impossible to

achieve steady menisci closer to hap¼ 0. The main effect that

was not taken into account in our calculations is contact angle

hysteresis due to heterogeneity of the substrate,39 which was

previously suggested to affects the details of the transition.40 It

has remained a challenge, however, to incorporate this into a

full hydrodynamic description of moving contact lines. Essen-

tially, one has to modify the boundary condition by imposing

a time-dependent microscopic contact angle at the moving

contact line.

The bifurcation diagrams calculated in the second part

of the paper, however, do provide a new experimental per-

spective on the dynamics of film deposition. As shown in

Ref. 19, such bifurcation diagrams may be probed experi-

mentally as transient states during entrainment. Namely, for

Ca>Cac, the evolution of the meniscus exactly follows the

bifurcation diagram when plotting D versus the relative con-

tact line velocity with respect to the solid. For very large

fiber radius, the profiles with large capillary rise are

smoothly connected to the bath by a film that only displays a

small “dimple” close to the bath. These dimple solutions

have indeed been observed experimentally when plates are

withdrawn with speeds above the critical speed. By contrast,

for small fiber radii, these solutions exhibit very strong oscil-

lations (Fig. 6) and we expect these solutions to be very

unstable. In that case, another dynamical mode must appear

in order to deposit a liquid film—for example, one could

think of the classical dewetting rim at the contact line con-

nected to a Landau-Levich film.41 A further investigation of

these transients above the critical speed, in particular for dif-

ferent radii, should give a more complete picture of the

forced wetting transition.
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