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We discuss the equilibrium condition for a liquid that partially wets a solid on the level of
intermolecular forces. By using a mean field continuum description, we generalize the capillary
pressure from variation of the free energy and show at what length scale the equilibrium contact
angle is selected. After recovering Young’s law for homogeneous substrates, it is shown how
hysteresis of the contact angle can be incorporated in a self-consistent fashion. In all cases, the
liquid-vapor interface takes a nontrivial shape, which is compared to models using a disjoining
pressure. © 2008 American Institute of Physics. �DOI: 10.1063/1.2913675�

I. INTRODUCTION

The equilibrium condition of a liquid that partially wets
a homogeneous solid substrate has been addressed since
Young,1 who found that there is a well-defined contact angle
�Y. This angle minimizes the macroscopic free energy E of
the liquid and provides the boundary condition for the free
surface,

cos �Y =
�sv − �sl

�
, �1�

where �, �sl, and �sv represent the surface tensions of the
liquid-vapor, solid-liquid, and solid-vapor interfaces, respec-
tively. The surface tensions are defined as the excess free
energy per unit area, in the particular geometry of a planar
interface between two unbounded phases.2,3 When approach-
ing the contact line where the three interfaces meet, the ge-
ometry dramatically changes and the force balance can no
longer be expressed in terms of surface tensions. Instead, the
interface deforms at small scales to establish a nontrivial
equilibrium shape.4,5 Macroscopically, however, one recov-
ers a wedge of angle �Y.6 �See Fig. 1.�

The small scale structure of the contact line is much less
understood, but very relevant for problems such as line ten-
sion in nanofluidics,7–10 or moving contact lines that are out
of equilibrium down to molecular scales.11–16 To avoid fitting
parameters, these problems require an explicit treatment of
the force balance within the range of molecular interactions.
Another basic phenomenon not described by Young’s law is
contact angle hysteresis: Chemical inhomogeneities or
roughness of the solid substrate can trap the contact line in a
potential well, allowing for a range of possible macroscopic
contact angles.4,17,18 A common interpretation is to assume
that the contact angle is selected at a scale smaller than the
inhomogeneities, and to consider Young’s law as a local
boundary condition.19–21 Strictly speaking, however, this in-
terpretation is not self-consistent because surface tensions
are no longer well defined at molecular scales. Alternatively,
one could argue that the global free energy E is dominated
by contributions from the bulk of the drop, and described by
an average over the inhomogeneities, �̄sv− �̄sl.

22,23 While this

approach has been very successful in recent years for wetting
on textured substrates,24 it predicts a unique value for the
contact angle and, hence, does not capture the hysteresis.

These observations raise the question of how the contact
angle is selected, in particular, at what length scale. Rather
than imposing the angle as an external boundary condition at
a large distance from the contact line,25 one would like to
derive it directly from the force balance at molecular level.

There are various approaches to address this problem
within a continuum theory, but no general consensus has yet
been achieved. A popular strategy consists of adding the mi-
croscopic effect of liquid film confinement �disjoining pres-
sure� and the macroscopic effect of interface curvature
�Laplace pressure�.7,14,26 A consequence of this approxima-
tion is that Young’s angle is only recovered if a precursor
film is present on the substrate. Conceptually, both the dis-
joining and Laplace pressures have the same physical origin:
The force on the interface arises because the geometry of the
liquid deviates from a semi-infinite flat domain. A priori,
these pressures need not be additive and a more rigorous
approach consists of minimizing the total free energy of the
system with respect to the interface shape h�x�. From this,
Getta and Dietrich8 derived a nonlocal integral equation for
h�x� within density functional theory in the presence of a
mesoscopic precursor film. They demonstrated that the addi-
tion of Laplace and disjoining pressures is, in fact, a local
approximation of the problem. However, for contact lines
with a precursor film, the quantitative error turns out to be
quite small.27

The situation without precursor film, typical of more hy-
drophobic substrates,28,29 has been analyzed by a number of
papers.5,30–32 Surprisingly, these arrived at contradicting con-
clusions. Merchant and Keller5 derived a nonlocal integral
equation for the interface profile that has essentially the same
structure as in Ref. 8. From asymptotic analysis, they
showed that the profile macroscopically approaches Young’s
angle, while the inner structure of the contact line displayed
nontrivial oscillations. On the other hand, Hocking31 and
more recently Wu and Wong32 have identified an exact solu-
tion of a perfectly straight wedge down to molecular scale.
Although unnoticed by these authors, the corresponding
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wedge angle is not Young’s angle as obtained by Merchant
and Keller, which raises an intriguing paradox.

In this paper, we revisit the equilibrium condition for the
liquid-vapor interface at small length scales. We aim �i� to
explicitly identify the connection between microscopic and
macroscopic length scales, and thus the selection of the con-
tact angle, �ii� to apply this to contact angle hysteresis, �iii� to
clarify some of the mentioned contradictions in the literature.
In view of the latter, the descriptions in the paper will in
places be somewhat extensive.

The analysis is restricted to mechanical equilibrium and
treats the interface as infinitely thin, hence ignoring thermal
fluctuations and the corresponding details of the density pro-
file. These simplifications allow writing down a free energy
functional E�h� that contains all length scales but yet remains
accessible for analysis. The capillary pressure � is general-
ized as the functional derivative of the free energy with re-
spect to the interface shape h. � turns out to be exactly equal
to the potential energy associated with the intermolecular
forces. The equilibrium condition is then simply a constant
capillary pressure, i.e., an isopotential free surface: �=�.

The first result is that the shape of the interface is never
a perfectly straight wedge, due to regularization of the van
der Waals interactions at a distance �, typically several
angstroms.33 This regularization is crucial, as otherwise the
total energy diverges and surface tensions are not defined.
For homogeneous substrates, it is found that the solution
asymptotically approaches Young’s contact angle in the large
scale limit, effectively reproducing the result by Merchant
and Keller.5 The small scale structure, however, does not
exhibit the oscillations seen in Ref. 5. We then identify how
the large scale angle is selected in the neighborhood of the
contact line, at the scale � of the regularization, and provide
a self-consistent description for contact angle hysteresis. Fi-
nally, we compare the generalized capillary pressure to the
usual disjoining pressure.

II. MACROSCOPIC ANALYSIS

The benchmark for our analysis is the usual macroscopic
theory that we wish to recover from the intermolecular
forces. Here, we present a formal derivation �similar to Refs.

34 and 35�, which can later on be generalized to include
microscopic interactions. We consider profiles that are trans-
lationally invariant in one direction, so that the problem re-
duces to finding h�x�. The free energy of the liquid film reads
�per unit length y�

E�h� = �
a

b

dx�wet + �
−�

a

dx�dry + �
b

�

dx�dry

= �
a

b

dx��h,h�� + const, �2�

with

��h,h�� = ��1 + h�2 + �sl − �sv, �3�

where from now on we write �lv=�. The factor �1+h�2 is
required to compute the surface area �arclength� of the
liquid-vapor interface. To minimize this energy under the
constraint of a fixed liquid volume, one needs to introduce a
Lagrange multiplier �, and then consider the variation of E
=E−��dxh,

�E = E�h + �h� − E�h� = ��b��b − ��a��a +
��

�h�
��h�a

b

+ �
a

b

dx	 ��

�h
−

d

dx

��

�h�
− �
�h .

�4�

Besides the usual partial integrations, we find contributions
�a and �b that correspond to contact line variations. These
arise because there is no external force to constrain the con-
tact line positions, so one cannot impose �h=0 at the
boundary.

At equilibrium, this variation �E=0 for arbitrary �h�x�.
In the bulk of the liquid, the vanishing of the integral yields
the Euler–Lagrange equation,

� �
�E

�h
=

��

�h
−

d

dx

��

�h�
= � , �5�

which for ��h ,h�� of Eq. �3� reduces to the usual Laplace
pressure condition

� = − �� = � , �6�

where �=h� / �1+h�2�3/2 is the curvature of the interface.
Similar to the Hamiltonian in classical mechanics, this

differential equation has a first integral,

Gmacro = � − h�
��

�h�
− �h , �7�

that is conserved along the free surface. This can be seen by
multiplying Eq. �5� by h� and integrating along x. To close
the problem, we need to determine the value of Gmacro from
the contributions at the contact line x=a ,b in Eq. �4�. The
variation of the contact line �a is not independent of �h�a�.
Through Taylor expansion, one finds the relation �a
=−�h�a� /h��a�. As the contributions should vanish for arbi-
trary �h, this provides so-called natural boundary conditions,

0
0

θexp

θYπ/2π/4

π/2

π/4

FIG. 1. Experimental verification of Young’s law by Ref. 6: the measured
contact angle �exp vs the prediction �Y from independent measurements of
the surface tensions. �Data reprinted from Chaudhury and Whitesides with
permission of the authors�.
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−
�

h�
+

��

�h�
= 0 at x = a, x = b . �8�

Compared to Eq. �7�, one recognizes that these boundary
conditions simply yield Gmacro=0. For the problem at hand
we thus find

Gmacro =
�

�1 + h�2
− ��sv − �sl� − �h = 0. �9�

At the contact line, this indeed gives Young’s law �1�.

III. GENERALIZED EQUILIBRIUM CONDITIONS

A. Formulation

Before analyzing the microscopic free energy, let us re-
iterate the structure of the analysis. The bulk equilibrium
condition is obtained from the functional derivative, which
basically corresponds to a constant pressure. We therefore
introduce the generalized capillary pressure � as the func-
tional derivative, yielding the equilibrium condition in the
bulk,

� �
�E

�h
= � , �10�

where � is, again, the Lagrange multiplier associated with
incompressibility.

The generalized invariant G can be constructed from in-
tegration

G � �
a

x̃

dxh��x����x� − �� , �11�

which from Eq. �10� vanishes for all values of x̃. In the
macroscopic calculation, we closed the problem from the
variation of the contact line, which gave a term ��a��a. This
contribution is due to the discontinuous jump from �wet to
�dry across the contact line. We anticipate that on a molecular
level, such a discontinuity does not occur, as the relevant
energies vary smoothly with the thickness h. This implies
that, in the microscopic model, we lose the boundary condi-
tion. Instead, the solution will be selected internally from the
balance of intermolecular forces.

B. Interpretation

The capillary pressure can be interpreted as a purely
geometric effect. For a perfectly flat interface between two
semi-infinite phases it is zero, because a virtual displacement
of the interface will still yield a surface between two un-
bounded phases. However, any deviation from this geometry
will result into a force on the interface. The best known
example is of course the Laplace pressure for curved inter-
faces, for which a virtual displacement leads to a change in
surface area. Another example is the disjoining pressure for a
thin horizontal liquid film on a solid substrate, whose thick-
ness falls within the range of intermolecular forces. In this
case, the molecules near the surface feel a change of envi-
ronment, due to a replacement of liquid for solid molecules.
We emphasize that both pressures have the same physical
origin and are captured within the single definition �10�.

The integral G represents the horizontal component of
the total force acting on the liquid between the contact line
and the location x. Namely, the horizontal force per unit
length y acting on a vertical slice of liquid reads

d2f = − ���x�hdxdy . �12�

The horizontal component of the force is then obtained from
integration by parts

df

dy
= − �

a

x

dx̃���x̃�h�x̃� = h�a���a� − h�x���x�

+ �
a

x

dx̃h��x̃���x̃� = G . �13�

As we have seen from the macroscopic analysis, this hori-
zontal force balance should yield Young’s law for homoge-
neous substrates. In the presence of contact angle hysteresis,
however, the invariant G provides a nontrivial communica-
tion across length scales. We show below how it translates
the microscopic force balance into a macroscopic contact
angle.

C. Microscopic free energy and capillary pressure

We consider pairwise molecular interactions, 	
���r�
−r��, where 
 and � can represent molecules in the liquid �l�
or solid phase �s�. We then follow Ref. 30. by considering
density-density correlations

�
�
�2��r,r�� � �
��g
���r� − r�� , �14�

where g
� is the pair correlation function and we take �l,s

constant over the liquid domain �L� and solid domain �S�,
respectively. This is equivalent to the so-called sharp-kink
approximation in density functional theory.8 In the absence
of external forces, this then yields the energy functional

E�h� =
1

2
�

L
dr�

L
dr�	̃ll��r� − r��

−
1

2
�

L
dr�

�

dr�	̃ll��r� − r��

+ �
S

dr�
L

dr�	̃sl��r� − r�� , �15�

where we renamed 	̃
��r�=g
��r�	
��r�. As this represents
the excess free energy, we subtracted the bulk liquid energy
emerging from an infinite domain of interaction. The factors
1 /2 arise since all pairwise integrations are counted twice by
the double integrations. By definition, the gaseous domain is
the complementary of the solid and liquid domains. One thus
obtains an equivalent system if the gas is replaced by
vacuum and if the gas-liquid interaction potential is sub-
tracted from the liquid-liquid and the solid-liquid potentials.
So, once the potentials are expressed in terms of surface
tensions, one rigorously finds the same result if the gas phase
is virtually replaced by a vacuum.
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We again consider profiles that are invariant along the y
direction, bounded by contact lines at x=a and x=b. The
domains of integration then become

�
L

dr = �
a

b

dx�
−�

�

dy�
0

h�x�

dz ,

�
S

dr = �
−�

�

dx�
−�

�

dy�
−�

0

dz , �16�

�
�

dr = �
−�

�

dx�
−�

�

dy�
−�

�

dz .

The interface profile h�x� now appears explicitly as the
boundary of the liquid domain. This makes it easy to evalu-
ate the functional derivative, i.e., the capillary pressure, as

��x� = �
a

b

dx��
0

h�x��
dz�ll�x� − x,z� − h�x��

− �
−�

�

dx��
0

�

dz�ll�x�,z��

+ �
−�

�

dx��
−�

0

dz�sl�x� − x,z� − h�x�� . �17�

Here, we conveniently integrated out the invariant y direc-
tion, so that

�x,z� = �
−�

�

dy	̃��x2 + y2 + z2� . �18�

The pressure at the interface can thus be split into a part
due to liquid-liquid interaction and a part due to solid-liquid
interaction, i.e., �=�ll+�sl. The inspection of the integrals
reveals that these are simply the potential energy per unit
volume at the free surface, due to the presence of liquid and
solid molecules. The equilibrium condition is thus that h�x�
is an equipotential.5,31 Mechanically, a gradient in potential
energy would lead to fluid motion. Note that the recent
paper32 uses the potential on the free surface to estimate the
disjoining pressure, but then resides to a local approximation
for the functional derivative, similar to Eq. �5�.

D. Surface tensions

Once the molecular interactions have been specified, one
can compute the surface tensions.2,3 This is important in or-
der to establish a connection with the macroscopic limit. An
elegant way to obtain the liquid-vapor tension � is to directly
derive the Laplace pressure from Eq. �17� in the macroscopic
limit. In this case, the boundary z=0 can effectively be re-
placed by −�, while a ,b= ��. A Taylor expansion h�x��
−h�x�=h��x�u+h��x�u2 /2 and changing variables u=x�−x
then yields8,30

��x�  − �� , �19�

with

� = −
�

2
�

0

�

drr3	̃ll�r� . �20�

Indeed, this is precisely twice the energy required to separate
two semi-infinite liquid domains from contact to infinity.

The other surface tensions can be derived from the dis-
joining pressure of a perfectly flat horizontal film, �disj�h�,
through the connection26,36

� + �sl − �sv = �
0

�

dh�disj�h� . �21�

This relation expresses that �disj�h� is the derivative of a
surface free energy that has the correct macroscopic limits
�wet and �dry. Taking h�x�=h�x��=h and a ,b= ��, we find
upon integration

�sl − �sv − � = ��
0

�

drr3	̃sl�r� . �22�

Note that Eq. �20� is a special case of this result, where the
solid is replaced by liquid so that �sv=0 and �sv=�. For a
more rigorous thermodynamic treatment of surface tension,
we refer to Ref. 3.

IV. HOMOGENEOUS SUBSTRATES

A. Asymptotic analysis: Young’s law

We now compute the equilibrium contact angle from the
microscopic interactions, in the case where the solid surface
is perfectly homogeneous. In the macroscopic analysis of
Sec. II, Young’s law arises from variation of the contact line
position, �a. If we consider such a variation for the free
energy �15�, we find a contribution proportional to �0

h�a�dz.
Since h�a�=0 by construction, this variation does not give a
nontrivial boundary condition. As the contact angle should
still emerge from the horizontal force balance, we evaluate
the invariant G by integration �11�. If the solid substrates are
spatially homogeneous, the solid-liquid potential is a func-
tion of the film thickness only,

�sl�h� = �
−�

�

dx��
−�

0

dz�sl�x�,z� − h� . �23�

It contributes to the invariant as

Gsl�x� = �
0

h�x�

dh̃�sl�h̃� . �24�

Integrating to a large distance from the contact line, h��,
this can be further reduced to

Gsl��� = ��
0

�

drr3	̃sl�r� = �sl − �sv − � , �25�

where we used the definition of surface tensions �22� of the
previous paragraph.

The contribution of the liquid-liquid interaction is more
subtle, as it involves the �unknown� equilibrium shape h�x�,
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Gll��� = �
0

�

dxh��x���
0

�

dx��
0

h�x��
dz�ll�x� − x,z� − h�x��

− �
−�

�

dx��
0

�

dz�ll�x�,z��� , �26�

where we took a=0 and b=�. However, it was shown by
Merchant and Keller5 that the integral can be evaluated ana-
lytically if one assumes that for large h the interface ap-
proaches a wedge of a well-defined slope, h�x�x tan ��.
The trick is to consider the difference between the real h�x�
and the straight wedge. Merchant and Keller then showed
that this difference vanishes due to the double integration
over x and x�, irrespective of the shape h�x�. In Appendix A,
we clarify the crucial steps in their analysis. The end result
depends only on the value of the asymptotic slope,

Gll��� = � + � cos ��. �27�

Taking �=0, the invariance G=Gll+Gsl=0 yields

� cos �� + �sl − �sv = 0. �28�

Compared to Eq. �1�, we indeed find ��=�Y from Young’s
argument. So whatever the shape h�x�, the equilibrium solu-
tion approaches Young’s angle for h��. For finite drop vol-
umes of typical size R, corrections are of order �h��h /R, so
that the asymptotic analysis is justified for ��h�R.

To recapitulate, the variation of the contact line position
does not provide a boundary condition in the microscopic
theory. Instead, there is an internal selection of the solution
for which one can derive the asymptotic angle ��=�Y. This
is a completely microscopic demonstration of Young’s law.
Imposing a wedge angle different from �Y, hence G�0, will
force the solution to pass through a minimum or a singular-
ity, as only the solution with G=0 can reach h=0.

B. Equilibrium profiles

To analyze the inner structure of the contact line, we
numerically solve the integral equation �=�, with the pres-
sure taken from Eq. �17�. We consider the following effective
interaction:

	̃
��r� = �− c
�/r6 for r � �

− c
�/�6 for r � � .
� �29�

This corresponds to attractive van der Waals interactions,
regularized below r=�, combined with a flat pair correlation
function, g�r�=1. For simplicity, we take the same regular-
ization length � for the liquid-liquid and solid-liquid interac-
tions. By using Sec. III D, we can readily compute Young’s
angle as28

1 − cos �Y = 2	1 −
csl

cll

 . �30�

For details on the numerical algorithm, we refer to Appendix
C.

Figure 2 shows an equilibrium drop profile, with �Y

=0.7. Close to the contact line, we observe a change of con-
tact angle from a microscopic value, ��, to the equilibrium
angle, ��=�Y. Indeed, the dotted line indicates Young’s angle

computed from Eq. �30�, confirming the asymptotic analysis.
This equilibrium angle is attained at a typical height � �set to
unity in all figures� above the solid. At larger distances, out-
side the range of the interactions, the profile is simply the
cylindrical cap expected from macroscopic theory.

In Fig. 3, we present the microscopic angle as obtained
for various wetting conditions. The microscopic and macro-
scopic angles coincide only for �Y =� /2, for which the solu-
tion is a perfectly straight wedge. For more hydrophilic
drops, however, the microscopic angle is always much
smaller than Young’s angle. In Appendix B, we derive an
approximate relation based on local theories,

�� � 1
2�Y�2 − cos �Y − cos2 �Y� , �31�

see also Sec. IV. This provides a good qualitative description
of the numerical results �dotted line, Fig. 3�.

Our numerical results gave no indication of the surpris-
ing oscillatory behavior of h�x�, as observed by Merchant
and Keller.5 In their simulations, the macroscopic wedge
angle was imposed as a boundary condition at infinity, which
is different from our finite volume nanodroplets. Despite this
technical difference, the inner structure of the contact line
should be the same. Investigating the microscopic param-

30
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0
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1.2

1
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0.4

0.2

0
-87 -86 -85 -84

x

h

x

h

FIG. 2. Equilibrium profile of a drop with interaction �29�, with �Y =0.7.
Lengths are expressed in terms of �. �Top� At large scales, the shape is a
cylindrical cap. �Bottom� A zoom at the contact line region reveals a varia-
tion of the slope, from a microscopic angle �� to the a macroscopic angle
��. The dotted line confirms that ��=�Y.

0
0

π/2

π/4

π/2π/4

θµ

θY

FIG. 3. Relation between microscopic angle �� and Young’s angle �Y.
�Dots� Numerical resolution for Eq. �29�. �Dotted line� Interpolation based
on local approximations �31�. �Solid line� ��=�Y, plotted for clarity only.
Note that ��=�Y only at � /2.

057101-5 A microscopic view on contact angle selection Phys. Fluids 20, 057101 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



eters in Ref. 5, it seems that the asymptotic boundary condi-
tion was not correctly taken at Young’s angle.37 This means
that macroscopically G�0 in their simulations. Enforcing a
solution that, at the same time, has h=0, where G=0, the
solution would have to pass through a singularity. Looking at
the cusplike structures in Ref. 5, we think this is a plausible
explanation. This problem could not possibly occur in our
simulations, as the drop was free to establish the equilibrium
shape.

C. Paradox of the straight wedge

The findings discussed above contradict the result by
Hocking,31 who analytically found equilibrium solutions that
remain a perfectly straight wedge at all scales. Hocking’s
solutions exist for all wetting angles, while in our simula-
tions, the wedge was only found for �Y =� /2. The paper31

starts with the same expression for the capillary pressure
�17�, and then uses unregularized van der Waals interactions

	
��r� =
− c
�

r6 for r � 0. �32�

By imposing the shape h�x�=x tan �, this yields

�wedge =
�cll

6h3 	1 −
csl

cll
− F���
 , �33�

with F���= 1
2 − 3

4 cos �+ 1
4cos3 �. In order for the pressure to

be constant along the interface, for all h, it is then argued that
the equilibrium angle follows from

F��H� = 1 −
csl

cll
⇒ �H  	1 −

csl

cll

1/4

, �34�

where the latter approximation holds for small angles.
Although the paper claims to be consistent with Young’s

law and Ref. 5 this is not the case. By comparing Eqs. �34�
and �30�, it is clear that �H��Y. Crucially, the interactions
�32� lack a small scale regularization and diverge when r
→0. Integrating over this singularity gives a divergent con-
tribution, so that the surface tensions are effectively infinite.
As we have seen, the wedge solutions cease to exist when a
regularization is introduced.

The expression �33� nevertheless has a useful interpreta-
tion as the scaling for van der Waals interactions when h
��. In fact, it has been used to derive the approximation
�31�. For small contact angles, the contribution F�����4 can
be neglected so that the disjoining pressure is unaffected by
the small inclination. For �Y =� /2, however, the term in
brackets vanishes and the effect of van der Waals forces
completely disappears. In this particular case, the wedge in-
deed is an exact solution as observed in our simulations.

V. CONTACT ANGLE HYSTERESIS

A. Analysis

The microscopic determination of �� follows from
asymptotic analysis and does not depend on the homogeneity
of the solid surface. One can distinguish two types of inho-
mogeneity that both lead to contact angle hysteresis: geo-
metrical roughness of the substrate and variations in surface

chemistry. In the latter case, the analysis of the G integrals
can be done explicitly. Let us therefore consider a spatially
varying surface potential,

�sl = − ��1 + cos �Y��0�h� − �� cos�qx + 
��1�h� , �35�

where we normalized �0
�dh�0,1�h�=1. Such a variation

could reflect the crystalline structure of the solid, which
gives rise to a spatial patterns of the solid density �s on
molecular scale. The chosen form can be seen as a perturba-
tion expansion for small inhomogeneities or as part of a Fou-
rier decomposition of the chemical variations.

The liquid-liquid interaction is completely unaffected by
this surface inhomogeneity, so we can evaluate the condition
G=0,

cos �� = cos �Y + �Gq�
� , �36�

where

Gq�
� = �
0

�

dxh��x��1�h�cos�qx + 
� . �37�

It is clear from Eq. �36� that the macroscopic angle �� can
take a range of values, and depends sensitively on the phase

 at the contact line position �taken at x=0 by definition�.

The calculation of Gq�
� requires the slope h��x� of the
nontrivial equilibrium solution. One can, however, get an
estimate for the hysteresis by introducing the approximation
h��x�� tan �Y,

Gq�
� � �
0

�

dh�1�h�cos�qh/tan �Y + 
�

= cos 
R��̃	 q

tan �Y

� + sin 
I��̃	 q

tan �Y

� ,

�38�

where

�̃�q� = �
0

�

dheiqh�1�h� , �39�

is the Fourier transform of �1�h� times the Heaviside step
function. R and I denote real and imaginary components,
respectively. The amplitude of the hysteresis, characterized
by the advancing and receding contact angles �a and �r, can
then be estimated by

cos �a � cos �Y − ���̃	 q

tan �Y

� , �40�

cos �r � cos �Y + ���̃	 q

tan �Y

� . �41�

Hence, the absolute value of �̃ measures the strength of the
hysteresis relative to �, the amplitude of the chemical varia-
tion.

We can now investigate how the scale of the interaction
�, appearing in �1�h�, affects the hysteresis. The relevant
parameter turns out to be the dimensionless wavelength
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Q =
q�

tan �Y
, �42�

which compares � to the characteristic wavelength of the
surface chemistry. It is possible to distinguish two limits. For

Q�1, one finds ��̃�=1, because of normalization. In this
case, the variation of the surface chemistry is slow with re-
spect to � and one can locally treat the surface as homoge-
neous, with the relevant surface tensions varying between
��. This is the usual “macroscopic” interpretation of hyster-
esis based on surface tensions. In the opposite limit, Q�1,

one finds ��̃��1 /Q→0. This scaling is due to the singular-
ity in the Heaviside function, which determines the large
scale behavior of the Fourier transform. In this limit, the
spatial variation is so quick with respect to � that it is aver-
aged out and the hysteresis disappears altogether.

B. An illustration

The approximation above will now be compared to com-
plete numerical solutions in the presence of hysteresis �Fig.
4�a��. We again consider the interaction �29�, for which we
can compute �0�h� for a homogeneous substrate. We con-
sider spatial variations characterized by �1�h�=�0�h�,
which gives �Appendix C�

�1�h� =
2

9�
���/h�3 for h � �

8 − 9�h/�� + 2�h/��3 for h � � .
� �43�

This function is indeed normalized to unity. The amplitude of
the hysteresis can now be computed by evaluating the inte-

gral transform ��̃�, which is plotted in Fig. 4�c� as a function
of Q.

We have numerically simulated droplets for this interac-
tion. We have positioned the drop such that its center coin-
cides with a maximum of the wall potential, so that mirror

symmetry yields two identical contact lines. The volume was
kept constant, yielding a discrete set of solutions of varying
contact angle ��. As can be seen from Fig. 4�a�, the contact
line positions for these metastable solutions are separated by
roughly one wavelength. The drops shown in this figure are
the only ones we could obtained for this volume, reflecting
the bounds of hysteresis.

As expected from our analysis, the precise phase 
 of
the potential is slightly different for the various drops. This is
shown in Fig. 4�b�, in which the numerical results are com-
pared to Eq. �38�. This approximation accounts quite well for
the value of �a, as well as for the phase shift with respect to
�sl, whose extremal values are located at 
=0 and �. How-
ever, it significantly underestimates �r. We attribute this to
the strong deviation from the wedge approximation near the
contact line �cf. the flattest drop in Fig. 4�a��.

VI. DISCUSSION

A. Internal selection of the contact angle

We have shown how the macroscopic contact angle
emerges from a microscopic force balance, within a mean
field continuum description. There is a crucial role for the
integral G, which is invariant along the entire interface.
Physically, this invariant expresses horizontal force balance
on an arbitrary cross section of the liquid. The macroscopic
angle can be computed by equating the value of G for a
macroscopic wedge to its value at the contact line. The
height over which the integral attains its asymptotic value is
determined by the range of the interactions. In this respect,
the contact angle is indeed determined at a molecular scale.
For the examples considered here, this range is simply set by
�, the regularization length of the interactions.

A striking feature of the microscopic model is that the
entire solution follows from the pressure balance, without the
necessity of an external boundary condition. Hence, there is
an internal selection of the contact angle. This is very differ-
ent from the usual macroscopic theory, for which the contact
angle has to be imposed as a boundary condition. Besides
this conceptual difference, the internal selection also works
when surface tensions are no longer well defined. This oc-
curs for contact angle hysteresis in the case where variations
of the surface chemistry are of the same scale as the range of
interaction �expressed in Sec. V as Q�1�. Again, using the
invariant G, the microscopic model naturally provides a
range of contact angles.

At this point, we would like to stress that the free energy
analyzed in this paper oversimplifies the physics near a con-
tact line: It ignores thermal fluctuations, while the continuum
approach starts to break down at molecular scales.38 The
present analysis should therefore be considered as a model
calculation, where one can explicitly identify the selection
mechanism. It would be interesting to combine the present
approach with molecular dynamics simulations, or more rig-
orous density functional calculations to improve the physical
reality. The results for the �submolecular� angle ��, which
resolved the paradox of the straight wedge solutions, should
be interpreted within this context. Having said that, there
exist experimental measurements of variations between mac-

20

15

10

5

0

-50 -25 0 25 50

0
0

1

0.8

0.6

0.4

0.2

0
1086420

π/2

π/2 π 2π3π/2

π/4

θ

α Q

x

h

|ψ|

(a)

(b) (c)

FIG. 4. �a� Metastable solutions for drops of equal volume in the presence
of hysteresis. Lengths are expressed in terms of �. The phase of the interface
potential is sketched below �note that the solid-liquid interface is still taken
perfectly flat�. Simulation parameters: �Y =� /4, �=0.427, Q=3. �b� Contact
angle vs the phase of the potential 
. The numerical values �circles� and the

approximation �38�. �c� Absolute value of ��̃�, approximating the strength of
the hysteresis for wavelength Q.
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roscopic and microscopic angles, for systems with suffi-
ciently long ranged interactions.9,10 A very similar situation
is encountered in electrowetting, where an applied electric
field induces a change of the macroscopic contact angle.39 It
was recently shown, however, that close to the contact line
one recovers Young’s angle.40,41

B. Local approximations

We are now in the position to test local approximations
based on a free energy functional E=�dx��h ,h��. Such a
formulation has the great practical advantage that the equi-
librium condition reduces to a second order differential equa-
tion rather than a nonlocal integral equation. The standard
approach based on a disjoining pressure7,26 yields ��=0, in-
dependent of �Y. We refer to Appendix B for details. This is
often interpreted in terms of a precursor film, which naturally
has h�=0, although strictly speaking this is not necessary.
Compared to numerical profiles of the nonlocal theory, we
see that this provides a good approximation for small contact
angles.

The approximation clearly fails for large angles, for
which the profile is much closer to a straight wedge, and
���0. We therefore suggest an alternative local approxima-
tion,

��h,h�� = ���1 + h�2 − cos �Y�f�h� , �44�

which has perfect wedge solutions, i.e., ��=�Y. We again
refer to Appendix B for details. The numerical solutions ob-
tained in Sec. IV B appear to be in between the straight
wedge solutions and those from the standard models with
disjoining pressure. The approximation for �� in Eq. �31� has
been obtained from interpolation between these two local
models. The advantage of the form �44� is that it provides an
internal selection of the contact angle. This means that when
applied to the nonequilibrium situation of a moving contact
line, the solution is self-contained and no longer requires an
additional condition borrowed from equilibrium. It remains
to be investigated how the local approximations compare to
the nonlocal theory in the dynamical case.

Let us conclude by noting that we have not been able to
come up with a self-consistent derivation of a local approxi-
mation of the free energy for arbitrary �. As suggested in
Ref. 8, this is perhaps not possible due to the intrinsically
nonlocal character of the problem.
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APPENDIX A: CALCULATION OF Gll

We provide a graphical representation of the analysis by
Merchant and Keller5 to compute Gll. Expression �26� can be
seen as the integral over h, represented schematically by the
black dot moving along the interface �Fig. 5�b��, of the po-
tential energy at the interface evaluated at the position of the
black dot. This potential itself is an integral over the entire
liquid volume �light gray zone� of the intermolecular poten-
tial. Note that by considering ll, we already integrated out
the invariant direction parallel to the contact line. Diagram-
matically, we have represented the potential as the interac-
tion of the black dot with the dark gray rectangle, integrated
over all positions of the open square.

The trick is to compare the result for an arbitrary shape
that tends to a given angle � �Fig. 5�b��, to that for a perfect
liquid wedge of same angle �Fig. 5�c��. The difference be-
tween the two cases can be expressed as an integral over h
�moving black dot� over the domain sketched in Fig. 5�d�.
This domain extends from the real interface �solid line� to
the plane of angle � �dotted line�. The difference is counted
positively if the interface is below the plane �light gray� and
negatively otherwise �dark gray�. If we interchange the posi-
tion of the solid dot and the square dot, the potential energy
due to the rectangle is exactly the same, but with opposite
sign �Fig. 5�e��. Since both contributions are encountered
through the double integration, the total difference vanishes

(a)

(d) (e)

(b) (c)x

h θ θ

θθ

θ

FIG. 5. �a� Gll can be interpreted as the total force on a liquid corner due to
liquid-liquid interactions. We define h as the distance to the solid surface. �b�
Graphical representation of Gll as the potential at the interface at z=h �black
dot�, integrated over all h �moving the black dots along the interface�. The
potential is decomposed as the contribution of the dark gray rectangular
zone, summed over all positions of the square. �c� We compare the result for
�b� to that for a liquid wedge of angle �. �d� The difference between �b� and
�c� is expressed by integration over a new domain �see text�, consisting of
positive �light gray� and negative �dark gray� contributions. �e� Inverting the
two moving points, the contribution is identical but with opposite signs.
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by antisymmetry. This means that we can directly compute
Gll by considering the simple wedge geometry, which gives
the result �27�.5 Note that this argument requires the assump-
tion that the interaction depends only on the distance be-
tween two points, but not on the spatial location of the
points. If the interaction were inhomogeneous, the perfect
antisymmetry would be broken.

APPENDIX B: LOCAL APPROXIMATIONS

The usual local approximation is to add the Laplace
pressure and the disjoining pressure, giving the equilibrium
condition

− �� + �disj�h� = � . �B1�

This can be derived from the free energy

�1�h,h�� = ���1 + h�2 − 1� + ��1 − cos �Y�f�h� , �B2�

through the standard Euler–Lagrange description �see Sec.
II�. The function f�h� is the integrated disjoining pressure,
renormalized such that f�0�=0, f���=1. The invariant corre-
sponding to this free energy reads

G1 = �	 1

�1 + h�2�1/2 − 1
 + ��1 − cos �Y�f�h� , �B3�

so that the equilibrium condition G1=0 yields ��=0, inde-
pendent of �Y.

For larger angles, we suggest an alternative local ap-
proximation,

�2�h,h�� = ���1 + h�2 − cos �Y�f�h� , �B4�

which has a capillary pressure

�2 = − ��f�h� −
df

dh
	 1

�1 + h�2�1/2 − cos �Y
 �B5�

and a first integral

G2 = �	 1

�1 + h�2�1/2 − cos �Y
 f�h� . �B6�

The equilibrium solution has �=�Y for any value of h, indeed
representing a straight wedge. In particular, ��=�Y.

The solution of the nonlocal equation appears to be
bounded by the local approximations obtained from �1 and
�2. To estimate ��, we therefore propose a linear interpola-
tion

�� = ���,1 + �1 − ����,2 = �1 − ���Y . �B7�

The weight � can be estimated from comparison to the pres-
sure on a straight wedge of angle �Y, Eq. �33�, as computed
by Hocking.31 Even though Hocking’s wedge is not an equi-
librium solution, it does provide the correct nonlocal
asymptotic disjoining pressure for h��. For the second local
approximation, one finds �2=0 for a wedge of �Y, while the
first approximation asymptotically gives Eq. �33� without the
contribution F���. We therefore equate

�	1 −
csl

cll

 = 	1 −

csl

cll
− F���
 . �B8�

Combined with Eq. �B7�, this gives prediction �31� shown in
Fig. 3.

APPENDIX C: NUMERICAL SOLUTION
OF DROP PROFILES

This appendix provides details on the numerical reso-
lution of equilibrium drop shapes. We consider the effective
interaction

	̃
��r� = �− c
�/r6 for r � �

− c
�/�6 for r � � .
� �C1�

The constants csl and cll can be related to the surface ten-
sions, using Eq. �22�,

� =
3�cll

8�2 �C2�

��1 + cos �Y� =
3�csl

4�2 . �C3�

1. Algorithm

We perform the following iterative procedure for h�x� in
order to find the equipotential surface. At step n, the �dis-
cretized� shape of the drop is noted hn�x�. The potential cor-
responding to this shape, �n�x� �see the second part of the
appendix�. The shape is evolved according to the equation,

hn+1�x� = hn�x� + ����n� − �n�x�� , �C4�

where ��n� is the average potential. The parameter � is fixed
at a value sufficiently small to ensure numerical stability. The
positions of the contact lines are evolved to ensure the mass
conservation between steps: The drop spreads when the po-
tential at the contact line is smaller than its average value;
otherwise, it shrinks.

In practice, we have observed that the result becomes
independent of the discretization when the mesh size be-
comes lower than 0.05 �=0.03 for the figures shown here�.
The convergence of the calculation, starting from a spherical
cap takes approximately 300 steps �1000 for the figures
shown here�. The spatial variations of the potential then
reach the numerical noise level.

2. Evaluation of the pressure

We evaluate the pressure according to Eq. �17�. The sec-
ond integral is constant and can thus be ignored. As the ef-
fective interaction is defined over two domains, we need to
separate zones of integration into those that have r�� and
r��, respectively. First, consider the solid-liquid interaction,
i.e., the third integral of Eq. �17�. If h��, the integral is
easily performed as
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�sl�h� = �
0

�/2

d��
0

2�

d�
h/cos �

+�

r2 sin �	̃sl�r�dr = −
�csl

6h3 .

�C5�

For h��, the domain has to be separated into various re-
gions. By introducing cos 
=h /�, we get for h��

�sl�h� = − 2�csl�



�/2

d� sin ��
h/cos �

+�

dr/r4

− 2�csl�
0




d� sin �	�
h/cos �

�

r2dr/�6 + �
�

+�

dr/r4
 ,

�C6�

which reduces to �for h���,

�sl�h� = −
�csl

6�3 �8 − 9�h/�� + 2�h/��3� . �C7�

This potential �sl is indeed continuous at h=�, and it obeys
the property

�
0

�

dh�sl�h� =
3�csl

4�2 = �sl − � − �sv = − ��1 + cos �Y� .

�C8�

Provided that we realize that �ll=0, the same formula
can be applied to the case of the liquid-liquid and solid-solid
interactions,

cll =
8��2

3�
. �C9�

The liquid-liquid potential can be expressed as

�ll = �
a

b

dx��
−�

�

dy��
0

h�x��
	̃ll�r�dz� �C10�

with r2= �x�−x�2+y�2+ �z�−h�x��2. The integral over z can
be decomposed into two contributions of the same form, as
shown in �Fig. 6�. By introducing the energy of interaction
��� ,h� between a point and a rectangular zone of height h,
infinite in the transverse direction, at a distance �,

���,h� = �
−�

�

dy��
0

�h�

	̃ll���2 + y�2 + z�2�dz�, �C11�

we get

�ll�x� = �
−�

�

d�����,h�x�� + ���,h�x + �� − h�x��� .

�C12�

Importantly, � is defined as an odd function of h
���� ,−h�=−��� ,−h�� but an even function of �. In the situ-
ation, where ���, we introduce cos 
= �1
+h2 /�2 cos2 �−1/2 and get

� = −
16��2

3�
�

0

�/2

d�
0


 cos6 �

�6 �2 sin �

cos3 �
d� . �C13�

It simplifies into

�

�
= −

2h2 + 3�2

3�4�h2 + �2�3/2�2h for � � � . �C14�

Now for ���, there is a circular screening zone of radius
��2−�2. In the first situation, the screening zone is smaller
than the height,

� = −
16��2

3�
�

0

�/2

d��
cos 


�/� x6

�6

�2dx

x3 + �
�/�

1 1

�6

�2dx

x3 � .

�C15�

For �2��2��2−h2, it simplifies into

�

�
= −

�2h2 + 3�2��2h

3�4�h2 + �2�3/2 +
2�2

3�4 +
4�2

3�4 −
2

�2 . �C16�

In the second situation, the screening zone radius ��2−�2 is
larger than the height h. We define cos 0=h /��2−�2 and
get

� = −
16��2

3� ��
0

0

d�
cos 


1 1

�6

�2dx

x3

+ �
0

�/2

d	�
cos 


�/a x6

�6

�2dx

x3 + �
�/a

1 1

�6

�2dx

x3 
� .

For �2−h2��2, it finally simplifies into

�

�
=

2h��2 − �2 − h2

3��2 + h2��
	 1

�2 −
4��2 + h2�

�4 

−

2�2h�3�2 + 2h2�sin−1���2 + h2�
3�4��2 + h2�3/2�

+
4

3�
	 �2

�4 −
3

�2 +
2�2

�4 
sin−1	 h
��2 − �2
 . �C17�
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