PRL 98, 094502 (2007)

PHYSICAL REVIEW LETTERS

week ending
2 MARCH 2007

Theory of the Collapsing Axisymmetric Cavity
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We investigate the collapse of an axisymmetric cavity or bubble inside a fluid of small viscosity, like
water. Any effects of the gas inside the cavity as well as of the fluid viscosity are neglected. Using a
slender-body description, we compute the local scaling exponent a = dlInhy/dInt’ of the minimum
radius A, of the cavity, where ¢’ is the time from collapse. The exponent a very slowly approaches a
universal value according to @ = 1/2 + 1/[4/—In(¢)]. Thus, as observed in a number of recent
experiments, the scaling can easily be interpreted as evidence of a single nontrivial scaling exponent.
Our predictions are confirmed by numerical simulations.
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Over the last decade, there has been considerable
progress in understanding the pinchoff of fluid drops,
described by a set of universal scaling exponents, indepen-
dent of the initial conditions [1,2]. The driving is provided
for by surface tension; the value of the exponents depends
on the forces opposing it: inertia, viscosity, or combina-
tions thereof. Bubble collapse appears to be a special case
of an inviscid fluid drop breaking up inside another inviscid
fluid, which is a well studied problem [3—5]: the minimum
drop radius scales like ko o« 2/3, where ¢/ = t, — ¢ and ¢,
is the pinch-off time. Thus, huge excitement was caused by
the results of recent experiments on the pinchoff of an air
bubble [6—10], or the collapse of a cavity [11] in water,
which resulted in a radically different picture, in agreement
with two earlier studies [12,13]. As demonstrated in detail
in [10], the air-water system corresponds to an inner
“fluid” of vanishing inertia, surrounded by an ideal fluid.

Firstly, the scaling exponent «, obtained from the slope
of a log-log plot over a range of up to 3 decades, was found
to be close to 1/2, (typical values reported in the literature
are 0.56 [9] and 0.57 [10]). This means that breakup is
much faster than in the fluid-fluid case, and surface tension
must become irrelevant as a driving force. Secondly, the
value of « appeared to depend subtly on the initial condi-
tion [11], and was typically found to be larger than 1/2.
This raised the possibility of an “‘anomalous” exponent,
selected by a mechanism as yet unknown. To illustrate the
qualitative appearance of the pinchoff of a bubble, in Fig. 1
we show a temporal sequence of profiles, using a full
numerical simulation of the inviscid flow equations [5].
We confine ourselves to axisymmetric flow, which experi-
mentally is found to be preserved down to a scale of a
micron [10], provided the experiment is aligned carefully
[9].

The only existing theoretical prediction [7,11,14] is
based on treating the bubble as a (slightly perturbed)
cylinder [12,13], which leads to the exponent being 1/2
with logarithmic corrections. Very similar analyses have
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been performed since the 1940’s [15,16] for the shape of a
cavity behind a moving body. Owing to the constant speed
of convection, the cavity shape swept out by the body
directly corresponds to time dependence of the cylinder,
giving the same answer if the distance from the body is
interpreted as the time distance from the singularity. Our
numerics, to be reported below, are however inconsistent
with [7,11,14]. Moreover, a cylinder is not a particularly
good description of the actual profiles (cf. Figure 1), as has
been remarked before [9]. In this Letter, we present a
systematic expansion in the slenderness of the cavity,
which is found to lead to a self-consistent description of
pinchoff. Our results are in excellent agreement with nu-
merical simulations, and consistent with the experimen-
tally observed exponents.

Our approach is based on the slenderness of the cavity
[16,17], an assumption we confirm later. The inviscid,
irrotational, incompressible flow u = V¢ outside the cav-
ity of length 2L is written as

o= _ ClEndé
N

where C(&, 1) is a line distribution of sources to be deter-
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FIG. 1. Numerical simulation of the time evolution of bubble
pinchoff from initial conditions given by the shape with the
largest waist. Pinchoff is initiated by surface tension, but the late
stages are dominated by inertia, as observed experimentally [10].
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mined. The length L will later drop out of the description of
the pinch region, where (1) is good. For a slender geometry,
d.¢ < 9,¢, so the radial velocity u, dominates. The
latter, evaluated at the cavity wall, is found from taking
the derivative of (1) with respect to r and setting r =
h(z, t). The leading contribution to the resulting integral
[17] is local: |£ — z| < h, thus in a slender description
C(& 1) = C(z, 1) and L — oo, With these approximations,
the &-integration can be performed exactly, giving u, =
—2C(z, 1)/ h(z, 1).

From the kinematic condition, the cavity radius 4(z, 1) is
related to u, by 9,k = u,, and thus a(z, 1) = —4C(z, 1),
where a = h?> and the dot denote the time derivative.
Finally, an equation of motion for C comes from the
Bernoulli equation [18], with the pressure p set to zero at
infinity. Since the pressure difference p, — p across the
interface is the Laplace pressure yk, we arrive at

[L d(é 1dé a’> 4y

@ 4y, AP
ife—& +akn 2a p P’

where p, is the cavity pressure [19]. In the two-fluid
problem, the surface tension 7y, multiplied by the mean
curvature « = 1/h, drives the problem. However, in our
problem, breakup is much faster, so the last two terms in
(2) can be neglected asymptotically. The resulting equation
is invariant under a rescaling of both space and time, as
both remaining terms are inertial (describing acceleration
and convection of a fluid element); thus, scaling exponents
are not fixed by dimensional analysis. Note that (2) does
not conserve the volume of the cavity, whereas Fig. 1
assumes an incompressible gas inside the bubble. This
however only affects the rounded ends of the bubble.

Our aim is to explain the observed scaling behavior of
the minimum cross section ag = a(0, t), as well as of theJ

2

axial length scale A of the profile, which can be charac-
terized by the inverse curvature A = (2ay/al])'/?, where
aj = a"(0,1) and the prime denotes a derivative with
respect to z. Experiments [11] as well as our own simula-
tions show that the aspect ratio a,/A? becomes small for
' — 0. This means that a(0, ¢) can be neglected relative to
2 ~ A? in the denominator of the integral in (2), except
near the position & = 0 of the minimum. Thus since the
integral is dominated by local contributions near the mini-
mum, we can find equations of motion for the minimum in
terms of local quantities alone.
As shown later, (&, 1) goes to zero over the axial scale
A; hence, d(&, 1) = iy up to terms of order A%. Thus the
integral in (2), evaluated at z = 0, can be approximated as

i / : [£2 + ap] '2dé = dgIn(4A%/ay) + 0<%>.
-A

An arbitrary factor inside the logarithm depends on the
exact shape of d(¢&, r), but is irrelevant for the asymptotic
limit. We now need another equation for the (time-
dependent) width A to close the description. To that end,
we evaluate the second derivative of (2) at z = 0.

The contribution of the left hand side of (2) is

2 "
[ ate o] = - Tae
-A \/62 + a05 2\/52 + 6103
For a slender profile, a is subdominant, but the integral
over the first term in angular brackets conspires to give
zero in the limit ay — 0, so the second term has to be
considered as well, and d(¢&, ¢) has to be expanded beyond
the constant term: (¢, t) = dg + €2 /2. Thus, using the
same reasoning as before, and keeping in mind that a;, = 0,
we find for the second derivative of the integral

C.ioag

[A [(do + g €?/2) (2% — ag)
A JE+a,

Equating this with the second derivative of the right
hand side of (2), [a*/(2a)]", which is readily computed
in terms of @, and A, yields the desired second equation. It
is slightly more convenient to rewrite the results as equa-

tions for the local (time-dependent) exponents
2 = —9,ay/ay, 26 = —9,ay/ay, 3)

where 7 = — In# and B = a — §. Note that (3) is equiva-
lent to taking the slope of a log-log plot, but differs from
hy o« 1'% if « is time-dependent. The result is

(a; + a —2a*>)In(T'y/a)) = —a?, 4)

(6,+6—-28)In(,/al)=2a —3a>—2ad+2a, (5)
0

where the subscript denotes the 7-derivative.
The scaling factors I';, I'y only make a subdominant
contribution as a(] goes to zero. The time dependence of a;)

2 o 1
3}015 ~ [ao m(i) - zm}
2{€& + ay e“ag ag

[
is found from integrating

In(all), = —26. (6)

The approach of the exponents toward their fixed point
value (a, 8) = (1/2, 0) is given by an expansion of (4) and
(6) in powers of 77'/2, fractional powers providing the
right balance:

1 T
a=1/24+—=+—+0(r7?),
T

NG
)

i
The constant I' depends on the values of I'; and I';. The
next order changes with the choice of time scale (which is
not fixed by (2)), and thus necessarily depends on the initial
conditions. Below, we present numerical evidence that I’
and I', are universal, and we hope to be able to calculate

)
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their values in the future. At that point, it will become
expedient to study the system of (4)—(6) in more detail,
beyond the expansion (7). As seen from (7), the leading
order a and B approach their limiting values of 1/2 in a
universal fashion. For the self-consistency of our analysis,
we need for the dimensionless parameter a( to go to zero
toward pinchoff, as is indeed found from (6), owing to the
slowness with which & converges toward zero.

We now turn to a detailed comparison with full numeri-
cal simulations, not relying on any slenderness assumption,
by focusing on the late stages of the pinch-off event shown
in Fig. 1. To this end, a suitably modified version of the
boundary integral code developed to examine inviscid
droplet pinchoff [5] was used, as originally reported in
[20]. This involved two important modifications: First,
the boundary value operator (cf. Equation (11) in [5]) has
a zero eigenvalue in the case of the absence of an inner
fluid, corresponding to a change in the bubble volume. This
singularity is analytically removed before the boundary
integral operator is inverted, fixing the bubble volume.
Second, due to the rapidity of bubble pinchoff, the adaptive
time stepping used for droplet pinchoff in [5] was replaced
by a time-step halving procedure with error estimation.

A comparison of the numerical simulations with (7) is
given in Fig. 2. Using Eq. (3), the value of « from the
numerical simulations can be calculated as a = /9, hy/ hy,
and the pinch-off time ¢, is estimated directly from the
numerical data, without an attempt to improve the agree-
ment with theory. The solid curve in Fig. 2 is the data from
the numerical simulation, and the dashed curve is the
leading order prediction given by Eq. (7) with I' = 0.

Data from the numerical simulations can be divided into
three regimes. From approximately 107!2 < ¢/ < 1074, the
bubble is considered to be in the asymptotic regime, and it
is seen that there is very good agreement between the
numerical data and the asymptotic theory: the leading
order theory with I' = 0 accurately predicts the extremely
slow decrease in the numerically determined value of «.
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FIG. 2. A comparison of the exponent « between full numeri-
cal simulations of bubble pinchoff (solid line) and the leading
order asymptotic theory with I' = 0 (dashed line).

Equally good agreement was found for numerical runs
using other initial conditions. Time # > 10~* corresponds
to a transitional regime where the bubble adjusts from an
initial state where surface tension is required to initiate
pinchoff, to an asymptotic state where surface tension is
irrelevant. Time ¢ ~ 10~ !? represents the threshold of the
numerical simulations: extremely large interfacial veloc-
ities acting over ever-decreasing length scales, ultimately
puts a limit on the validity of the numerical simulations.
Gordillo et al. [7,14] have previously predicted that the
minimum bubble radius %, should scale with ¢ according

to ¢’ o h3,/— Inh3, using a method that in many respects is
similar to ours [14]. However, the crucial difference is that
they do not treat the axial length scale A as a dynamical
variable as we do, but effectively identify A with some
outer length scale. Indeed, if one replaces a{ by a, in (4),
one recovers the scaling result of [14]. The conceptual
difference between the two approaches is illustrated further
by Fig. 3, which shows the central peak of ¢ from the full
numerical simulation. The value of d rapidly drops to zero,
effectively providing the cutoff of the integral (2) at an
axial length A. Computations using different initial con-
ditions, evaluating d at different times, show collapse upon
rescaling, indicating self-similar behavior of the entire
profile. So far, we have not been able to identify the
logarithmic corrections of B in our full numerical simula-
tions, since computing the axial scale is much more de-
manding than computing h,.

In Fig. 4, we plotted the numerically computed mini-
mum radius &, divided by the universal part of the present
theory (full line) and that of [14] (dashed line). If normal-
ized by an appropriate constant, the result should be unity.
Namely, (7) with I' =0 is equivalent t0 /g peq

''/24Je=V=In" (a5 calculated from (3)), while the theory

FIG. 3 (color online). A normalized graph of d =
82h*(z, 1)/ 91> as given by the full numerical simulations, for
two different initial conditions, and at ¢ = 3.8 X 10710 (black
line) and # = 2.1 X 107!% (grey line, green online). Similar
collapse is found if profiles are evaluated at different times for
the same initial conditions.

094502-3



PRL 98, 094502 (2007)

PHYSICAL REVIEW LETTERS

week ending
2 MARCH 2007

106 L) L} L} L]
14 /’ i
4
,I
/,I
= 1.2 B /’ 7
g ’
2 e
':5’ ...... A
\c 1.0 | ....4..‘____._____;r(____ﬁ\ -
= - - E
0.8 e ]
0.6 —— : . :
107 10° 10° 100° 10° 107
l./
FIG. 4. A normalized graph of A/ hopred» ~ Where

(i) hoprea & 12 /(— Inh3)'/* (dashed line), (ii) A preq o #'* (dot-
ted line), and (iii) /g preq  #'//*Ve 710 (solid line).

of [7,14] (equation (2.30) in [14]) corresponds to /1 preq
"2 /(= Inh})"/*. While the present theory agrees ex-
tremely well with numerics without the use of any adjust-
able constant, the theory in [14] varies by approximately
+50% over the range of # plotted.

In our earlier numerical simulations [20], as well as in
most experimental papers [6,9,10], the data for the mini-
mum radius was represented by adjusting a single exponent
a. Although Fig. 2 clearly shows that the exponent is
slowly varying, this subtle feature is difficult to detect in
a more conventional plot like Fig. 4. To demonstrate this
point, we have determined an effective exponent @ =
0.559 from a least-square fit to the numerical data, a value
which is close to those observed experimentally [9,10]. In
essence, @ can be viewed as the average over a values
shown in Fig. 2. The resulting fit (dotted line) gives a
surprisingly good description of the data, as a result of
the extremely slow variation of «. It also highlights the
need for more sophisticated plots like Fig. 2 in the inter-
pretation of future (experimental) data.

To summarize, we have developed an asymptotic theory
for the collapse of an axisymmetric cavity. A novel feature
of this theory is a slow variation of the scaling exponents,
whose leading order contributions are universal. The slow-
ness of the approach explains the experimental observation
of apparently new scaling exponents, whose value may
depend weakly on initial conditions. It remains to calculate
the entire form of the central peak of d, which according to
Fig. 3 is universal. This will determine the values of the

constants I'; and I',. Other challenges are the inclusion of
nonaxisymmetry [9] and viscosity [10] into the theoretical
description.
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