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Force correlations in the q model for general q distributions
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We study force correlations in theq model for granular media at infinite depth for generalq distributions. We
show that there are no two-point force correlations as long asq values at different sites are uncorrelated.
However, higher-order correlations can persist, and if they do, they only decay with a power of the distance.
Furthermore, we find the entire set ofq distributions for which the force distribution factorizes. It includes
distributions ranging from infinitely sharp to almost critical. Finally, we show that two-point force correlations
do appear whenever there are correlations betweenq values at different sites in a layer; various cases are
evaluated explicitly.
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I. INTRODUCTION

One of the main challenges of granular media is to ch
acterize the network of microscopic forces in a static be
pack. In order to describe the corresponding force fluct
tions, Liuet al. @1# introduced theq model. In this model, the
beads are placed on a regular lattice and the~scalar! forces
are stochastically transmitted, by random fractions deno
by the symbolq. Even in its simplest version, where on
assumes a uniformq distribution, it already reproduces th
main feature of the experimental observations: the proba
ity for large forces decays exponentially@1–3#. Although for
this uniformq distribution the forces become totally unco
related, in general, correlations do persist@4#. In the present
study, we investigate for whichq distributions this is the cas
and we reveal the surprising nature of these correlations
order to perform an analytical study, we restrict ourselves
the scalarq model and allow only correlations betweenq
values in a layer. More sophisticated lattice models, that
clude the vector nature of the force and allow correlatio
between layers are not considered here@5#.

Although theq model is particularly simple, its behavio
turns out to be very rich. First of all, there is a so-call
critical q distribution, that produces a force distribution th
decays algebraically instead of exponentially@4,6#. It there-
fore forms a critical point in the space ofq distributions, and
its properties were recently investigated in great detail@7,8#.
A second intriguing issue concerns the top-downdynamics
of force correlations~the downward direction can be inte
preted as time! @7–9#. Even if both in the initial state~top
layer! and in the asymptotic state~infinite depth! all forces
are uncorrelated, there will be correlations at all intermed
levels. Correlations become longer in range while their a
plitudes diminish in a diffusion process, and as a result,
asymptotic force distribution is only approached algeb
ically @9#. This process is closely related to the subject of t
study, namely, the presence of force correlations at infi
depth.

Let us recapitulate the definition of theq model. The
beads are assumed to be positioned on a regular lattice
f i be the force in the downward direction on thei th bead in
a layer. This bead makes contact with a number ofz beads in
the layer below, which we indicate by the indicesi 1a. The
1063-651X/2002/65~5!/051306~12!/$20.00 65 0513
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a ’s are displacement vectors in the lower layer as shown
Fig. 1. Beadi transmits a fractionqi ,a of the forcef i to the
beadi 1a underneath it. These fractions are taken stocha
cally from a distribution satisfying the constraint

(
a

qi ,a51, ~1!

which assures mechanical equilibrium in the vertical dire
tion. So, we can write the forcef j8 on the j th bead in a layer
as

f j85(
a

qj 2a,a f j 2a . ~2!

As the weights of the particles are unimportant at infin
depth, we have left out the so-called injection term. The d
tribution of forces at infinite depth depends on theq distri-
bution H(qW ), where the symbolqW is a shorthand for all the
qi ,a at a given layer. ThisH(qW ) can be any function that is
constrained by Eq.~1!. If we now assume that there are n
correlations between theq values at different sites, theq
distribution is of the form

H~qW !5)
i

h~qW i !dS 12(
a

qi ,aD , qW i5$qi ,a%, ~3!

whereh(qW i) is symmetric in its argumentsqi ,a . Although
we will refer to theseq distributions as ‘‘uncorrelated,’’ note
that there are always correlations between theqi ,a of the
same site due to thed constraint.

In the first part of this study, we show that there is only
limited set ofh(qW i) for which the stationary force distribu
tion can be written as a product of single-site distributio
and therefore is totally uncorrelated. This set is an extens
of the set that was already identified by Coppersmithet al.
@4#. In their extensive study, they also provided numeri
evidence that, in general, correlations can persist. We
show that correlations are still absent in the second-or
moments. However, higher-order correlations do exist a
surprisingly enough, these turn out to decay algebraica
The results for the triangular packing and the fcc packing
©2002 The American Physical Society06-1
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FIG. 1. The displacement vectorsa in the q model for ~a! the triangular packing~side view! and ~b! the fcc packing~top view!.
rk
b

a
de

e

of
by
ua
o

s

Eq
or

s
e

of

ob-

ive
ine

h

xed

the
summarized in Table I, Sec. VII. In the last part of this wo
we show that one induces two-point force correlations
allowing correlations betweenq values on different sites in a
layer. These correlations will generically vanish with
power law, except for the triangular packing, where the
cay of force correlations follows the decay of theq correla-
tions.

The paper is organized as follows. In Sec. II we deriv
criterion that a distributionh(qW i) has to obey in order to
produce an uncorrelated stationary state. We then show
Sec. III, that this criterion is only obeyed for a limited set
h(qW i). After that, we study the nature of the correlations,
writing the evolution of the force moments as master eq
tions in Sec. IV, and by analyzing the stationary solutions
these equations in Sec. V. Section VI deals with the effect
allowing correlations between theqW i of different sites in a
layer, and the paper closes with a discussion.

II. CRITERION FOR FACTORIZATION

Using the recursive nature of the force transmission,
~2!, one can write down the following recursive relation f
the force distribution@4,9#:

P8~ fW8!5E H~qW !dqW E P~ fW !d fW

3)
j

dS f j82(
a

qj 2a,a f j 2aD , ~4!

where we have introduced a vector notation for the force
one layerfW5( f 1 , . . . ,f N), and for the integrations we us
the abbreviations

E d fW5)
i
E

0

`

d fi , ~5!

E dqW 5)
i
E dqW i5)

i
)
a

E
0

1

dqi ,a . ~6!

It is often convenient to work with the Laplace transform
Eq. ~4!. Defining the Laplace transform as

P̃~sW !5E d fW exp~2sW• fW !P~ fW !, ~7!

the recursion simplifies to@4,9#
05130
,
y

-

a

in

-
f
of

.

in

P̃8~sW !5E H~qW !dqW P̃„sW~qW !…, ~8!

with

si~qW !5(
a

qi ,a si 1a . ~9!

The two representations Eqs.~4! and~8! are equivalent, and
they will both be used, depending on the nature of the pr
lem.

The force distribution at infinite depthP* ( fW) or P̃* (sW)
can be obtained by finding the fixed point of the recurs
relation. The main question of this section is to determ
whether a givenH(qW ) leads to aP* ( fW) that is simply a
product of single-site force distributionsp* ( f i). In Sec. VI
we will show that this can only be the case forq distributions
of the type Eq.~3!. So for this section, the question is: whic
h(qW i) led to uncorrelated asymptotic states?

To answer this question, let us assume that such a fi
point exists, i.e.,

P* ~ fW !5)
i

p* ~ f i !, or P̃* ~sW !5)
i

p̃* ~si !. ~10!

Inserting this ansatz into the Laplace representation of
recursion relation, Eq.~8!, yields

P̃* ~sW !5)
i
E h~qW i !dS 12(

a
qi ,aDdqW i p̃* S (

a
qi ,asi 1aD

5)
i

c̃~si 1a1
, . . . ,si 1az

!, ~11!

where the functionc̃(si 1a1
, . . . ,si 1az

) is the outcome of

the integral over theqW i . The arguments represent thez sites
that are connected to sitei in the previous layer. Integrating
out all forces except those at thez sites connected toi means
putting all sj50 except the set$si 1a%:

P̃* ~si 1a1
, . . . ,si 1az

!

5c̃~si 1a1
, . . . ,si 1az

!)
a

c̃~si 1a,0, . . .!z21.

~12!
6-2
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FORCE CORRELATIONS IN THEq MODEL FOR . . . PHYSICAL REVIEW E 65 051306
This projection of the total force distribution can only facto
ize if c̃(si 1a1

, . . . ,si 1az
) is a product function as well, i.e.

c̃~si 1a1
, . . . ,si 1az

!5)
a

c̃~si 1a!. ~13!

This leads to the following criterion for asymptotic factoriz
tion:

Given aq distribution h(qW ), one can construct a facto
ized fixed point if, and only if, there is a functionc̃(s) that
satisfies the following condition:

E h~qW !dS 12(
a

qaDdqW F c̃S (
a

qasaD G z

5)
a

c̃~sa!.

~14!

This functionc̃(s) is related to the single-site distributio
as

p̃* ~s!5@c̃~s!#z. ~15!

Here, we omitted the site indexi, and furthermore, our for-
mulation depends only onz ~the number ofq values per site!
and not on the details of the lattice.

III. SPECIAL CLASS OF q DISTRIBUTIONS
LEADING TO FACTORIZATION

It is a well-known fact that the so-called uniform distr
bution, in whichh(qW i) is a constant, produces an uncorr
lated asymptotic force distribution. In fact, Coppersm
et al. identified a countable set ofq distributions, of which
the uniform distribution is a member, that have this prope
@4#. Although it might seem obvious that a uniform distrib
tion leads to an uncorrelated asymptotic state, it is really
trivial. Due to the constraint of Eq.~1!, there are correlations
between theqi ,a on each sitei, which induce force correla
tions that only disappear under the special conditions
cussed in the previous section, Eq.~14!. In this section, we
will show when these special conditions are obeyed.

There is a mathematical relation that is extremely imp
tant for theq model @10#:

)
a

1

~11sa!r 5
G~zr!

@G~r !#zE dqW dS 12(
a

qaD
3)

a
~qa!r 21

1

S 11(
a

qasaD zr . ~16!

It holds for any realr .0. From this relation, it is immedi-
ately clear that for allq distributions of the type

h~qW !5
G~zr!

@G~r !#z)
a

~qa!r 21, r .0, ~17!

there is ac̃(s) that obeys Eq.~14!, namely,
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c̃~s!5
1

~11s!r . ~18!

The corresponding single-site force distributions are

p̃* ~s!5
1

~11s/zr!zr
or p* ~ f !5

~zr!zr

G~zr!
f zr21e2zr f.

~19!

We rescaled the Laplace variables, in order to put̂ f &51.
Coppersmithet al. already found theseq distributions for
integer values ofr, also based on Eq.~16! @4#. However, it
holds for any realr .0. This means that the set for which th
stationary force distribution factorizes is substantially larg
it ranges from the infinitely sharp distribution (r→`) to the
critical distribution (r→0) @11#. Note that one recovers th
results for the uniform distribution by puttingr 51.

Although there is a huge variety ofq distributions that
lead to uncorrelated force distributions, in general one can
find a c̃(s) that obeys Eq.~14!. We will prove this by mak-
ing a Taylor expansion ofc̃(s),

c̃~s!5 (
n50

`

cnsn, ~20!

and then try to solve for the coefficientscn by imposing Eq.
~14!. It turns out that the equations can only be solved un
special conditions, which are precisely obeyed by the cl
of q distributions given by Eq.~17!.

Let us first focus on the left-hand side~LHS! of Eq. ~14!.
The Taylor expansion will give rise to terms of the typ
(q1s1)n1(q2s2)n2

•••(qzsz)
nz, which have to be integrated

over allqa . This leads to termss1
n1s2

n2
•••sz

nz with prefactors

given by themomentsof h(qW ),

q1
n1q2

n2
•••qz

nz5E h~qW !dS 12(
a

qaDdqW q1
n1q2

n2
•••qz

nz.

~21!

These moments are not independent, due to the const
Eq. ~1!. In Appendix A, we show that the moments

hn5E h~qW !dS 12(
a

qaDdqW q1
n ~22!

are in fact sufficient to characterize all relevant moments
Eq. ~21!. Besides the moments, there are of course additio
prefactors consisting of combinations of thecn ; these are
the quantities we try to find, for a givenq distributionh(qW ).

The right-hand side~RHS! of Eq. ~14! also pro-
duces termss1

n1s2
n2
•••sz

nz , with prefactorscn1
cn2

•••cnz
.

The remaining task is to equate the prefactors of the te
s1

n1s2
n2
•••sz

nz on both sides of the equation. This gives a s
of equations, from which one can try to solve for thecn .

The zeroth order equation is trivially obeyed for anyc0,
as can be seen by putting allsa50. For convenience we fix
c051. The same happens at first order, since for eacha, the
6-3
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JACCO H. SNOEIJER AND J. M. J. van LEEUWEN PHYSICAL REVIEW E65 051306
LHS containsz terms c1qasa51/z c1sa , and the RHS is
simply c1sa . The first nontrivial equation appears at seco
order. There are two equations, forsa

2 and forsasa8 , where
aÞa8:

S zc21
z~z21!

2
c1

2Dh25c2 ,

~23!

S zc21
z~z21!

2
c1

2D2~12zh2!

z~z21!
5c1

2 .

Due to the constraint(aqi ,a51, one can obtain an identit
by multiplying the first equation byz, and adding it to the
second equation multiplied byz(z21)/2. Hence, the two
equations are not independent andc2 can be solved. The
value ofc2 depends only onh2, the second moment of theq
distribution @12#.

Working out the combinatorics of the higher orders, o
finds the following general mathematical structure:

At the nth order, there are as many equations as there
different partitions $n1 ,n2 , . . . ,nz% that make (ana5n.
Permutations should not be considered as different bec
h(qW ) is symmetric in its arguments. One of these equati
is dependent, as one can obtain an identity by adding
equations, after multiplication by appropriate factors.

For z52, there are two third-order equations, correspo
ing to the partitions$3,0% and $2,1%, of which only one is
independent. This means thatc3 can be solved as a functio
of h2 ~in Appendix A we show thath3 depends onh2, for
z52). We run into problems at fourth order, where we ha
$4,0%, $3,1%, and$2,2%, and hence twoa priori independent
equations for one coefficientc4. It turns out that the remain
ing equations are only identical if there is a relation betwe
h4 andh2, namely,

h45
30h2

2211h211

16h222
. ~24!

In Appendix A, it is shown that this relation is precise
obeyed by the class ofq distributions Eq.~17! for which
c̃(s) was already solved.

The fact that the expansion ofc̃(s)5@ p̃* (s)#1/z only fails
at fourth order implies that a mean field approximation,
which one explicitly assumes a product state, does give
exact results up to the third moment ofp* ( f ). This is pre-
cisely the reason why the mean field solutionpmf( f ) differs
only marginally from the real solution. To be more precis
the deviationpmf( f )2p* ( f ) should change sign four times
since it does not affect all moments lower than^ f 4&. A care-
ful inspection of the numerical results in Ref.@4# for a q
distribution in which q50.1 or q50.9 shows that these
small ‘‘wiggles’’ are indeed present. To magnify this effec
we show our simulation data in Fig. 2.

For z53, the problems already appear at third ord
Since we have$3,0,0%, $2,1,0%, and $1,1,1%, we encounter
two independent equations forc3. Again, it turns out that the
equations can be solved if there is an additional relation
tween theq moments:
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h35
15h2

22h2

9h211
. ~25!

For z.3, there are two independent third-order equatio
as well, originating from$3,0,0,0, . . . %, $2,1,0,0, . . . %, and
$1,1,1,0, . . . %. This problem can always be overcome by a
suming a particular relation between the momentsh3 and
h2, corresponding to the specialq distributions of Eq.~17!.
Since at higher orders the number of equations per co
cient cn becomes increasingly high, there will be no otheq
distributions than those of Eq.~17! that obey Eq.~14!, and
thus have an uncorrelated force distribution.

IV. EVOLUTION OF MOMENTS

Now that we know that, in general, correlations do ex
in the stationary force distributions, it is interesting to stu
the nature of these correlations. In this section, we write
evolution of the moments as master equations, along
lines of Ref.@9#. With this formalism, we will, in the next
section, analyze the correlations by finding the station
states of these master equations.

First, let us define the second moments of a distribution

M2~k!5^ f i f i 1k&5E d fW f i f i 1kP~ fW !. ~26!

We have reintroduced the site indexi, and k is a displace-
ment vector in a layer. As the system is translationally inva
ant, these second moments depend only on the displace
k. The recursion for these moments is obtained by combin
Eqs.~2! and ~4! as

M28~k!5 (
a,a8

S E H~qW !dqW qj ,aqj 1k1a2a8,a8D
3M2~k1a2a8!. ~27!

FIG. 2. Numerical simulation of aq distribution withq50.1 or
q50.9. The small deviationpmf( f )2p* ( f ) changes sign four
times.
6-4
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FORCE CORRELATIONS IN THEq MODEL FOR . . . PHYSICAL REVIEW E 65 051306
Using the overline notation for theq averages again, Eq.~27!
becomes

M28~k!5 (
a,a8

qj ,aqj 1k1a2a8,a8M2~k1a2a8!. ~28!

This relation reveals from which points~in correlation space!
the momentM28(k) receives a contribution during a recu
sion step. However, it is in fact easier to consider the op
site relation, revealing how much a moment contributes
correlation space points during recursion. The ‘‘inverse’’
Eq. ~28! becomes

M2~k!→qi ,a qi 1k,a8M28~k1a82a! for all a,a8.
~29!

This latter relation allows for a master-equation-type form
lation, as we may write it in the form

M28~k!2M2~k!5(
g

Wg~k2g!M2~k2g!

2W2g~k!M2~k!. ~30!

The transition rates are defined as

Wg~k!5qi ,aqi 1k,a8, ~31!

with g determined by the seta,a8 as

g5a82a. ~32!

In the current problem, where we consider second-order
ments, the transition rates are particularly simple. IfkÞ0,
the q averages are independent, and will always give
value 1/z2 @this only holds forq distributions of the type Eq
~3!#. If k50, one encounters second moments ofh(qW ), as in
Eq. ~21!. This leads to the following transition rates:

k50⇒W0~0!5h2 , WgÞ0~0!5
12zh2

z~z21!
,

kÞ0⇒Wg~k!5
1

z2
. ~33!

So, the moments evolve in an anomalous diffusion proc
with differing transition rates at the origin. For a detaile
discussion of the corresponding dynamics, see Ref.@9#. Note
that this diffusion takes place in a (d21)-dimensional space
asa, and therefore alsog, is a displacement in a layer. In th
remainder of this paper we use the bold notationg whenever
the displacement is really a vector.

The advantage of this somewhat formal representatio
that we can take it over to higher order moments with
further ado. The generalization of the master equation for
nth order momentsMn(r ) becomes

Mn8~r !2Mn~r !5(
g

Wg~r2g!Mn~r2g!2W2g~r !Mn~r !,

~34!
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with the position indicesr5(k1 ,k2 , . . . ,kn21), and the dis-
placementsg defined as

g5~a12a,a22a, . . . ,an212a!. ~35!

The dimensionality of the diffusion process has now beco
(n21)(d21). The transition rates can be calculated as

Wg~r !5qi ,aqi 1k1 ,a1
•••qi 1kn21 ,an21

. ~36!

Analogous to the second moments, these transition rates
all 1/zn, as long as the indices of the position vectorr are not
equal to zero nor coincide. However, the differing rates ma
the problem complicated, because one has to deal with
ferent transition rates at special points, lines, planes, etc
the space of diffusion.

One can now study the correlations at infinite depth
finding stationary states of the master equation for the m
ments. As a first attempt to construct a stationary soluti
i.e., Mn8(r )2Mn(r )50, one can try a detailed balance sol
tion. Detailed balance means that there is no flow of ‘‘pro
ability’’ from one point to another. In that case, all terms
the sum on the right-hand side of Eq.~34! vanish individu-
ally, i.e.,

W2g~r !Mn~r !5Wg~r2g!Mn~r2g! all r ,g. ~37!

This condition can also be formulated in terms ofelementary
loops, which are the smallest possible pathways from a po
to itself. For all lattices in this study, these elementary loo
are triangles, and we denote the three jump rates as (a,b,c)
or (a8,b8,c8) depending on the direction in which the loop
traversed. It is easily verified that the property

abc5a8b8c8 ~38!

must be obeyed inall elementary loops in order to have
detailed balance solution. In the following section we sh
that correlations appear whenever the detailed balance
ditions are not obeyed.

V. HIGHER-ORDER CORRELATIONS

In this section, we study the nature of the correlations
q distributions of the type Eq.~3! that do not fall into the
special class of Eq.~17!. We first solve the stationary maste
equation for the second-order moments, for which we
ready know that there are no correlations~Sec. III!. For the
triangular packing (z52), correlations only show up a
fourth order, and these fall off as 1/r 5. For z>3, there are
third order correlations that also decay with a power law;
the fcc packing (z53) the decay is 1/r 4. Finally, we provide
a simple relation to calculate the various exponents.

A. Second-order moments: No correlations

In order to get familiar with the structure of the mast
equations, we first consider the second-order moments
scribed by Eq.~30!. Away from the origink50, all transition
rates of Eq.~33! are identical. Therefore, the detailed balan
condition Eq.~37! requires allM2(kÞ0) to be identical. The
6-5
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JACCO H. SNOEIJER AND J. M. J. van LEEUWEN PHYSICAL REVIEW E65 051306
value at the originM2(0) has to obey a detailed balanc
condition for eachgÞ0, but these equations are identical f
all g because the corresponding rates are the same. Pu
M2(kÞ0)51, one obtains the stationary solution

^ f i f i 1k&5H z21

z~12zh2!
, k50

1, kÞ0.

~39!

This solution precisely describes an asymptotic state with
any two-point correlations, as the average of the prod
^ f i f j& equals the product of the averages for alliÞ j . Of
course, any multiple of Eq.~39!, also forms a stationary so
lution of Eq. ~30!. However, these solutions are physica
irrelevant in the thermodynamic limit, where the lattice si
→` @9#. Moreover, we find that the asymptotic second for
moment is solely determined byz and h2. For critical q
distributions one hash251/z, leading to a diverging secon
moment.

B. Third-order moments

The diffusion of third-order momentŝf i f i 1k f i 1 l& takes
place on a 2(d21)-dimensional lattice, since there are tw
free parametersk and l of dimensiond21. On this lattice,
there are threespecial subspaces, namelyk50, l 50, and
k5 l , for which the transition rates of Eq.~36! differ from the
bulk value 1/z3. Moreover, the rates at the origink5 l 50
differ from both the bulk rates and the rates on the spe
subspaces.

Let us first consider the triangular packing (z52), for
which the third-order moments diffuse on a two-dimensio
lattice, with differing rates on three special lines. As the
lines are all equivalent, it is natural to draw them at an an
of 120°, see Fig. 3. We then obtain a triangular lattice, w
transitions to six nearest neighbors and twoself-jumps,
which are ‘‘transitions’’ to the same lattice site (g50). The
detailed balance condition between a special line and
bulk is naturally identical to the second-order condition, i
plying the same ratio as in Eq.~39!. As the transition rates a
the origin are again identical for eachgÞ0 ~because of sym-
metry!, one can construct the following detailed balance
lution:

^ f i f i 1k f i 1 l&55
h2

~122h2!2
, origin

1

2~122h2!
, lines

1, bulk.

~40!

This means that there are also no three-point correlations
z52: at the origin we encounter^ f 3&, on the lines we have
^ f i

2f i 1k&5^ f 2&^ f &, and in the bulk̂ f i f i 1k f i 1 l&5^ f &3. It is
easily checked that condition Eq.~38! is indeed satisfied in
every elementary loop.

For the fcc packing (z53), the third-order moments dif
fuse on a four-dimensional lattice. Unlike thez52 packing,
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it is not possible to construct a detailed balance solution
this case. First, we write the displacement vectors asg
5(a82a,a92a)5(g1 ,g2), where thea ’s andg ’s are two-
dimensional vectors~Fig. 1!. One can jump away from the
origin with two different rates, namely,q1

2q2 and q1q2q3.
These rates correspond tog15g2 ~towards a special plane!
and g1Þg2 ~into the bulk! respectively. Checking the de
tailed balance condition in the elementary triangleorigin-
plane-bulk-origin, it turns out that Eq.~38! is only obeyed if
h3 andh2 are related as in Eq.~25!. Of course, this is pre-
cisely the case for the class of Eq.~17! for which we know
that asymptotic factorization occurs. In general, however
is not possible to construct a detailed balance solution for
third-order moments. In the next paragraph, we show that
absence of detailed balance indicates that there are force
relations that decay with a power law; in this case the de
is 1/r 4.

C. Fourth-order moments

The fourth order momentŝf i f i 1k f i 1 l f i 1m& of the trian-
gular packing diffuse on the bcc lattice depicted in Fig.
The three directionsk,l ,m precisely define a bcc primitive
cell @13#. There are now differing rates at the origin as w
as on lines and planes for which one or more indices co
cide or are equal to zero. The precise geometrical structu
explained in Appendix B. There are now twoa priori differ-
ent directions away from the origin, that is tocorners
^ f i

3f i 11& and to body centerŝ f i
2f i 11

2 &. Checking the loop
condition Eq.~38! for the looporigin–corner–body-center–
origin, one finds that it is only satisfied whenh4 andh2 are
related as in Eq.~24!.

The question that emerges is: What are the stationary
lutions of the master equation, when the detailed bala
condition is frustrated at the origin? To answer this quest
we first consider a simplified version of the bcc problem,
a first-order approximation. In this simple version, we a
sume that all jump rates are 1/z451/16, except at the origin
where we distinguish between the two different directio
Although we neglect the differing rates on the special lin
and planes, the loop condition is still frustrated in the
ementary loop origin–corner–body-center–origin. Using
(gWg(r )51, we write the stationary master equation as

FIG. 3. Triangular packing: third-order moments diffuse on
triangular lattice.
6-6
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M ~r !5(
g

Wg~r2g!M ~r2g!, ~41!

or

@122W0~r !#M ~r !5 (
gÞ0

Wg~r2g!M ~r2g!. ~42!

This allows us to eliminate the twoself-rates W0 by means
of a simple transformation:

M̂ ~r !5@122W0~r !#M ~r !,

Ŵg~r !5Wg~r !/@122W0~r !#. ~43!

The sum over the new rates again adds up to unity and
~42! becomes

M̂ ~r !5 (
gÞ0

Ŵg~r2g!M̂ ~r2g!. ~44!

Hence we can omit the self-jumps by first solving the eq
tion for the ‘‘hatted’’ variables, and then transforming ba
to M (r ). As M (r )→1 for larger, it is convenient to write

M̂ ~r !5
7

8
@11dM̂ ~r !#. ~45!

The quantitydM̂ (r ) is in fact the appropriate measure f
correlations@14#. After eliminating the two self-rates, a
jump rates have become 1/14, except at the origin where
rates to the eight corners~c! can differ from the rates to the
six body centers (b). We, therefore, have

Ŵg~r !51/141d~r !«g . ~46!

The rates to the corners are denoted by«c and those to the
body centers by«b . They fulfill the condition 8«c16«b
50. This results in the following equation:

dM̂ ~r !2
1

14 (
gÞ0

dM̂ ~r2g!5
8

7
M̂ ~0! (

gÞ0
«gd~r2g!.

~47!

FIG. 4. Triangular packing: fourth-order moments diffuse on
bcc lattice.
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Note that this is a discrete version of Poisson’s equation:
LHS is a discrete Laplacian and the RHS, originating fro
deviating rates, acts as a multipole around the origin. T
equation is solved in Appendix B by a Fourier transform
tion, leading to

M̂ ~r !5
7

8
1M̂ ~0!(

k

E~k!

12D~k!
exp~2 ik•r !. ~48!

The functionsD(k) and E(k) are defined in Appendix B;
12D(k) comes from the discrete Laplacian~in the con-
tinuum equation it would simply bek2), E(k) is the Fourier
transform of the source, and the sum overk is the inverse
Fourier transformation running over the Brillouin zone. T
amplitude of the sourceM̂ (0) can be obtained self
consistently, by settingr50. This involves a complicated
integral over the Brillouin zone~BZ! of the bcc lattice; the
outcome, however, will be of the order unity. The larger
behavior of the correlations is determined by the smalk
behavior, soE(k)/@12D(k)# has to be expanded aroundk
50. The first term that gives a contribution is

49«c

24 E dk

VBZ

~kx
2ky

21ky
2kz

21kz
2kx

2!exp~2 ik•r !

k2

.
343«c

32p F5S x2y21y2z21z2x2

r 9 D 2
1

r 5G . ~49!

The solution of Eq.~47! decays as 1/r 5; the termsx2y2, etc.,
give the proper angular dependence. This result can be
rectly understood from the analogy with electrostatics. T
solution of Poisson’s equation~47! can be expanded in as
ymptotically vanishing spherical harmonics:Ylm /r l 11. The
symmetry of the bcc lattice allows only harmonics withl
>4, leading to the observed 1/r 5 decay.

So we find that the stationary master equation for
moments becomes a discrete Poisson’s equation, and
presence of differing transition rates leads to a multip
source around the location of these rates, see Eq.~47!. How-
ever, this source is only ‘‘active’’ if there is no detailed ba
ance, since detailed balance leads to trivial solutions like
~40! @15#. Keeping this in mind, let us now investigate th
real fourth-order problem, including the differing rates at t
special lines and planes. We argue that the asymptotic v
is still approached as 1/r 5, but the amplitude of this field will
be modified. Since there is no detailed balance, the differ
rates at the lines and planes will act as sources as well. T
amplitudes, however, will decay with increasing distan
since the ‘‘flow’’ associated with the absence of detailed b
ance becomes zero atr→`. The effect of the induced
sources at the special lines and planes can be taken
account perturbatively. The first step is to only consider
effect of the origin, as we have done above. The second
would be to compute the strength of the sources at the l
and planes on the basis of the first-order solution, and the
determine their functionE(k) and recalculate the solutio
Eq. ~48!. The induced sources around the origin basica
lead to a modification of the strengthM̂ (0), but not of the
6-7



ne
in
d
in
f

is

oc
te
b

ge

th

n

n
in

(
–
cc

. I
o

nt
ry
fc

d

nd
iled

ns

g
an

r of
e

for
the
e,

rre-

nti-
st-

ndi-
s,

evi-

-
of

ion
cs,
s
er

e.

JACCO H. SNOEIJER AND J. M. J. van LEEUWEN PHYSICAL REVIEW E65 051306
asymptotic decay. However, the far away points at the li
and planes could modify the asymptotic decay. A closer
spection of the field of these sources shows that it is of or
1/r 7, since the differing rates lead to a local Laplacian act
on the first order-field decaying as 1/r 5. Hence, every step o
this perturbative calculation yields a leading term 1/r 5; the
amplitude changes in every step and its determination
difficult problem indeed.

D. Correlations for general z

From the previous section, it is clear that correlations
cur whenever the detailed balance condition is frustra
around the origin. The stationary master equation then
comes a discrete Poisson’s equation in (n21)(d21) dimen-
sions, leading to correlations that decay with an inte
power of the distancer. Following the derivation in Appen-
dix B, it is clear that the asymptotic behavior comes from
lowest nonisotropic term inE(k), since division by 1
2D(k)'k2 gives a singularity. The value of the expone
can be calculated as

~n21!~d21!1O22, ~50!

where (n21)(d21) is the dimensionality of the correlatio
space andO is the order of the lowest nonisotropic terms
the expansion ofE(k). Although this result is remarkably
simple, the actual calculation ofE(k) is not trivial, as it
reflects the symmetries of the jump directions on then
21)(d21)-dimensional lattice. Working out the four
dimensional lattice of the third-order moments in the f
packing, we find thatO52 and correlations vanish as 1/r 4.

VI. CORRELATED q DISTRIBUTIONS

So far, we have only discussedq distributions of the type
Eq. ~3!, for which there are no correlations betweenq values
at different sites. We have shown that, for theseq distribu-
tions, there are no asymptotic two-point force correlations
this section we will demonstrate that even the smallest c
relation betweenq values at different sites induces two-poi
force correlations. We first solve the problem for arbitra
correlations in the triangular packing. Then, we study the
packing assuming only a nearest-neighborq correlation; this
already leads to force correlations that decay as 1/r 6.

A. Triangular packing with arbitrary q correlations

In general, the~second-order! transition rates are define
by Eq. ~31!. For z52, the displacement vectora can only
take two values, for which we conveniently choose6 1

2 . This
allows us to write the transition rates as

W0~k!5qi ,11/2qi 1k,11/25qi ,21/2qi 1k,21/2,

W11~k!5qi ,21/2qi 1k,11/25qi ,21/2~12qi 1k,21/2!

51/22W0~k!,
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W21~k!5qi ,11/2qi 1k,21/25qi ,11/2~12qi 1k,11/2!

51/22W0~k!. ~51!

Asymptotically,W0(k) has to approach the value 1/4, forq
distributions without long-range correlations. As the seco
moments diffuse on a line, one can easily construct a deta
balance solution:

@1/22W0~k21!#M ~k21!5@1/22W0~k!#M ~k!, ~52!

or

M ~k!5
1/22W0~0!

1/22W0~k!
M ~0!. ~53!

This is the general form of the two-point force correlatio
M (k) in the triangular packing, as a function ofW0(k) that
describes theq correlations. One can draw two interestin
conclusions from this result. First of all, there can only be
uncorrelated solution ifW0(k) is constant~i.e., 1/4) for each
kÞ0. This means that even the smallestq correlations lead
to force correlations. Second, the long-distance behavio
the two-point force correlations is identical to that of th
two-point q correlations, following from the simplicity of
Eq. ~53!.

B. fcc packing with nearest-neighborq correlations

Unfortunately, the analysis is much more complicated
the fcc packing, whose second-order moments live on
two-dimensional triangular lattice of Fig. 5. We, therefor
allow only correlations betweenq values at neighboring
sites. Remember that one can easily construct an unco
lated solutionM (r ) for uncorrelatedq distributions, Eq.~39!,
since all detailed balance conditions at the origin are ide
cal by symmetry. This still holds when there are neare
neighbor correlations. However, the detailed balance co
tion will now be frustrated on the ring of surrounding site
as these are connected in foura priori different directions,
see Fig. 5. In analogy to the problem discussed in the pr
ous section, the stationary master equation fordM̂ (r ) trans-
forms into

dM̂ ~r !21/6(
gÞ0

dM̂ ~r2g!5r~r !. ~54!

The ‘‘charge density’’r(r ) is only nonzero around the frus
trated ring, see Appendix C. Again, it is a discrete version
Poisson’s equation, but now in two dimensions. The solut
can, therefore, be expanded in cylindrical harmoni
exp(inf)/rn, and the sixfold symmetry of the lattice require
n>6. The problem is again solved rigorously by Fouri
transformation of Eq.~54!. In Appendix C we show that

dM̂ ~r !}
cos~6f!

r 6
, ~55!

which is in agreement with the simple electrostatic pictur
6-8
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FORCE CORRELATIONS IN THEq MODEL FOR . . . PHYSICAL REVIEW E 65 051306
So, for the fcc packing, we find that even a neare
neighborq correlation leads to two-point force correlation
that decay with a power law. This algebraic decay is gen
for z>3 since anyq correlations lead to a master equati
whose detailed balance relations cannot be solved aroun
origin.

VII. DISCUSSION

We have studied force correlations in theq model at infi-
nite depth, for generalq distributions. The calculated corre
lation functions are rather unusual: forq distributions of the
type Eq.~3!, correlations only show up at higher orders, a
these correlations decay with a power of the distance.
only exceptions are theq distributions given by Eq.~17!,
which do produce a factorized force distribution. The resu
for the triangular packing and the fcc packing are summ
rized in Table I. As an example, consider two different si
i andi 1k in a layer of the triangular packing. Since there a
no correlations in the second- and third-order force mome
we find ^ f i f i 1k&51 and^ f i

2f i 1k&5^ f 2&, independent of the
distancek. However, the momentŝf i

3f i 1k& and^ f i
2f i 1k

2 & are
correlated and approach their asymptotic value as 1/k5. The
fact that one has to go to higher orders to observe fo
correlations is the reason why numerical simulations o

FIG. 5. fcc packing: second order moments diffuse on a tri
gular lattice. The ring around the origin has differing rates.

TABLE I. Summary of the results for the triangular packin
(z52; d52) and the fcc packing (z53; d53). The nth-order
force moments diffuse on a (n21)(d21)-dimensional lattice; the
lattice structures are listed in the first row. The second row sh
the nature of the corresponding force correlations in the station
state.

Packing n52 n53 n54 n52, with q corr.

Triangular Line Triangular bcc Line
(d52) no corr. no corr. 1/r 5 like q corr.

fcc Triangular 4-dim. 6-dim. Triangular
(d53) no corr. 1/r 4 1/r 6
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marginally differ from the mean field solutions@4#. The
~single-site! mean field solutionspmf( f ) are correct up to the
third-order moments, for the triangular packing. This impli
that pmf( f ) ‘‘wiggles’’ around the real solutionp* ( f ); the
deviationpmf( f )2p* ( f ) changes its sign four times~Fig. 2!.

Packings that have more than threeq values per site (z
>3) already have third-order correlations. Also this tim
correlations only decay algebraically; for the fcc packing
find 1/r 4. This algebraic decay can be understood from
analogy with electrostatics. The force moments evolve
cording to a master equation, and the corresponding stat
ary state is described by a discrete version of Poisson’s e
tion. The ‘‘source’’ turns out to be a multipole around th
origin, which is only active whenever the master equat
has no simple detailed balance solution. The moments th
fore approach their asymptotic~uncorrelated! values algebra-
ically. The value of the exponent depends on the dimens
of the correlation space (n21)(d21), and on the symmetry
of the multipole, see Eq.~50!.

Although in general correlations do exist, there is a s
cial class ofq distributions, given by Eq.~17!, for which
there are no force correlations at all. This has been dem
strated by means of condition~14!, which has a nice physica
interpretation. It can be shown that the functionc(s) is the
Laplace transform of the distribution ofinterparticle forces
that live on the bonds connecting the particles:v i ,a
5qi ,a f i . Although theq’s leaving a site are correlated~they
have to add up to 1), the correspondingv i ,a can become
statistically independent. It is only when this miracle ha
pens that the force distribution becomes a product state. N
ertheless, theq distributions for which this is the case rang
from infinitely sharp (r→`) to almost critical (r→0). It is
interesting to note that a similar calculation has been d
recently for the asymmetric random average process~ARAP!
@16#. This 111 dimensional model maps onto theq-model
with triangular packing, with a broken left–right symmetr
The extension of our calculation to asymmetrich(qW ) is
straightforward@10#: one has to replacer by r a , andzr by
(ar a in Eqs.~16!–~19!.

Finally, we found that there will be two-point force co
relations whenever theq values of different sites are corre
lated. Even with only nearest-neighborq correlations, the fcc
packing has force correlations that vanish as 1/r 6. Again, the
triangular packing is less sensitive for correlations; the
ture of the force correlations is identical to that of theq
correlations, Eq.~53!.

ACKNOWLEDGMENTS

The authors would like to thank Wim van Saarloos, Ma
tin van Hecke, and Martin Howard for stimulating discu
sions.

APPENDIX A: MOMENTS OF q DISTRIBUTIONS

This appendix is about the moments of theq distri-
butions, defined by
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q1
n1q2

n2
•••qz

nz5E h~qW !dS 12(
a

qaDdqW q1
n1q2

n2
•••qz

nz.

~A1!

These different moments are not independent because o
d constraint. As the distributions are normalized, the zero
order moments are unity; the first-order moments are,
course, all 1/z. All second-xorder moments, for which( ini
52, can be described by only one free parameter. Defin
hn as

hn5E h~qW !dS 12(
a

qaDdqW q1
n , ~A2!

one finds

(
i 51

z

q1qi5h21~z21!q1q2

5E h~qW !dS 12(
a

qaDdqW q1(
i 51

z

qi51/z,

~A3!

hence

q1q25
1

~z21!
~1/z2h2!. ~A4!

From a similar argument, one can derive for the third-or
moments

q1
35h3 , q1

2q25
1

~z21!
~h22h3!. ~A5!

For z52 there is even a relation betweenh3 andh2:

15(
i jk

qiqjqk52h316q1
2q2⇒h35

3

2
h221/4. ~A6!

For z53, there is an additional third moment, namely,

15(
i jk

qiqjqk53h3118q1
2q216q1q2q3

⇒q1q2q35
1

6
~129h216h3!. ~A7!

The extension to higher orders and higherz is straightfor-
ward.

For the special class ofh(qW ) defined in Eq.~17!, one can
calculate the momentshn from a generalization of Eq.~16!
@10#,

hn5
G~zr!G~r 1n!

G~r !G~zr1n!
. ~A8!

In order to show that Eq.~24! is indeed obeyed by the speci
class~with z52), we first invert Eq.~A8! for n52,
05130
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r 5
122h2

4h221
. ~A9!

From this one can calculateh4 as a function ofh2, which
precisely results in Eq.~24!. A similar inversion forz53
leads to

r 5
123h2

9h221
, ~A10!

from which one derives Eq.~25!.

APPENDIX B: THE bcc LATTICE

In the triangular packing, the fourth-order force momen
^ f i f i 1k f i 1 l f i 1m& diffuse on the bcc lattice of Fig. 4, with
differing jump rates on special lines and planes. In this
pendix, we list these rates explicitly and we solve the cor
sponding stationary master equation.

The jump rates can be calculated from

Wg~k,l ,m!5qi ,a qi 1k,a8 qi 1 l ,a9 qi 1k,a-, ~B1!

with the z4516 jump directions

g5~a82a,a92a,a-2a!. ~B2!

As a can take the values6 1
2 , there are twoself-ratesfor

which all a ’s are the same. As a consequence, there are
outgoing directions, namely,6(1,0,0), 6(1,1,1), and
6(1,1,0) plus their permutations. The first two are directio
for which three of the foura ’s are equal, and they corre
spond to thecornersof Fig. 4; the third represents the jump
towards thebody centers. If all position indices in Eq.~B1!
are different, the transition rates are simply 1/z451/16. On
the special lines and planes where one or more position
dices coincide, we encounter differing rates. The geometr
the problem is summarized in Table II.

From this table we deduce the rates«c to the corners and
«b to the body centers, which occur in relation~46!. We find

TABLE II. The transition ratesWg(r ) for the fourth-order mas-
ter equation.

From \ to (0,0,0) (k,0,0) (k,k,0) (k,l ,0) (k,l ,m)

Origin (0,0,0) q1
4 q1

3q2 q1
2q2

2

Line ~c!
(k,0,0)

(k,k,k)
1
2 q1

3 1
2 q1

3 1
2 q1

2q2
1
2 q1

2q2

Line ~b! (k,k,0) (q1
2)2 q1

2 q1q2 (q1
2)2 q1

2 q1q2 (q1q2)2

Plane
(k,l ,0)

(k,k,l )
1
4 q1

2 1
4 q1

2 1
4 q1

2 1
4 q1q2

Bulk (k,l ,m) 1
16

1
16

1
16
6-10
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«c5
q1

3q2

122q1
4

2
1

14
, «b5

q1
2q2

2

122q1
4

2
1

14
, ~B3!

and one easily verifies from the propertyq11q251 that the
relation 8«c16«b50 holds. In general, the rates do not ob
the detailed balance condition Eq.~38! in the elementary
loop origin–corner–body-center–origin. Keeping only the
rates in this loop as deviations from the bulk leads to E
~47!. For the definition of the two functionsE(k) andD(k)
we introduce two auxiliary functions: one for the contrib
tion of the corners

Ẽc~k!5
1

4Fcos
kx1ky1kz

2
1cos

kx2ky1kz

2
1cos

kx1ky2kz

2

1cos
kx2ky2kz

2 G ~B4!

and one related to the body centers

Ẽb~k!5
1

3
~coskx1cosky1coskz!. ~B5!

The two functionsD̃(k) and Ẽ(k) are then given as

D̃~k!5
4

7
Ẽc~k!1

3

7
Ẽb~k!,

Ẽ~k!5«@Ẽc~k!2Ẽb~k!#, ~B6!

with «58«c526«b .
For the larger behavior we need the expansions for sm

k. One finds

Ẽc~k!512
1

8
k21

1

384
@k414~kx

2ky
21ky

2kz
21kz

2kx
2!#1•••

~B7!

and

Ẽb~k!512
1

6
k21

1

72
@k42~kx

2ky
21ky

2kz
21kz

2kx
2!#1•••.

~B8!

From these expressions one derives the expansion

Ẽ~k!

12D̃~k!
5

7e

24S 12
7

32
k21

7

8

kx
2ky

21ky
2kz

21kz
2kx

2

k2 1••• D .

~B9!

The first two terms in the expansion are regular and thus g
rise to short-range contributions. The last term leads to
asymptotic behavior, by means of the inverse Fourier tra
form

E dk

VBZ

~kx
2ky

21ky
2kz

21kz
2kx

2!exp~2 ik•r !

k2
. ~B10!
05130
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This integral can be evaluated by differentiation of the we
known equation

E dk

VBZ

exp~2 ik•r !

k2
.

1

4pr
, ~B11!

where a factorkx in Eq. ~B10! corresponds to applying]/]x.
This leads to expression~49!.

APPENDIX C: q CORRELATIONS IN THE fcc PACKING

In Eq. ~54! we formulated the problem for the secon
moments in the fcc packing with nearest-neighborq correla-
tions. The ‘‘charge density’’r(r ) on the right-hand side o
the equation is the product of the momentM̂ (g), referring to
the neighbors of the origin~all are the same by symmetry!,
with a function whose Fourier transform is given by

Ẽ~k!5 (
g8,g

wg2g8 exp@ ik•~g1g8!#. ~C1!

The wg2g8 are the deviations from the bulk transition rat
1/6. These are only nonzero for the ring of nearest neighb
around the origin shown in Fig. 5,

w052«0 , w15w552«1 ,

w25w452«2 , w35«012«112«2 . ~C2!

The equalities reflect the symmetry of the triangular latti
Inserting Eq.~C1! into the Fourier transform of Eq.~54!
leads to

M̂ ~r !52/31M̂ ~g!(
k

Ẽ~k!

12D̃~k!
exp~2 ik•r !. ~C3!

The consistency equation forM̂ (g) follows by taking r as
one of the nearest neighbors of the origin. The functionD̃(k)
is given by

D̃~k!5
1

3S coskx1cos
kx1A3ky

2
1cos

kx2A3ky

2 D ,

~C4!

and Ẽ(k) can be expressed as

Ẽ~k!/65«0@12D̃~2k!#12«1@12D̃8~k!#12«2@12D̃~k!#,

~C5!

with the new function

D̃8~k!5D̃~A3 ky ,A3 kx!. ~C6!

For the asymptotic behavior ofM̂ (r ) we must make an ex
pansion ofẼ(k)/@12D̃(k)#. For the first two terms we find
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be
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x
12D̃~2k!

12D̃~k!
54S 12

3

16
k21

3

256
k4

1
1

192

kx
626kx

4ky
219kx

2ky
4

k2
1••• D , ~C7!

12D̃8~k!

12D̃~k!
53S 12

1

8
k21

1

128
k4

1
1

288

kx
626kx

4ky
219kx

2ky
4

k2
1••• D , ~C8!

and the third term is simply a constant. The asymptotic
.

ha

in

a

05130
-

havior is given by Fourier inversion of the first singular ter
in k, i.e.,

E dk

VBZ

~kx
626kx

4ky
219kx

2ky
4!exp~2 ik•r !

k2
.

960

p

cos~6f!

r 6
.

~C9!

This integral can be obtained by differentiation of

E dk

VBZ

exp~2 ik•r !

k2
.

ln~L/r !

2p
, ~C10!

whereL is the size of the system.
-
d 0

the
-

e
lor

ion
ds
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